首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human enterotoxigenic Escherichia coli (ETEC) producing colonization factor antigen III (CFA/III) and coli surface antigens 4, 5, and 6 (CS4, CS5, and CS6) of CFA/IV were examined ultrastructurally and for ability to adhere to human small intestinal enterocytes and to cultured human intestinal mucosa. Strains of serotypes O25:H-, O25:H42, and O167:H5 producing CFA/III plus CS6, CS4 plus CS6, and CS5 plus CS6, respectively, showed good adhesion to human enterocytes (1.8 to 4.2 bacteria per brush border) and cultured human intestinal mucosa, whereas variants lacking these antigens or producing only CS6 were nonadherent (0 to 0.03 bacterium per brush border). By electron microscopy, CFA/III, CS4, and CS5 appeared as morphologically distinct rodlike fimbriae: CFA/III was 7 to 8 nm in diameter, CS4 was 6 to 7 nm in diameter, and CS5 was 5 to 6 nm in diameter. CS5 was unusual in that it appeared to be composed of two fine fibrils arranged in a double-helical structure. CS6 was difficult to characterize morphologically but possibly has a very fine fibrillar structure. By specific fimbrial staining and immunoelectron microscopy. CS4 and CS5 were shown to promote mucosal adhesion of ETEC; a similar adhesion role for the CS6 antigen could not be confirmed. ETEC strains of serotypes O27:H7, O27:H20, O148:H28, and O159:H20 which produced CS6 showed good adhesion to human enterocytes (1.6 to 3.0 bacteria per brush border), whereas variants which lacked CS6 were nonadherent (0 to 0.01 bacterium per brush border). These strains, however, also produced fimbrial or fibrillar surface antigens, in addition to CS6, which probably represent additional coli surface antigens responsible for the observed adhesive properties of these ETEC serotypes.  相似文献   

2.
The adhesion to erythrocytes and human intestinal epithelial cells of enterotoxigenic Escherichia coli strains H10407, B2C, and H10407P, expressing colonization factor antigen I (CFA/I), CFA/II, and type 1 fimbriae, respectively, was examined by electron microscopy. CFA and type 1 fimbriae were visualized by negative staining in thin sections after en bloc staining with ruthenium red and by immune labeling with antisera raised against purified fimbriae. By negative and ruthenium red staining, CFA/I, CFA/II, and type 1 fimbriae were indistinguishable and appeared as approximately 7-nm-diameter hollow cylindrical structures up to 1.5 micron in length; strain B2C also produced 2- to 3-nm-diameter flexible fibrillar fimbriae. Bacteria producing CFA/I, CFA/II, and type 1 fimbriae adhered to and agglutinated human, bovine, and guinea pig erythrocytes, respectively; CFA/I and CFA/II also mediated attachment of bacteria to the brush border of isolated human duodenal enterocytes. Electron microscopy of agglutinated erythrocytes and enterocytes with adherent bacteria showed, in each case, that bacterial adhesion involved the formation of many interactions between the tips of fimbriae and receptors on the erythrocyte or enterocyte brush border membrane. Immune labeling allowed different fimbrial antigens mediating bacterial attachment to human enterocytes to be identified.  相似文献   

3.
Enterotoxigenic Escherichia coli (ETEC) strains possessing colonization factor antigen I (CFA/I), CFA/II, CFA/III, and antigen 2230 were tested for their ability to adhere to the following cell lines: HeLa, HEp-2, HRT 18, Hutu 80, MDBK, MDCK, Vero, and Caco-2. ETEC strains adhered only to the Caco-2 cell line. Irrespective of the known adhesive factors, the ETEC strains that adhered to the brush border of human enterocytes also adhered to the Caco-2 cell line. The negative variants, which were cured of the plasmid encoding the adhesive factor, did not adhere. Adhesion of ETEC strains no longer occurred when the Caco-2 cells were pretreated with the homologous colonization factor antigen or when the bacterial cells were pretreated with homologous antibodies raised against the adhesive factors. This indicates that this adhesion is specific and that a different receptor exists for each type of adhesion factor. Electron micrographs of cross sections of the monolayer showed that the adhesion of ETEC strains to the brush border microvilli does not induce any lesion. Therefore, the Caco-2 cell line behaves in the same way as human enterocytes do.  相似文献   

