首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemical stimulation of primary afferent nerves in the rat urinary bladder in vivo with topical capsaicin (1 microg in 50 microl saline) determines a dual motor response, consisting of a contractile effect mediated by tachykinins released from sensory nerves in the bladder wall and a transient activation of a bladder-to-bladder micturition reflex organized at the supraspinal level (chemoceptive micturition reflex). Both responses undergo complete desensitization upon repeated applications of capsaicin. The i.v. administration of the novel neuropeptide nociceptin (100 nmol/kg) produced a long-lasting protection from capsaicin desensitization of afferent nerves which mediate the chemoceptive micturition reflex. In fact a chemoceptive micturition reflex could be repeatedly evoked by topical capsaicin in nociceptin-pretreated rats. In sharp contrast, nociceptin did not influence the development of desensitization of the local response to capsaicin, corresponding to the 'efferent' function of capsaicin-sensitive afferent neurons. These results suggest that the afferent and 'efferent' function of capsaicin-sensitive primary afferent neurons (CSPANs) in the rat bladder are differentiated by nociceptin. Alternative mechanisms underlying this phenomenon are discussed.  相似文献   

2.
Summary 1. The effects of capsaicin, substance P (SP) and neurokinin A (NKA) on motor activity and vascular permeability was investigated in the rat lower urinary tract (bladder dome and neck, proximal urethra and ureters). 2. Capsaicin produced contractions of the rat bladder dome and neck and of the proximal urethra in vitro, which were unaffected by tetrodotoxin and abolished by ganglionectomy. SP and NKA were almost equipotent in producing a contraction of the rat isolated bladder dome or neck and urethra. However, the maximal response to NKA was about twice that of SP on the urethra and bladder neck. 3. Capsaicin did not affect motility of the unstimulated rat isolated ureter, while NKA or SP activated rhythmic contractions, NKA being about 850 times more potent than SP. Either capsaicin or field stimulation produced a transient inhibition of the NKA-activated rhythmic contractions of the rat isolated ureter which was prevented by capsaicin-desensitization. 4. The capsaicin-(1 M) or field stimulation-induced inhibition of NKA-activated rhythmic contractions of the rat isolated ureter were unaffected by removal of pelvic ganglia but abolished by cold storage (72 h at 4°C). 5. Intravenous capsaicin induced an inflammatory response (Evans blue leakage) in the bladder, proximal urethra and ureters in vivo. Plasma extravasation was greater in the ureters, urethra and bladder neck than in the dome. SP, NKA and histamine produced a dose-dependent dye leakage in all segments of the rat urinary tract, the response being slightly greater in the bladder neck than in the dome. 6. The capsaicin-induced inflammatory response was abolished by systemic capsaicin-desensitization and reduced, to a variable extent, by pelvic ganglionectomy, in the various tissues examined. Topical application of tetrodotoxin on the bladder dome failed to affect the capsaicin-induced plasma extravasation in the urinary bladder. 7. These findings indicate that chemoceptive, capsaicin-sensitive nerves are present throughout the whole rat lower urinary tract and their activation determines a variety of visceromotor responses and an increase of vascular permeability. In various instances the response to capsaicin may be explained by the action of tachykinins but some effects may involve other sensory neuropeptides. Send offprint requests to C. A. Maggi at the above address  相似文献   

