首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotensin, a tridecapeptide, is distributed in a wide range of tissues and exhibits multiple functions through its receptors. Hitherto molecular characterization of the neurotensin receptor has been reported in mammalian, amphibian, and fish species but not in avian species. In this study, we cloned the cDNA encoding chicken neurotensin receptor from the duodenum and characterized its primary structure, biological activity and distribution in the gastrointestinal tract. The cDNA encoded a protein consisting of 399 amino acids that had significant overall sequence homology to other vertebrate neurotensin receptor 1 with higher extent in the seven transmembrane domains. Chicken neurotensin increased intracellular Ca2+ concentrations in human embryonic kidney 293 cells transiently expressing the chicken neurotensin receptor 1. Real-time PCR analysis showed that chicken neurotensin receptor 1 mRNA is expressed throughout the gastrointestinal tract with markedly higher level in the colon/rectum. These results indicate that the chicken neurotensin receptor 1 is involved in gastrointestinal functions through an intracellular signaling pathway accompanied by an increase in Ca2+ levels.  相似文献   

2.
GPR39 has been recently proposed to be a specific receptor for a novel anorexic peptide, obestatin, isolated from rat stomach. Obestatin is generated from the proprotein for ghrelin by proteolytic cleavage and shows opposing action to ghrelin in the regulation of food intake and gastrointestinal movement. In this study, we performed cDNA cloning for chicken GPR39 and characterized expression profiles of its mRNA in chicken tissues. Chicken GPR39 cDNA encoding 462 amino acids was cloned from chick duodenum. The amino acid sequence showed high homology to human (62.6%), mouse (62.6%), and rat (65.3%) GPR39. A computer-assisted search for chicken GPR39 cDNA sequence in the chicken genome database revealed that chicken GPR39 gene consists of two exons separated by an intron. Real-time PCR analysis revealed the expression of GPR39 mRNA in a wide range of tissues with the highest level in the duodenum in chicks and hens. The expression level in the duodenum rapidly increased during the early post-hatch period. Interestingly, relatively higher expression was observed in the oviduct, vagina and uterus in hen. These findings suggest that GPR39 is involved in the regulation of gastrointestinal and reproductive functions in chicken.  相似文献   

3.
Neuromedin U (NMU) is a bioactive peptide that is involved in a variety of physiological functions. Two of its receptors, NMUR1 and NMUR2, have been identified and characterized in mammals. In this study, we performed cDNA cloning of chicken NMUR1 and NMUR2, and characterized their primary structure, biological activity, and expression patterns in chicken tissues. The chicken NMUR1 and NMUR2 cDNAs encoded 438 and 395 amino acid sequences, respectively. Chicken NMUR1 showed 54.8%-56.5% sequence identity with human, rat, and mouse NMUR1, and NMUR2 shared 67.3%-70.1% sequence identity with mammalian orthologs. Both chicken receptors have typical characteristics of G-protein-coupled receptors with seven transmembrane domains and the D/ERY motif. An increase in intracellular Ca2+ mobilization was observed in HEK293 cells transfected with chicken NMUR1 or NMUR2 cDNA and treated with chicken or rat NMU. Real-time PCR analysis revealed that NMUR1 mRNA was preferentially expressed in the intestinal tissues such as the duodenum, jejunum, ileum, cecum, and colon/rectum, and brain regions such as the midbrain and optic lobe, and the ovary in adult hens. NMUR2 mRNA was exclusively expressed in the brain regions such as the cerebrum and midbrain. These results indicate that NMUR1 and NMUR2 mRNAs, which encode functional receptor proteins, are expressed in chicken tissues with different distribution patterns.  相似文献   

4.
Neither the presence of motilin receptors nor their action has been investigated in monkeys. The object of this study was to determine the effects of motilin and mitemcinal (GM-611), an erythromycin derivative, on the gastrointestinal tract in rhesus monkeys in vivo and in vitro. In in vivo investigations in conscious monkeys, both motilin and mitemcinal induced migrating motor complex-like contractions in the interdigestive state and also accelerated gastric emptying. In in vitro investigations, the presence of motilin receptors in the gastrointestinal tract was demonstrated by receptor binding assays. Motilin and mitemcinal contracted isolated duodenum strips in a concentration-dependent manner. In conclusion, rhesus monkeys may be useful for studying the physiological and pharmacological roles of the motilin agonistic mechanism because they show reactivity to motilin both in vivo and in vitro.  相似文献   