4.
Monoclonal antibodies (MAbs) against the different coli surface antigens CS1, CS2, and CS3 of colonization factor antigen II (CFA/II) of enterotoxigenic Escherichia coli (ETEC) were generated by fusing F/O myeloma cells with spleen cells from BALB/c mice immunized with different preparations of purified CFA/II. Five hybrids that produced antibodies specific for CS1, CS2, or CS3 in high titer were cloned and propagated. All the anti-CS MAbs were of the immunoglobulin G1 isotype, and all gave single precipitation lines in immunodiffusion tests when reacting with CFA/II-positive E. coli extracts containing the corresponding CS factor. The binding of all the MAbs to solid-phase-bound CFA/II could be completely inhibited by purified CFA/II containing the corresponding CS factor. However, whereas one MAb against CS3 was inhibited by all of 18 different CFA/II-positive strains tested, another anti-CS3 MAb was inhibited by bacteria expressing CS1 and CS3 (CS1 + CS3 strains) or CS3 alone but not by CS2 + CS3 strains, suggesting antigenic differences in CS3 when expressed by different strains. Use of the anti-CS MAbs in slide agglutination, immunodiffusion, or a CFA inhibition enzyme-linked immunosorbent assay revealed differences in the relative distribution of the various CS factors of CFA/II in clinical ETEC isolates from different geographic areas. By using the anti-CS MAbs in an enzyme-linked immunosorbent assay-nitrocellulose replica method, CFA/II-positive colonies could be detected in stool cultures from infected animals without prior isolation of the ETEC organisms.  相似文献   

5.
Enterotoxigenic Escherichia coli (ETEC) of serotype O6:H16, biotype A, bearing colonization factor antigen II (CFA/II) possesses two distinct coli surface antigens, CS1 and CS3, whereas CFA/II-positive ETEC of serotype O8:H9 manifests only CS3. CS1 has been shown to be fimbrial in nature, but heretofore the morphology of CS3 has not been described. Accordingly, by immune electron microscopy we investigated the morphological characteristics of CS3 on bacterial cells and after purification. CS3 was found to consist of thin (2-nm), flexible, wiry, "fibrillar" fimbriae, visible both on bacteria (O6:H16, biotype A, and O8:H9 strains) and in the pure state. In contrast, CS1 exists as wider (6-nm), rigid fimbriae on the surface of O6:H16, biotype A, strains. By the use of antisera to CS1 and CS3 in immune electron microscopy, immunodiffusion in gel, and immunoblotting techniques, CS1 and CS3 were found to be immunologically as well as morphologically distinct. Six of nine volunteers who developed diarrhea after challenge with an O139:H28 ETEC strain bearing CS1 and CS3 had significant serological rises to purified CS1 and CS3 antigens, suggesting that both antigens are elaborated in vivo, play a role in pathogenesis, and stimulate an immune response.  相似文献   

6.
Three important fimbrial colonization factor antigens (CFAs) designated CFA/I, CFA/II, and E8775 were identified originally in some human enterotoxigenic Escherichia coli (ETEC) strains because of their mannose-resistant hemagglutination properties. To identify CFA, in strains lacking mannose-resistant hemagglutination properties we exploited the ability of human ETEC strains to adhere to human proximal small intestinal mucosa. ETEC strain B7A (O148:H28) was selected for study because it belongs to an epidemiologically important serotype and does not produce a known CFA, and yet it is known to be pathogenic and cause diarrheal disease in human volunteers. Results of an human enterocyte adhesion assay indicated that some bacteria in cultures of B7A produced adhesive factors. To select for such bacteria, cultured human duodenal mucosal biopsy samples were infected with B7A for up to 12 h, after which time a large percentage of the mucosal surface became colonized by bacteria. A new fimbrial structure morphologically distinct from CFA/I, CFA/II, and E8775 fimbriae and consisting of curly fibrils (approximately 3 nm in diameter) was readily identified when bacteria were subcultured from the mucosa and examined by electron microscopy. Identical fimbriae were produced by ETEC strain 1782-77 of the same serotype. Identification of these fimbriae only on bacteria subcultured from human intestinal mucosa strongly suggests that they promote mucosal adhesion of ETEC serotype O148:H28 and thus represent a potentially new human ETEC CFA.  相似文献   