3.
The effects of topical capsaicin on rat urinary bladder motility in vivo   总被引:4,自引:0,他引:4  
The effects of topical capsaicin on urinary bladder motility were investigated following saline-induced distension of the bladder wall in urethane-anaesthetized rats and compared to the effects of topical substance P and acetylcholine. Capsaicin and substance P produced similar excitatory effects in both quiescent and rhythmically contracting bladders, i.e., a TTX resistant tonic contraction followed by a series of rhythmic, TTX sensitive, phasic contractions. Acetylcholine, in doses equieffective in producing TTX resistant contractions was less effective than capsaicin or substance P in triggering neurogenic rhythmic contractions of bladder muscle. Atropine pretreatment prevented the neurogenic component of the excitatory effect of both capsaicin and substance P. Repeated applications of capsaicin but not of substance P led to desensitization. Bladders of animals pretreated (4 days before) with a large dose of s.c. capsaicin developed insensitivity to topical capsaicin and a larger volume of saline was required to trigger neurogenic rhythmic contractions of the detrusor muscle. These results suggest that capsaicin acts by interfering with the mechanism(s) regulating the threshold for the micturition reflex to occur.  相似文献   

4.
Summary (1) Topical administration of Ruthenium Red (10–100 M in saline) to the serosal surface of the urinary bladder in urethane-anesthetized rats prevented the motor response of the urinary bladder to topical administration of capsaicin and protected the sensory fibers from capsaicin desensitization, but had no effect on the volume-evoked contractions (micturition reflex). At 1 mM increased bladder capacity and decreased amplitude of micturition contraction were observed. (2) At 100 M, topical Ruthenium Red prevented the blood pressure rise produced by topical administration of capsaicin onto the bladder but did not affect the blood pressure rise produced by sudden bladder distension in spinal rats. (3) After intrathecal administration, Ruthenium Red (80–800 ng/rat) produced a long lasting inhibition of the micturition reflex in urethane-anesthetized rats, this effect being evident in both vehicleor capsaicin- (50 mg/kg s. c. 4 days before) pretreated rats. At 800 ng/rat, intrathecal Ruthenium Red did not affect the blood pressure rise produced by topical administration of capsaicin onto the rat bladder nor that produced by bladder distension. (4) These findings provide further evidence that Ruthenium Red acts quite selectively as a capsaicin antagonist preventing both reflex and efferent responses activated by peripherally administered capsaicin. By contrast, sensory impulse generation by a natural stimulus such as bladder distension is apparently unaffected by Ruthenium Red. The marked inhibition of the micturition reflex observed after intrathecal administration of Ruthenium Red does probably not involve an interaction with primary afferents in the spinal cord.  相似文献   

5.
The effects of a new tachykinin NK(1) receptor antagonist, (aR, 9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10, 11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g] [1, 7]naphthyridine-6,13-dione (TAK-637), on the micturition reflex were compared with those of drugs used for abnormally frequent micturition or incontinence. TAK-637 showed a characteristic effect on the distension-induced rhythmic bladder contractions in guinea pigs. The systemic administration of TAK-637 decreased the number but not the amplitude of the distension-induced rhythmic bladder contractions. A similar effect was observed in animals in which the spinal cord had been severed. TAK-637 also inhibited the micturition reflex induced by topical application of capsaicin onto the surface of bladder dome. From these results, it is concluded that TAK-637 inhibits sensory transmissions from the bladder evoked by both physiological and nociceptive stimuli by blocking tachykinin NK(1) receptors, possibly at the level of the spinal cord. On the other hand, the other drugs such as oxybutynin, tolterodine, propiverine, and inaperisone showed no effects on the frequency of the distension-induced rhythmic bladder contractions but decreased the contraction amplitude. Therefore, TAK-637 may represent a new class of drugs, which would be effective for abnormally frequent micturition without causing voiding difficulties due to decreased voiding pressure.  相似文献   