5.
6.
Ghrelin, a peptide hormone produced by the stomach in mammals, stimulates growth hormone release and food intake. Recently, ghrelin was identified and characterized in chicken proventriculus and shown to stimulate growth hormone release but inhibit feed intake. The purpose of this work was to identify and further characterize the ghrelin gene in chickens and in turkeys. Using molecular cloning techniques we have sequenced cDNAs corresponding to chicken (White Leghorn) and turkey ghrelin mRNAs. A total of 844 (chicken) or 869 (turkey) bases including the complete coding regions (CDS), and the 5'- and 3'-untranslated regions (UTRs) were determined. Nucleotide sequence (CDS) predicted a 116 amino acid precursor protein (preproghrelin) for both the chicken and the turkey that demonstrated complete conservation of an N-terminal 'active core' (GSSF) including a serine (position 3 of the mature hormone) known to be a modification (acylation) site important for ghrelin bioactivity. Additional nucleotide sequence was found in the 5'-UTRs of both Leghorn and turkey cDNAs that was not present in broilers or the red jungle fowl. The turkey ghrelin gene, sequenced from genomic DNA templates, contained five exons and four introns, a structure similar to mammalian and chicken ghrelin genes. Ghrelin was highly expressed in proventriculus with much lower levels of expression in other tissues such as pancreas, brain, and intestine. RT-PCR was used to quantify ghrelin mRNA levels relative to 18S rRNA in 3-week-old male broiler chickens. The level of ghrelin mRNA increased in proventriculus in response to fasting but did not decline with subsequent refeeding. Plasma ghrelin levels did not change significantly in response to fasting or refeeding and did not appear to reflect changes in proventriculus ghrelin mRNA levels. Ghrelin mRNA levels declined in broiler pancreas after a 48 h fast and increased upon refeeding. Expression of the gene encoding the receptor for ghrelin (growth hormone secretagogue receptor, GHS-R) and a variant form was detected in a variety of tissues collected from 3-week-old male broiler chickens possibly suggesting autocrine/paracrine effects. These results offer new information about the avian ghrelin and ghrelin receptor genes and the potential role that this system might play in regulating feed intake and energy balance in poultry.  相似文献   

7.
Secretin and the secretin receptor have been reported to play an important role in regulating pancreatic water and bicarbonate secretion in mammals; however, little is known about their expression, structure, and biological functions in non-mammalian vertebrates including birds. In this study, the full-length cDNAs encoding secretin and secretin receptor have first been cloned from duodenum of adult chickens. The putative chicken secretin receptor (cSCTR) is 449 amino acids in length and shares high sequence identity (58-63%) with its mammalian counterparts. Interestingly, chicken secretin cDNA encodes not only the secretin peptide (cSCT), but also a novel secretin-like peptide (cSCT-LP), which shares high amino acid identity with chicken (56%) and mammalian (48-52%) secretin. Using a pGL3-CRE-luciferase reporter system, we further demonstrated that both cSCT (EC50: 0.31 nM) and cSCT-LP (EC50: 1.10 nM), but not other structurally-related peptides, could potently activate cSCTR expressed in CHO cells, suggesting that both peptides may function as potential ligands for cSCTR. Using RT-PCR, the expression of secretin and secretin receptor in adult chicken tissues was also examined. Secretin was detected to be predominantly expressed in small intestine, while the mRNA expression of cSCTR was restricted to several tissues including gastrointestinal tract, liver, testis, pancreas and several brain regions. Collectively, results from present study not only established a molecular basis to elucidate the physiological roles of SCT, SCT-LP and SCTR in chickens, but also provide critical insights into structural and functional changes of secretin and its receptor during vertebrate evolution.  相似文献   