7.
Monoclonal antibodies (MAbs) against five putative colonization factors (PCFs), i.e., colonization factor antigen (CFA)/III, coli surface antigen (CS)7 and CS17, PCFO159, and PCFO166 of enterotoxigenic Escherichia coli (ETEC), were produced. Hybridomas (one each) producing specific antibodies against the respective PCFs were selected. All the MAbs reacted with the corresponding fimbriae but not with CFA/I, CFA/II, or CFA/IV or the heterologous PCFs in bacterial agglutination and enzyme-linked immunosorbent assays (ELISAs). In immunoelectron microscopy these MAbs bound along the fimbriae, and they also reacted with the corresponding subunits in immunoblots. The five MAbs were used to evaluate the prevalence of CFA/III, CS7, CS17, PCFO159, and PCFO166 in ETEC strains isolated from children with diarrhea in Argentina. One hundred five ETEC isolates negative for CFA/I, CFA/II, and CFA/IV were tested in slide agglutination or in a dot blot test for spontaneously agglutinating strains; positive results were confirmed by inhibition ELISAs. It was found that 27% of the CFA-negative ETEC strains carried one of the PCFs. The sensitivity of slide agglutination with these MAbs was similar to that with specific polyclonal antisera; however, the specificity was higher. PCFO166 was found in 9.5% of the strains tested, mainly in ETEC of serogroup O78 producing heat-stable toxin alone. CS17 and CS7 were identified in 6.7 and 5.7%, respectively, of strains producing heat-labile toxin only, most of which belonged to serogroup O114. PCFO159 was found in 3.8% of the isolates tested, whereas CFA/III was detected in only one ETEC strain.  相似文献   

8.
Samples (1,318) of enterotoxigenic Escherichia coli (ETEC) isolated in 1994-1995 from children with diarrhea from Nepal, Indonesia, Peru, and Thailand were examined for colonization factor antigen (CFA) and coli surface (CS) antigens. Fifty-five percent of 361 heat-labile and heat-stable (LT-ST), 14% of 620 LT-only, and 48% of 337 ST-only ETEC had CFA/CS antigens. LT-ST ETEC strains were predominantly in the CFA II group, and ST only strains were in the CFA IV group. Additional studies are needed to identify ETEC strains that do not have CFA/CS antigens.  相似文献   

9.
We examined the ability of a colonization factor antigen I (CFA/I) polynucleotide probe to identify coli-surface antigen 4 producing (CS4+) strains of enterotoxigenic Escherichia coli (ETEC). At low stringency (LS) the probe hybridized to colony lysates of strains previously shown to produce CS4 or CFA/I fimbriae. Only DNA from CFA/I+ strains maintained a stable probe-target hybrid under high stringency (HS) conditions. On examination of several clones from three previous CS4 producers, identified as positive in LS and negative in HS colony hybridization, spontaneous loss of nucleotide sequences homologous to a gene encoding a positive CFA/I regulator, CfaD, was found to be associated with lacking expression of CS4. Our findings indicate that, on stored or subcultured isolates of ETEC, identification of CS4 strains may benefit from applying gene probe technology.  相似文献   

