首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders.  相似文献   

2.
Several lines of evidence suggest that phosphorylation of α-synuclein (α-syn) at S87 or S129 may play an important role in regulating its aggregation, fibrillogenesis, Lewy body formation, and neurotoxicity in vivo. However, whether phosphorylation at these residues enhances or protects against α-syn toxicity in vivo remains unknown. In this study, we investigated the cellular and behavioral effect of overexpression of wild-type (WT), S87A, and S87E α-syn to block or to mimic S87 phosphorylation, respectively, in the substantia nigra of Wistar rats using recombinant adeno-associated vectors. Our results revealed that WT and S87A overexpression induced α-syn aggregation, loss of dopaminergic neurons, and fiber pathology. These neuropathological effects correlated well with the induction of hemi-parkinsonian motor symptoms. Strikingly, overexpression of the phosphomimic mutant S87E did not show any toxic effect on dopaminergic neurons and resulted in significantly less α-syn aggregates, dystrophic fibers, and motor impairment. Together, our data demonstrate, for the first time, that mimicking phosphorylation at S87 inhibits α-syn aggregation and protects against α-syn-induced toxicity in vivo, suggesting that phosphorylation at this residue would play an important role in controlling α-syn neuropathology. In addition, our results provide strong evidence for a direct correlation between α-syn-induced neurotoxicity, fiber pathology, and motor impairment and the extent of α-syn aggregation in vivo, suggesting that lowering α-syn levels and/or blocking its aggregation are viable therapeutic strategies for the treatment of Parkinson's disease and related synucleinopathies.  相似文献   

3.
Genetic studies of Parkinson's disease over the last decade or more have revolutionized our understanding of this condition. α-Synuclein was the first gene to be linked to Parkinson's disease, and is arguably the most important: the protein is the principal constituent of Lewy bodies, and variation at its locus is the major genetic risk factor for sporadic disease. Intriguingly, duplications and triplications of the locus, as well as point mutations, cause familial disease. Therefore, subtle alterations of α-synuclein expression can manifest with a dramatic phenotype. We outline the clinical impact of α-synuclein locus multiplications, and the implications that this has for Parkinson's disease pathogenesis. Finally, we discuss potential strategies for disease-modifying therapies for this currently incurable disorder.  相似文献   

4.
Summary. A major step in the elucidation of the pathogenesis of neurodegenerative disorders was the identification of a mutation in the α-synuclein gene in autosomal dominant Parkinson's disease (PD). α-Synuclein is the main component of Lewy bodies (LB), the neuropathological hallmark of PD. Moreover, a fragment of α-synuclein (NAC) is the second major component of amyloid plaques in Alzheimer's disease (AD). Recent studies of other neurodegenerative disorders such as dementia with LB (DLB), multiple system atrophy (MSA) and amyotrophic lateral sclerosis (ALS) also revealed intracellular accumulations of α-synuclein in affected brain regions. This may indicate that these disorders partially share common pathogenic mechanisms. Recent data provide first insights into the physiological function of α-synuclein and support the concept of an essential role of α-synuclein in neurodegeneration. Increasing knowledge on the pathogenic molecular mechanisms of neurodegeneration and of the pathophysiological function of α-synuclein in particular may influence future development of therapeutic strategies in neurodegenerative disorders. Received April 9, 1999; accepted June 16, 1999  相似文献   

5.
6.
To investigate the putative interaction between chronic exposure to adenosine receptor antagonist caffeine and genetic influences on Parkinson's disease (PD), we determined whether deletion of the adenosine A(2A) receptor in knockout (KO) mice protects against dopaminergic neuron degeneration induced by a mutant human α-synuclein (hm(2)-αSYN) transgene containing both A53T and A30P. The A(2A) KO completely prevented loss of dopamine and dopaminergic neurons caused by the mutant α-synuclein transgene without altering levels of its expression. The adenosine A(2A) receptor appears required for neurotoxicity in a mutant α-synuclein model of PD. Together with prior studies the present findings indirectly support the neuroprotective potential of caffeine and more specific A(2A) antagonists.  相似文献   

7.
Although clinically distinct diseases, tauopathies and synucleinopathies share a common genesis and mechanisms, leading to overlapping degenerative changes within neurons. In human postmortem striatum of Parkinson’s disease (PD) and PD with dementia, we have recently described elevated levels of tauopathy, indexed as increased hyperphosphorylated Tau (p‐Tau). Here we assessed tauopathy in striatum of a transgenic animal model of PD, overexpressing human α‐synuclein under the platelet‐derived growth factor promoter. At 11 months of age, large and progressive increases in p‐Tau in transgenic mice, hyperphosphorylated at sites reminiscent of Alzheimer’s disease, were noted, along with elevated levels of α‐synuclein and glycogen synthase kinase 3β phosphorylated at Tyr216 (p‐GSK‐3β), a major kinase involved in the hyperphosphorylation of Tau. Differential Triton X‐100 extraction of striata showed the presence of aggregated α‐synuclein in the transgenic mice, along with p‐Tau and p‐GSK‐3β, which was also confirmed through immunohistochemistry. After p‐Tau formation, both Tau and microtubule‐associated protein 1 (MAP1) dissociated from the cytoskeleton, consistent with the diminished ability of these cytoskeleton‐binding proteins to bind microtubules. Increases in free tubulin and actin were also noted, indicative of cytoskeleton remodeling and destabilization. In vivo magnetic resonance imaging of the transgenic animals showed a reduction in brain volume of transgenic mice, indicating substantial atrophy. From immunohistochemical studies, α‐synuclein, p‐Tau and p‐GSK‐3β were found to be overexpressed and co‐localized in large inclusion bodies, reminiscent of Lewy bodies. The elevated state of tauopathy seen in these platelet‐derived growth factor–α‐synuclein mice provides further confirmation that PD may be a tauopathic disease.  相似文献   