6.
Summary (1) The effect of perineal pinching and distension of a balloon inserted into the colon on motility of the urinary bladder has been investigated in adult urethane-anesthetized rats pretreated with capsaicin (50 mg/kg s.c.) or its vehicle 4 days before the experiments. (2) At bladder volumes which were sufficient to elicit reflex micturition, perineal pinching or colonic distension transiently inhibited the ongoing bladder voiding contraction. The somato-vesical inhibitory response was markedly reduced or even abolished by division of pudendal nerves. Neither the somato-vesical nor the colovesical inhibitory response were modified by desensitization with systemically administered capsaicin. (3) Intraurethral administration of capsaicin produced a transient inhibition of the reflexly-activated bladder contractions. A second administration of the drug was less effective, indicating desensitization. Intravenously administered capsaicin had a similar inhibitory effect on bladder motility. (4) The vesico-inhibitory response produced by intraurethral administration of capsaicin was not affected by phentolamine, propranolol, guanethidine, picrotoxin or naloxone, while it was greatly reduced or even abolished by bilateral section of the pudendal nerves. (5) These findings provide evidence that capsaicin-sensitive chemoreceptors in the rat urethra are involved in generating a vesico-inhibitory response via pudendal nerves. On the other hand, no evidence was found for the participation of capsaicin-sensitive nerves in the generation of the somato- or colo-vesical inhibitory response. Send offprint requests to C. A. Maggi at the above address  相似文献   

7.
1. The topical application of bradykinin (BK) (0.05-5000 pmol/rat) onto the serosal surface of the urinary bladder in urethane-anaesthetized rats, evoked low amplitude tonic contractions (not exceeding 25 mmHg) or high amplitude (about 50 mmHg), phasic reflex contractions (chemoceptive micturition reflex) which were abolished by bilateral ablation of the pelvic ganglia. In ganglionectomized rats, BK induced only a local, tonic-type contraction. 2. Systemic capsaicin pretreatment (164 mumol kg-1, 4 days before) reduced the incidence of chemoceptive reflex induced by BK (500 pmol/rat) but had no effect on the magnitude of the tonic-type contraction elicited by BK in ganglionectomized rats. Indomethacin (11 mumol kg-1, 20 min before) reduced the incidence but not the amplitude of the reflex contractions induced by topical application of BK (500 pmol/rat). In ganglionectomized rats, indomethacin (11 mumol kg-1, 20 min before) decreased the amplitude of the tonic contraction evoked by BK. Indomethacin did not affect the chemoceptive reflex induced by topical application of capsaicin (15 nmol/rat) onto the bladder. 3. Intrathecal administration of the tachykinin NK1 receptor antagonists, RP 67,580 (10 nmol/rat) or SR 140,333 (10 nmol/rat), abolished the chemoceptive reflex induced by BK without modifying the magnitude of the tonic contraction. SR 140,333 (10 nmol/rat) also abolished the occurrence of the chemoceptive reflex induced by capsaicin. 4. Intravenous administration of the B2 receptor antagonist, Hoe 140 (35 nmol kg-1, 10 min before) abolished the reflex and local effects induced by BK on bladder motility but failed to modify the chemoceptive reflex induced by topical application of capsaicin (15 nmol/rat).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Topical application of exogenous prostanoids (PGE2, TBX B2) on the serosal surface of the urinary bladder of urethane-anaesthetized rats activated reflex micturition. Likewise, intravesical instillation of PGE2 during the cystometrogram lowered the threshold for reflex micturition. Both effects were prevented by systemic capsaicin desensitization (50 mg/kg s.c., 4 days before). Indomethacin pretreatment and systemic capsaicin desensitization each increased the micturition threshold without affecting the amplitude of micturition contraction. However, the effect of the two treatments combined was not greater than the effect of either alone. These findings support the idea that endogenous prostanoids facilitate reflex micturition by stimulating or sensitizing, directly or indirectly, the subset of bladder mechanoreceptors which is capsaicin-sensitive in adult rats.  相似文献   