10.
A prospective study was performed to evaluate the presence of colonization factor antigens (CFAs) in enterotoxigenic Escherichia coli (ETEC) strains isolated from 1,211 children with diarrhea in Argentina. One hundred nine ETEC strains that were isolated from seven different laboratories in various regions of the country were tested for CFAs by using monoclonal antibodies against CFA/I and E. coli surface antigens CS1, CS2, and CS3 of CFA/II and CS4 and CS5 of CFA/IV; a polyclonal antiserum against CS6 was used. The CFAs searched for were found in 52% of the ETEC strains: 23% of the strains carried CFA/I, 17% carried CFA/IV, and 12% carried CFA/II. All of the CFA/I strains produced heat-stable enterotoxin, and several of them were of the prevalent serotypes O153:H45 and O78:H12. Among the 19 strains expressing CFA/IV, 16 expressed CS5 and CS6 and produced the heat-stable enterotoxin and most were of serotype O128:H21; the remaining 3 strains produced CS6 only. No ETEC strains expressing CS4 were found. Most (11 of 13) of the CFA/II-carrying ETEC strains expressed CS1 and CS3, and 10 of them were of the O6:K15:H16 serotype and produced both heat-labile and heat-stable toxins. As many as 24 of the 109 CFA-negative ETEC strains gave mannose-resistant hemagglutination with erythrocytes from different species; 4 strains had high surface hydrophobicity, suggesting the presence of additional, as yet undefined, colonization factors in up to 25% of the ETEC isolates.  相似文献   

11.
Enterotoxigenic Escherichia coli (ETEC) belonging to serogroups O6 and O8 do not possess the H-10407-type colonization factor antigen (CFA/I). However, these frequently isolated ETEC were found to possess a second and distinct heat-labile surface-associated colonization factor antigen, termed CFA/II. Whereas CFA/I mediates mannose-resistant hemagglutination of human group A erythrocytes, CFA/II does not. CFA/II mediates mannose-resistant hemagglutination of bovine erythrocytes, and mannose-resistant hemagglutination is rapid only at reduced temperature (4 degrees C). Because CFA/II, like CFA/I, is spontaneously lost by many ETEC isolates in the laboratory, it was possible to produce specific anti-CFA/II serum by preparing antiserum against living cells of a prototype strain (PB-176) and adsorbing this serum with living and heat-treated cells of its CFA/II-negative derivative strain PB-176-P. This serum, which neutralized the colonization factor activity of CFA/II-positive strains in infant rabbits, was employed to confirm the presence of CFA/II on ETEC which exhibited mannose-resistant hemagglutination of bovine but not human erythrocytes. CFA/II, like CFA/I, mediates adherence of the bacteria to the mucosal surface of the small intestine, as demonstrated by indirect immunofluorescence. CFA/II appears to be an important virulence factor for humans since CFA/II-positive ETEC are frequently isolated from diarrhea cases, particularly travelers' diarrhea, in Mexico; these ETEC were not uncommon in a collection of isolates from Bangladesh. The O6:H16 strain of ETEC responsible for an outbreak of diarrhea in the United States was also shown to be CFA/II positive. CFA/I and CFA/II were never found on the same serotypes of ETEC, but 98% of the heat-stable and heat-labile enterotoxin-producing ETEC belonging to the frequently isolated serogroups O6, O8, O15, O25, O63, and O78 were positive for either CFA/I or CFA/II.  相似文献   