8.
Chicken ghrelin: purification,cDNA cloning,and biological activity   总被引:19,自引:0,他引:19  
In this study, we report the purification, cDNA cloning, and characterization of the novel growth hormone-releasing peptide, ghrelin, in the chicken (Gallus gallus). Chicken ghrelin is composed of 26 amino acids (GSSFLSPTYKNIQQQKDTRKPTARLH) and possesses 54% sequence identity with human ghrelin. The serine residue at position 3 (Ser(3)) is conserved between the chicken and mammalian species, as its acylation by either n-octanoic or n-decanoic acid. Chicken ghrelin mRNA is predominantly expressed in the stomach, where it is present in the proventriculus but absent in the gizzard. Using RT-PCR analysis, low levels of expression were also detectable in brain, lung, and intestine. Administration of chicken ghrelin increases plasma GH levels in both rats and chicks, with a potency similar to that of rat or human ghrelin. In addition, chicken ghrelin also increases plasma corticosterone levels in growing chicks at a lower dose than in mammals. The present results indicate that the stimulatory effect of ghrelin on GH secretion is evolutionarily conserved, whereas its effect on adrenal function seems to be unique in the chicken.  相似文献   

9.
Ghrelin is an acylated peptide and an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), and stimulates growth hormone release and food intake in mammals. Peking duck is a very fast growing species of poultry. Although the sequence and structure of ghrelin have recently been determined, the expression of ghrelin in Peking duck has not been studied. Here, we investigated the tissue expression and distribution of ghrelin by RT-PCR and immunohistochemistry, respectively, in Peking duck at different stages of development. Ghrelin mRNA expression was mainly detected in the proventriculus and proventriculus-gizzard junction. It was first expressed, but weakly, on embryonic day 14 (E14); the expression increased by embryonic day 21 (E21), and was maintained at high levels between post-hatching-day 1 (P1) and post-hatching-day 60 (P60). Weak expression of ghrelin mRNA was also found in the gizzard and duodenum. In the gastrointestinal tract of growing Peking duck in P60, the largest number of ghrelin-ip cells was detected in the epithelium of the compound tubular glands in the proventriculus and the next largest number was in the proventriculus-gizzard junction. Very few ghrelin-ip cells were located in the epithelium of the simple tubular glands adjacent to the gizzard. No ghrelin-ip cells were observed elsewhere in the gastrointestinal tract. Ghrelin-ip cells were found in embryos as early as day E21; at the same time, the compound tubular glands in the proventriculus had formed. The numbers of ghrelin-ip cells on P1 were similar to those of E21 embryos. However, on P60, high numbers of strongly stained ghrelin-ip cells were found to be scattered in the epithelium of the compound tubular glands in the proventriculus. The density of ghrelin-ip cells (cells/mm2) in the proventriculus on P60 was significantly greater than those of P1 and E21 embryos. These results demonstrate that ghrelin is expressed in the Peking duck gastrointestinal tract, especially in the proventriculus, from mid-late-stage embryos to growing period and suggested an involvement of ghrelin in the development and biology of the gastrointestinal tract of the Peking duck.  相似文献   

10.
Details of the regulation of GH in birds are unclear. In this report, a receptor was cloned from chicken pituitary cDNA with 61% amino acid sequence identity to the human pituitary GHRH receptor. Phylogenies inferred from sequence alignments support that this is the chicken counterpart of the GHRH receptor known in mammals. Northern blotting shows that this receptor message is expressed in chicken pituitary, with lesser amounts seen in hypothalamus and brain but not in liver. The recombinant chicken receptor binds human GHRH with high affinity and specificity and signals cAMP accumulation. Surprisingly, available peptides synthesized to the published sequence for chicken GHRH-like peptide (cGHRH-LP) were inactive at this receptor. To address this we recloned the cDNA for this cGHRH-LP from chicken hypothalami. The revised sequence encodes lysine at position 21, which is consistent with all reported GHRH sequences from other species but different from the originally published chicken sequence. When this revised cGHRH-LP sequence was synthesized, it had improved but still weak potency at the cloned receptor. Consistent with the activity at the cloned receptor, human GHRH was potent when assayed in live chickens or on chicken pituitary membranes, but cGHRH-LP was not. We conclude that we have cloned a putative GHRH receptor that is homologous to mammalian GHRH receptors and functionally expressed in chicken pituitary, but that the identity of the endogenous ligand remains unclear. The chicken GHRH receptor cloned in this study can serve as a tool to identify its ligand and to clarify the evolutionary development of the regulation of GH.  相似文献   