8.
Parkinson's disease (PD) is characterized by a gradual accumulation of neuropathology that may begin many years before a clinical diagnosis can be made using currently accepted criteria. Here, we first review the prevalence of α-synuclein neuropathology in elderly and discuss its clinical relevance in Parkinson patients. Subsequently, the results of a retrospective study focussing on the distribution of neuropathology in Parkinson patients with a tremor-dominant (TD), non-tremordominant (NTD) or rapid disease progression (RDP) subtype are presented. The study population recruited by the Netherlands Brain bank consisted of 149 non-neurological donors, 26 donors with incidental Lewy body disease (iLBD) and 111 Parkinson patients. In total, 89% of these cases could be classified in accordance with the Braak staging when taking into account the severity of α-synuclein pathology and adding an amygdala-predominant category of synucleinopathy. The pathological progression seemed to be non-linear. Interestingly, a strong correlation between neuronal loss and α-synuclein pathology was observed in the substantia nigra in Braak stages 3-6 (P < 0.01). However, there was no correlation between Hoehn & Yahr and Braak stages. Neuropathological progression may, however, vary between subtypes as cortical Lewy body load and Braak stages were higher in patients with NTD compared to TD and Alzheimer pathology was more prevalent in RDP patients. Recognition of clinical subtypes in neuropathological studies is essential to identify selective vulnerability to protein accumulation that may determine the clinical phenotype in PD.  相似文献   

9.
10.
To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson's disease. It was recently observed in a rodent model of Alzheimer's disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR) and sigma-1 receptor(σ1-R) could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson's disease. In this context, the aim of the present study was to assess the effects of the concomitant administration of N-(3 R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA) 543613 as an α7-nAChR agonist and 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate(PRE)-084 as a σ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson's disease. The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion. Although no effect was noticed in the amphetamine-induced rotation test, our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15–20%), assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra. Furthermore, this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion, i.e, the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum, and the CD11 b and glial fibrillary acidic protein staining in the substantia nigra. Hence, this study reports for the first time that concomitant activation of α7-nAChR and σ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation. The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19) validated this protocol(Authorization N°00434.02) on May 15, 2014.  相似文献   

11.
12.
13.
Development of relevant models of Parkinson's disease (PD) is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising targets for therapeutic intervention. To date, most pre-clinical studies have been performed in the well-established rodent and non-human primate models using injection of 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). Overexpression of the disease-causing protein α-synuclein (α-syn), using adeno-associated viral (AAV) vectors, has provided a novel model that recapitulates many features of the human disease. In the present study we compared the AAV-α-syn rat model with models where the nigro-striatal pathway is lesioned by injection of 6-OHDA in the striatum (partial lesion) or the medial forebrain bundle (full lesion). Examination of the behavioural changes over time revealed a different progression and magnitude of the motor impairment. Interestingly, dopamine (DA) neuron loss is prominent in both the toxin and the AAV-α-syn models. However, α-syn overexpressing animals were seen to exhibit less cell and terminal loss for an equivalent level of motor abnormalities. Prominent and persistent axonal pathology is only observed in the α-syn rat model. We suggest that, while neuronal and terminal loss mainly accounts for the behavioural impairment in the toxin-based model, similar motor deficits result from the combination of cell death and dysfunction of the remaining nigro-striatal neurons in the AAV-α-syn model. While the two models have been developed to mimic DA neuron deficiency, they differ in their temporal and neuropathological characteristics, and replicate different aspects of the pathophysiology of the human disease. This study suggests that the AAV-α-syn model replicates the human pathology more closely than either of the other two 6-OHDA lesion models.  相似文献   

14.
15.
16.
Summary. Mutations of the α-synuclein gene have shown to be relevant in some rare families with autosomal dominant Parkinson's disease (PD). Furthermore, α-synuclein protein is a major component of the Lewy bodies also in sporadic PD patients. Increased levels of wildtype α-synuclein in the cell leads to increased intracellular hydrogen peroxide levels and causes death of dopaminergic neurons in rat primary culture. Subsequently, oxidative stress has been directly linked with α-synuclein aggregation in vitro. This raises the question whether increased α-synuclein expression might be linked to higher susceptibility to PD and whether α-synuclein promoter polymorphisms are associated with PD. Here, two polymorphisms (−116C>G and −668T>C) of the α-synuclein promoter defining four haplotypes have been characterized in 315 German PD patients. The influence of the four haplotypes on gene expression was studied by CAT reporter gene assays in neuronal SK-N-AS cells. The −668C/−116G haplotype revealed significant higher CAT expression than the −668T/−116G or the −668T/−116C haplotype, respectively. Although the −668C/−116G haplotype was more common in PD patients, this difference was not significant. Received January 8, 2002; accepted June 10, 2002 Published online August 22, 2002 Authors' address: O. Riess, M.D., Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, D-72076 Tübingen, Federal Republic of Germany, e-mail: olaf.riess@med.uni-tuebingen.de  相似文献   

17.
18.
BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were ga  相似文献   

19.
α-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号