12.
Colonization factor antigen I (CFA/I) is the archetype of eight genetically related fimbriae of enterotoxigenic Escherichia coli (ETEC) designated class 5 fimbriae. Assembled by the alternate chaperone pathway, these organelles comprise a rigid stalk of polymerized major subunits and an apparently tip-localized minor adhesive subunit. We examined the evolutionary relationships of class 5-specific structural proteins and correlated these with functional properties. We sequenced the gene clusters encoding coli surface antigen 4 (CS4), CS14, CS17, CS19, and putative colonization factor antigen O71 (PCFO71) and analyzed the deduced proteins and the published homologs of CFA/I, CS1, and CS2. Multiple alignment and phylogenetic analysis of the proteins encoded by each operon define three subclasses, 5a (CFA/I, CS4, and CS14), 5b (CS1, CS17, CS19, and PCFO71), and 5c (CS2). These share distant evolutionary relatedness to fimbrial systems of three other genera. Subclass divisions generally correlate with distinguishing in vitro adherence phenotypes of strains bearing the ETEC fimbriae. Phylogenetic comparisons of the individual structural proteins demonstrated greater intrasubclass conservation among the minor subunits than the major subunits. To correlate this with functional attributes, we made antibodies against CFA/I and CS17 whole fimbriae and maltose-binding protein fusions with the amino-terminal half of the corresponding minor subunits. Anti-minor subunit Fab preparations showed hemagglutination inhibition (HAI) of ETEC expressing homologous and intrasubclass heterologous colonization factors while anti-fimbrial Fab fractions showed HAI activity limited to colonization factor-homologous ETEC. These results were corroborated with similar results from the Caco-2 cell adherence assay. Our findings suggest that the minor subunits of class 5 fimbriae may be superior to whole fimbriae in inducing antiadhesive immunity.  相似文献   

13.
rns is a trans-acting positive regulatory factor required for expression of the colonization factor antigen II (CFA/II) antigens CS1 and CS2 (J. Caron, L. M. Coffield, and J. R. Scott, Proc. Natl. Acad. Sci. USA 86:963-967, 1989). All 35 CFA/II-positive strains hybridized with a rns gene probe, as did all 10 CFA/I strains and all 4 CS4 strains. Hybridization with rns was detected in 25% of non-enterotoxigenic Escherichia coli strains and was not detected in enteric pathogens with low G + C content.  相似文献   

14.
Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.  相似文献   

15.
The prevalence of toxin types and colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) was prospectively studied with fresh samples (n = 4,662) obtained from a 2% routine surveillance of diarrheal stool samples over 2 years, from September 1996 to August 1998. Stool samples were tested by enzyme-linked immunoassay techniques and with specific monoclonal antibodies for the toxins and CFs. The prevalence of ETEC was 14% (n = 662), with over 70% of the strains isolated from children 0 to 5 years of age, of whom 93% were in the 0- to 3-year-old age range. Of the total ETEC isolates, 49.4% were positive for the heat-stable toxin (ST), 25.4% were positive for the heat-labile toxin (LT) only, and 25.2% were positive for both LT and ST. The rate of ETEC isolation peaked in the hot summer months of May to September and decreased in winter. About 56% of the samples were positive for 1 or more of the 12 CFs that were screened for. The coli surface antigens CS4, CS5, and/or CS6 of the colonization factor antigen (CFA)/IV complex were most prevalent (incidence, 31%), followed by CFA/I (23.5%) and coli surface antigens CS1, CS2, and CS3 of CFA/II (21%). In addition, other CFs detected in decreasing order were CS7 (8%), CS14 (PCFO166) (7%), CS12 (PCFO159) (4%), CS17 (3%), and CS8 (CFA/III) (2.7%). The ST- or LT- and ST-positive ETEC isolates expressed the CFs known to be the most prevalent (i.e., CFA/I, CFA/II, and CFA/IV), while the strains positive for LT only did not. Among children who were infected with ETEC as the single pathogen, a trend of relatively more severe disease in children infected with ST-positive (P < 0.001) or LT- and ST-positive (P < 0.001) ETEC isolates compared to the severity of the disease in children infected with LT only-positive ETEC isolates was seen. This study supports the fact that ETEC is still a major cause of childhood diarrhea in Bangladesh, especially in children up to 3 years of age, and that measures to prevent such infections are needed in developing countries.  相似文献   