11.
胃动素受体是一种G蛋白偶联受体,分布于胃肠道,对胃肠运动功能的调节起到重要的作用,目前胃动素受体激动剂逐步应用于临床疾病的治疗.本文就胃动素受体的分布及其与疾病的关系作一概述.  相似文献   

12.
Background Motilin and ghrelin have been recognized as important endogenous regulators of gastrointestinal motor function in mammals, mediated respectively by the motilin receptor and by the closely related ghrelin receptor. The aims of this study were to explore the distribution of motilin and ghrelin receptors along the human gastrointestinal tract and to establish the molecular nature of the human motilin receptor. Methods Post mortem and surgical human tissue specimens with no hemorrhage, necrosis, or tumor were obtained from various parts of the gastrointestinal tract. We analyzed levels of expression of mRNA for motilin and ghrelin receptors and examined their molecular identities. Portions of some specimens were also studied by immunohistochemistry for expression of the motilin and ghrelin receptor. Results The long form of the motilin receptor, but not the short form, was expressed in all parts of the gastrointestinal tract, and expressed at higher levels in muscle than in mucosa. Motilin receptor immunoreactivity was present in muscle cells and the myenteric plexus, but not in mucosal or submucosal cells. In contrast, ghrelin receptor mRNA was expressed equally in all parts of the gastrointestinal tract, with similar levels of expression in mucosal and muscle layers. Conclusions Both the motilin and ghrelin receptors are expressed along the human gastrointestinal tract, but they have clearly distinct distributions in regard to both level and layer. The diffuse muscle expression of the motilin receptor, at both the levels of the gene and the protein product, along the entire gastrointestinal tract makes it a useful potential target for motilide drugs for dysmotility.  相似文献   

13.
Three types of cDNA encoding the arginine vasotocin (AVT) receptors from the newt, Cynops pyrrhogaster were cloned and the gene expression of each receptor analyzed in the organs and tissues of the newt. The deduced amino acid sequence of one type of AVT receptor, consisting of 418 amino acid residues, showed a high degree of sequence identity with the mammalian arginine vasopressin (AVP) V1a receptors (61-68%). The second type of cDNA, encoding an amino acid sequence consisting of 367 amino acid residues, exhibited a relatively high sequence identity with mammalian AVP V2 receptors (50-51%). The third cDNA, encoding a sequence of 415 amino acid residues, possessed high sequence identity with mammalian AVP V3/V1b receptors (59-63%). Phylogenetic analysis revealed that the first, second and third types of receptor were close to mammalian AVP V1a, V2 and V3/V1b receptors, respectively, and RT-PCR using gene specific primers for each type of receptor indicated that the first and second types of receptor mRNA were expressed in various organs and tissues, including the circulatory, osmoregulatory, and reproductive organs of both male and female newts. In contrast, mRNA expression of the third cDNA was mainly detected in the brain and pituitary, and its expression pattern was distinctly different from that of the other two. We suggest that the first, second and third types of newt AVT receptor obtained in the present study are counterparts of mammalian AVP V1a, V2 and V3/V1b receptors, respectively.  相似文献   

14.
TSH and the interaction with its receptor (TSHR) in the thyroid gland play a crucial role in the pituitary-thyroid axis of all vertebrates. Released upon stimulation by TSH, thyroid hormones influence numerous processes in the body and are extremely important during the last week of chicken embryonic development. In this study, we have cloned and functionally characterized the chicken TSHR (cTSHR), which was found to be a G protein-coupled receptor consisting of 10 exons. Besides the full-length cDNA, we detected two splice variants lacking either exon 3, or exons 2 and 3, both part of the extracellular domain of the receptor. Bovine TSH increased intracellular cAMP levels in HEK-239 cells transiently expressing the full-length cTSHR (EC50 = 1.43 nm). In situ hybridization showed the expression of cTSHR mRNA in the thyroidal follicular cells. cTSHR mRNA expression, as determined by real-time PCR, was also found in several other tissues such as brain, pituitary, pineal gland, and retina, suggesting that the TSH-TSHR interaction is not only important in regulating thyroid function. TSHR mRNA expression in the thyroid gland did not change significantly during the last week of embryonic development, which suggests that an increased thyroidal sensitivity is not part of the cause of the concomitant increasing T4 levels.  相似文献   