9.
Either intra-arterial or topical administration of calcitonin gene-related peptide (CGRP) had little effect on motility of the urinary bladder in urethane-anaesthetized rats. Only a high concentration (50 microM) of topical CGRP activated the micturition reflex and potentiated the response to exogenous substance P (SP). In the isolated rat bladder CGRP had inconsistent effects on spontaneous or field-stimulated contractions. CGRP neither produced any significant plasma extravasation (Evans blue leakage) in the rat lower urinary tract, nor potentiated the response to exogenous SP. CGRP inhibited motility in the rat isolated proximal urethra and ureters and counteracted the contractile response to neurokinins. An inhibitory effect of capsaicin on stimulated motility of the urethra was observed in all preparations and a small contractile response was evident in about 40% of cases. Lack of desensitization to the action of CGRP prevented the study of its interaction with capsaicin. The inhibitory effect of CGRP in the ureter exhibited a specific desensitization: if the preparations were pre-exposed to exogenous CGRP, the inhibition of motility produced by antidromic activation of the capsaicin-sensitive nerve terminals (field stimulation) as well as the response to capsaicin (1 microM) was prevented but the inhibitory response to isoprenaline was unaffected. These findings indicate that CGRP is able to influence markedly the motility of the rat lower urinary tract, but exhibits marked regional differences in its action. Endogenous CGRP could be the inhibitory transmitter which, when released from capsaicin-sensitive fibers, participate in the control of ureteral motility.  相似文献   

10.
We have investigated the effect of intravaginal application of capsaicin on micturition reflex in female rats. Urinary bladder contractility was measured by transurethral pressure recording at isovolumetric and subthreshold conditions in anaesthetized rats. The intravaginal application of capsaicin (15 mug/50 mul rat) induced reproducible bladder phasic contractions, without desensitization upon repeated applications, that were blocked by intravenous atropine (1 mg/kg) or hexamethonium (5 mg/kg) and prevented by removal of paracervical ganglia or systemic capsaicin pretreatment (125 mg/kg, s.c.). The inhibition of sympathetic transmission by guanethidine (30 mg/kg, s.c.) produced significant increase of the bladder reflex contractions activated by intravaginal capsaicin. Intravenous administration of the TRPV1 antagonist, capsazepine (3 mg/kg), significantly reduced the excitatory reflex response to capsaicin. Intravaginal administration of capsaicin (15 mug/50 mul), during distension-induced reflex bladder contractions, produced a transient block of reflexes, unaffected by guanethidine pretreatment. In conclusion, the stimulation of capsaicin-sensitive sensory nerve endings in the rat cervix-vagina induced a dual excitatory or inhibitory bladder response in anaesthetized female rats depending on the degree of bladder distension.  相似文献   

11.
The effects of FL-155, which was synthesized to develop a new orally-active anti-pollakiuria agent, on the rhythmic bladder contractions were studied in anesthetized rats. At a pressure exceeding 10 cm H2O in the bladder, a rhythmic bladder contraction was observed up to at least 120 min. This response was abolished by a spinal (C1 level) cut, cuts of both pelvic nerves, thiopental (3.0 mg/kg, i.v.) or lidocaine (1.0 mg/kg, i.v.); and atropine (0.01 mg/kg, i.v.) strongly inhibited the amplitude of the response. FL-155 and flavoxate, in intravenous (0.3-3.0 mg/kg and 1.0-3.0 mg/kg, respectively) and intraduodenal (12.5-100 mg/kg and 200-400 mg/kg, respectively) administrations, dose-dependently abolished the rhythmic bladder contractions, and FL-155 was 8-16 times more potent than flavoxate in intraduodenal administrations. These results suggest that the rhythmic bladder contraction in anesthetized rat may be a polysynaptic reflex through pelvic nerves and the central nervous system (supraspinal level), and FL-155 appears to be a candidate for an orally active anti-pollakiuria agent.  相似文献   