16.
Some enterotoxigenic strains of Escherichia coli (ETEC) utilize the CS1 pilus for colonization of human intestinal epithelium. We have cloned the gene which encodes the major CS1 subunit and called it cooA (for coli surface antigen one). Hybridization showed that the ETEC strain from which it was cloned carried cooA on a plasmid different from the one encoding its positive regulator, rns. Based on the cooA DNA sequence, cleavage with signal peptidase would be expected to produce a mature protein of 15.2 kDa; a 16-kDa polypeptide that reacted with CS1-specific antiserum was observed on electrophoresis. At the protein level, there was 92% similarity and 55% identity between cooA and cfaB, the major colonization factor antigen I (CFA/I) antigen. However, CS1-specific antisera did not react with CfaB. No hybridization was seen between either of two different cooA probes and total DNA from ETEC strains expressing AFA-1, CFA/I, CS2, CS3, CS4, CS5, or CS6.  相似文献   

17.
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains.  相似文献   

18.
Colonization factor antigens (CFA) are needed for adherence of human enterotoxigenic Escherichia coli (ETEC) strains to their hosts. The CFA/II antigens, CS1 and CS2, which are found in some ETEC strains, require the plasmid-encoded gene rns for expression (J. Caron, L. M. Coffield, and J. R. Scott, Proc. Natl. Acad. Sci. USA 86:963-967, 1989). Other ETEC strains express CFA/I, whose synthesis and assembly require genes on two unlinked regions (regions 1 and 2) of a plasmid (G. A. Willshaw, H. R. Smith, and B. Rowe, FEMS Microbiol. Lett. 16:101-106, 1983). We report that CFA/I region 2 DNA can substitute for rns to cause expression of CS1 and CS2. The cfaR gene in region 2 is defined by a mutation abolishing both expression of CFA/I and complementation of a rns mutant for expression of CS1 or CS2. In a strain containing only region 1, complementation for expression of CFA/I by a plasmid containing rns+ is inefficient but is adequate to cause hemagglutination by the CFA/I adhesin.  相似文献   

19.
We have developed a nonradioactive colony hybridisation assay for the detection of enterotoxigenic Escherichia coli (ETEC) that harbor the structural genes for CFA/I, CS1, CS2, CS4, CS17, or PCFO166. Thus, a polynucleotide probe derived from the colonisation factor antigen I (CFA/I) operon hybridised under very low stringency conditions to total DNA from CFA/I-producing (CFA/I), coli-surface antigen 1 and 3 (CS1 CS3-), CS2 CS3-, CS4 CS6-, CS17-, and putative colonisation factor O166 (PCFO166)-producing enterotoxigenic Escherichia coli (ETEC). The probe did not hybridise to DNA from CS3, CFA/III CS6, CS5 CS6, CS6, CS7, or PCFO159 ETEC. Visual registration of colour intensity could be used to differentiate between CFA/I, CS4 and PCFO166-positive strains on the one hand and strains with the genetic potential to express CS1, CS2, or CS17 on the other. As a confirmatory test, restriction fragment patterns obtained from Sau3AI-digested ETEC plasmid DNA could be used to distinguish between CFA/I, CS1, CS4, CS17, and PCFO166 ETEC in nonradioactive Southern blot hybridisation. The simultaneous genotypic detection of several ETEC colonisation factors will prove useful in vaccine-oriented studies of ETEC disease.  相似文献   

20.
We developed an accurate nonradioactive colony hybridization assay (NCHA) using a digoxigenin-labeled polynucleotide probe and an antidigoxigenin alkaline phosphatase conjugate for the identification of enterotoxigenic Escherichia coli (ETEC) harboring genes for colonization factor antigen I (CFA/I), coli surface antigen 4 (CS4), or putative colonization factor O166 (PCFO166). In this 2-day assay, visual registration of color intensity could be used to distinguish between CFA/I-positive strains and strains with the genetic potential to express CS4 or PCFO166. A rapid NCHA was developed by which the results could be read visually 7 h and 45 min after inoculation of the bacteria. In the rapid NCHA, densitometry verified the visual discrimination between four groups of E. coli; ETEC with the CFA/I gene, ETEC with the CS4 gene, ETEC with the PCFO166 gene, and E. coli strains that lack such genes. As a confirmatory test, plasmids from ETEC with the CFA/I, CS4, or PCFO166 gene were differentiated by their characteristic restriction fragment patterns in nonradioactive Southern blot hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号