15.
The Na+/Ca2+ exchanger plays important roles in Ca2+ handling in many excitable cells. In particular, the Na+/Ca2+ exchanger is expressed at high levels in the cardiac sarcolemma and is the dominant mechanism of Ca2+ extrusion from the cells. In addition, the exchanger has been suggested to play key roles in digitalis action and in postischemic reperfusion injury of cardiac myocytes. We report here the isolation and characterization of the cDNA encoding the human cardiac Na+/Ca2+ exchanger. Twelve overlapping clones corresponding to 5.6 kilobases of the exchanger cDNA sequence were isolated from 5 x 10(5) phage plaques screened. The sequence predicted a 973-amino acid polypeptide with a putative leader peptide, 11 potential membrane-spanning regions, and one large putative cytoplasmic loop between the fifth and sixth transmembrane helices. When RNA was synthesized in vitro from the cloned cDNA and injected into Xenopus oocytes, it induced expression of Na+/Ca2+ exchange activity at high levels, confirming that this clone encodes the functional Na+/Ca2+ exchanger. Southern blot analysis indicated that the cardiac exchanger gene exists as a single copy in the human genome, although existence of other related genes cannot be ruled out. Northern blot and S1 mapping analyses revealed that the cardiac type exchanger mRNA is expressed most abundantly in the heart and next in the brain. The cardiac-type exchanger mRNA was also expressed in the retina and in skeletal and smooth muscles at very low levels. The levels of mRNA encoding the exchanger were significantly lower in fetal hearts than in adult hearts but were unchanged in the myocardium from patients with end-stage heart failure.  相似文献   

16.
17.
18.
胃动素用于胃肠功能评价的研究进展   总被引:1,自引:0,他引:1  
胃动素是1966年被发现的由22个氨基酸组成的直链多肽,由内分泌Mo细胞分泌,可在消化间期呈周期性释放,促进胃肠运动并刺激胃蛋白酶的分泌.此文综述了胃动素在胃肠功能评价方面的研究进展.  相似文献   

19.
Chicken ghrelin has recently been isolated as a hormone which stimulates growth hormone and corticosterone secretion in chicken. Ghrelin mediates these actions in mammals by binding to the growth hormone secretagogue receptor (GHS-R). In this study, we describe the partial cloning of two chicken GHS-R (cGHS-R) isoforms: cGHS-R1a and cGHS-R1c. cGHS-R1a and cGHS-R1c cDNA show, respectively, 81 and 78% homology with the corresponding parts of the human GHS-R1a cDNA. In contrast to the human GHS-R1b isoform, which is truncated after transmembrane domain 5 (TM-5), the chicken GHS-R1c isoform lacks 16 amino acids in TM-6 suggesting that this isoform is not active in ghrelin signal transduction. The cystein residues, N-linked glycosylation sites and potential phosphorylation sites, found in the human GHS-R1a, were also conserved in both chicken isoforms. RT-PCR analysis demonstrated cGHS-R1a and cGHS-R1c mRNA expression in all tissues tested, except liver and pancreas, with highest levels in the pituitary and the hypothalamus. Intermediate levels of expression were detected, in descending order, in the ovary, telencephalon, heart, adrenal gland, cerebellum, and optic lobes whereas low expression was detected in the brainstem, lung, kidney, proventriculus, duodenum, and colon. Very low expression was found in skin, stomach, and muscle. cGHS-R1c was expressed in lower amounts than cGHS-R1a in all analysed tissues. Administration of 1 microM chicken ghrelin to pituitaries in vitro resulted in a down-regulation of both cGHS-R isoforms within 15 min, whereas after 1h levels returned to control values. Growth hormone and corticosterone down-regulated cGHS-R1a and cGHS-R1c mRNA expression within 60 min of exposure, whereas growth hormone-releasing factor 1-29 (1 microM) only reduced cGHS-R1a mRNA expression after 60min. Thyrotropin-releasing hormone (1 microM) did not alter cGHS-R expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号