12.
1. The effect of nifedipine on spontaneous and stimulated motility of the rat urinary bladder has been investigated in vitro (isolated detrusor strips) and in vivo (micturition reflex). 2. Nifedipine inhibited tone and spontaneous activity of the isolated rat bladder, its effect being greater in indomethacin-treated preparations. Nifedipine suppressed the KCl induced phasic and tonic contraction and inhibited by 60-80% the carbachol- or ATP- induced contractions. Nifedipine reduced by about 70% amplitude of the nerve-mediated bladder contractions. 3. Exposure to Ca free medium containing EDTA suppressed tone and spontaneous activity of the rat bladder. In these conditions the response to KCl or ATP was rapidly abolished while a response to carbachol was still evident even after a long exposure to the Ca free medium. 4. In vivo, nifedipine affected reflex micturition e.g. increased volume threshold and slightly reduced amplitude of micturition contraction. In addition, nifedipine reduced voiding efficiency e.g. increased residual volume after micturition. These effects were evident following ligation of the ureters because in normal conditions nifedipine induced a marked diuresis which masked its effect on volume threshold. 5. These findings indicate that in the rat urinary bladder Ca from both intra- and extracellular pools is mobilized during spontaneous or stimulated contractions. Mobilization of an intracellular Ca pool by cholinomimetics or other neurotransmitter(s) may be responsible for the nifedipine-resistant component of the voiding contraction in vivo.  相似文献   

13.
The relative ability of substance P, neurokinin A, neurokinin B and kassinin to activate the micturition reflex was investigated in urethane-anaesthetized rats. When administered topically neurokinin A, neurokinin B and kassinin were 14, 36 and 280 times, respectively, more potent than substance P to activate micturition. On the other hand substance P, neurokinin A and kassinin were practically equipotent (and neurokinin B was about 3-4 times less potent than substance P) to stimulate the contraction of the rat isolated bladder and to potentiate the contractions induced by electrical field stimulation. This indicates that neither a direct action on muscle cells nor a potentiating effect on efferent neurotransmission can account for the rank order of potency of tachykinins for activation of the micturition reflex. The ability of topical tachykinins to activate the micturition reflex was largely impaired in 2 months old rats pretreated with capsaicin (50 mg/kg s.c.) on their second day of life, indicating that integrity of the capsaicin-sensitive bladder mechanoreceptors is essential for the production of this effect. These findings indicate that an NK-B receptor, possibly located on sensory nerves in the bladder wall, participates in the tachykinin-induced activation of reflex micturition.  相似文献   

14.
Summary 1. The effect of capsaicin on bladder motility in vivo (urethane anaesthesia) and in vitro, plasma extravasation (Evans blue leakage technique) and content of substance P-like immunoreactivity (SP-LI) of the urinary bladder was investigated in various mammalian species. 2. Systemic capsaicin desensitization (rat and hamster, 50 mg/kg s.c. 4 days before; guinea-pig 55 mg/kg s. c. 4–7 days before) increased bladder capacity in rats and guinea-pigs and reduced voiding efficiency in guinea-pigs. All other urodynamic parameters were unaffected in both rats, guinea-pigs and hamsters. 3. Reflex bladder voiding was abolished by spinal cord transection in anaesthetized rats and hamsters. On the other hand, hexamethonium-(20 mg/kg i.v.)sensitive voiding contractions were obtained in response to saline filling 45 min from cord transection in guinea-pigs, indicating a profound interspecies variation in the basic organization of micturition. 4. Exposure to capsaicin (1 M) produced a contraction of the isolated bladder from rats, guinea-pigs (dome) and mice. Capsaicin produced only a slight contractile response in the guinea-pig bladder base. The motor response to capsaicin of the rat, guinea-pig and mouse bladder exhibited marked desensitization, suggesting a specific effect on sensory nerves. On the other hand, capsaicin (1 M) produced a slight relaxation of the hamster isolated bladder but this effect was reproducible at 1–2 h intervals, suggesting an unspecific effect. Capsaicin (1–10 M) did not affect motility of strips from the dome or the base of the rabbit bladder. 5. Intravenously administered capsaicin produced a marked plasma extravasation (Evans blue leakage) in the lower urinary tract of rats, mice and guinea pigs. In rats but not guinea-pigs the reaction in the bladder base was greater than in the dome. In hamsters intravenous capsaicin failed to induce any significant Evans blue leakage in the lower urinary tract. 6. SP-LI was detected in the lower urinary tract of rats, guinea-pigs, rabbits and mice but not hamsters. Bladder SP-LI was depleted by systemic capsaicin desensitization in rats, guinea-pigs and mice. Reverse phase HPLC indicated that all the immunoreactive material co-eluted with authentic substance P or its oxidized form. 7. These findings indicate that noticeable species-related differences exist with regard to the functions mediated by the Capsaicin-sensitive neurons in the urinary bladder. Send offprint requests to C. A. Maggi  相似文献   

15.
We examined the effects of inaperisone hydrochloride (inaperisone), a new centrally acting muscle relaxant, on bladder function in anesthetized rats and isolated rat tissues. We also investigated its mechanism of action. When a balloon inserted into the bladder was expanded, rhythmic bladder contractions were observed; inaperisone (4 mg/kg i.v.) abolished these contractions, in both normal and decerebrated rats. The bladder tonus or bladder contraction induced by peripheral stimulation of the pelvic nerve was barely inhibited by inaperisone (4 mg/kg i.v.), but this dose of inaperisone abolished the efferent discharge from the pelvic nerve that accompanied the rhythmic bladder contractions. The doses of intracerebroventricularly (i.c.v.) and intrathecally injected inaperisone which abolished the rhythmic bladder contractions were 10 and 100 micrograms, respectively. The inhibitory effects of inaperisone (4 mg/kg i.v.) were not diminished by naloxone (1 mg/kg i.v.) or by bicuculline (0.5 mg/kg i.v.), but were diminished by phaclofen (30 mg/kg i.v. or 300 micrograms i.c.v.). The specific binding of [3H]baclofen to rat brain synaptosomal membranes was barely inhibited by inaperisone (up to 1 mM). From these results, it is speculated that, among other possible mechanisms, inaperisone inhibits the micturition reflex by acting indirectly on GABAB receptors in the brainstem.  相似文献   

16.
The effect of MK-801 on the micturition reflex in anesthetized rats   总被引:1,自引:0,他引:1  
We studied the effect of MK-801, a potent non-competitive NMDA receptor antagonist, on the micturition reflex in anesthetized rats. Pretreatment with MK-801 (0.1-1 mg/kg i.v.) dose dependently increased the bladder capacity and reduced the micturition contraction. The ability of MK-801 to inhibit bladder voiding was confirmed in additional experiments in which the compound (30-50 micrograms/kg i.v.) transiently suppressed established bladder voiding produced by continuous bladder filling. MK-801 (1 microM) did not affect nerve-mediated contractions of the rat bladder or inhibit the response to capsaicin. These findings provide pharmacological evidence for an involvement of NMDA receptors in the micturition reflex pathways.  相似文献   

17.
It has been suggested that tricyclic antidepressants such as imipramine, might exert their anti-enuretic action by a blockade of muscarinic receptors in the detrusor muscle of the urinary bladder. We have therefore investigated the effects of two tricyclic (imipramine and nortriptyline) and three atypical (citalopram, amineptine and mianserin) antidepressants on the micturition reflex and muscarinic receptors in rats. The micturition reflex pathway was monitored indirectly by recording the rhythmic intravesical pressure waves which occurred when the bladder was distended and maintained under constant saline-volume. The activity of the antidepressants was correlated to their potencies as antagonists of [3H]QNB binding to rat brain (mainly M1 receptors) and bladder (mainly M2 receptors) membranes, as well as antagonists of carbachol-induced contractions of rat bladder strips. Only imipramine and citalopram dose dependently inhibited the voiding contractions, whereas nortriptyline, imipramine and mianserin (in order of potency) were active both in binding studies and as competitive antagonists of carbachol-induced bladder contractions, but were inactive in inhibiting the micturition reflex. The present data seem to suggest that affinities for muscarinic receptors are unrelated to the inhibition of micturition reflex.  相似文献   

18.
1. Intravesical administration of hyperosmolar NaCl or urea solutions produced a concentration-dependent stimulatory action on the micturition reflex in urethane-anesthetized rats. This effect was not modified in rats pretreated with capsaicin as adults (50 mg/kg s.c. 4 days before). 2. Hyperosmolar NaCl also produced Evans blue leakage (plasma extravasation) in the rat bladder. This effect was greatly reduced by extrinsic bladder denervation and in rats desensitized to capsaicin as newborns but not as adults. 3. Cumulative addition of NaCl produced a concentration-dependent increase in tone and biphasic effects on neurogenic contractions of the rat isolated bladder. These effects were not modified by in vitro capsaicin desensitization. 4. These findings do not support the idea that true osmoreceptors are present in the rat urinary bladder. The neurogenic component of the inflammatory response to hyperosmolar NaCl could involve activation of a subpopulation of bladder sensory fibers susceptible to the neurotoxic action of capsaicin in the early postnatal period only.  相似文献   

19.
Pharmacological studies were undertaken to elucidate the role of Hachimijiogan in the micturition reflex via the locus coeruleus, using alpha-chloralose-anesthetized cats. Rhythmic contractions of the urinary bladder induced by continuous infusion of saline into the bladder were dose-dependently inhibited by intravenous injection of Hachimijiogan (10, 30 and 90 mg/kg), as well as flavoxate hydrochloride (1 and 3 mg/kg). In contrast, contraction of the urinary bladder elicited by electrical stimulation of the locus coeruleus was significantly suppressed by intravenous injection of flavoxate, but not affected by that of Hachimijiogan. These results suggest that Hachimijiogan acts on the afferent pathway from the urinary bladder to the locus coeruleus, thereby inhibiting the micturition reflex, while it has no effects on the efferent pathway from the locus coeruleus to the urinary bladder.  相似文献   

20.
1 This study investigates possible mechanisms through which imipramine (IMI) exerts its antienuretic effect. The micturition reflex in response to bladder distension produced by saline infusion was examined in anaesthetized rats. 2 The amplitude and frequency of micturition reflex contractions were reduced by peripheral administration of IMI, but the micturition reflex was abolished after its intracerebroventricular (i.c.v.) administration. A muscarinic antagonist, atropine, displayed an inhibitory effect similar to that of IMI. A muscarinic agonist, carbachol, produced a dose-related rightward shift of the dose–response curve to IMI. Both IMI i.c.v. and the muscarinic antagonist l-methylscopolamine i.c.v. elevated the threshold of volume and pressure for micturition initiation, indicating that IMI and muscarinic antagonists mainly exert a central inhibitory effect on the micturition reflex. 3 In addition, to evaluate the role of central monoaminergic neurotransmission on micturition, the acetylcholine depletor hemicholinium-3 (HC-3), the catecholamines depletor α-methyl-p-tyrosine (AMPT), and the serotonin depletor p-chlorophenylalanine (PCPA) were examined alone or in combination with IMI. The micturition threshold was increased by treatment with HC-3, but not by AMPT or PCPA. In HC-3 treated rats, the inhibitory effect of IMI on the micturition reflex was more prolonged than in normal rats. After administration of IMI, the recovery from the cessation of micturition reflex contractions was facilitated by carbachol in normal rats, but not in HC-3 treated rats. This indicates that acetylcholine plays a facilitatory role in initiating micturition reflex contractions. 4 Acute treatment with IMI decreased the frequency and increased the volume threshold of micturition reflex contraction. Acute and chronic treatment with IMI prolonged the cessation period of micturition by IMI. 5 These results suggest that IMI exerts an inhibitory action on the micturition reflex by a central cholinergic mechanism. Muscarinic receptors located at the supraspinal level are tonically stimulated during distension-induced micturition reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号