首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterologous priming-boosting vaccination regimens involving priming with plasmid DNA antigen constructs and inoculating (boosting) with the same recombinant antigen expressed in replication-attenuated poxviruses have recently been demonstrated to induce immunity, based on CD4(+)- and CD8(+)-T-cell responses, against several diseases in both rodents and primates. We show that similar priming-boosting vaccination strategies using the 85A antigen of Mycobacterium tuberculosis are effective in inducing antigen-specific gamma interferon-secreting CD4(+) and CD8(+) T cells, detected by a bovine enzyme-linked immunospot assay, in Bos indicus cattle. T-cell responses induced by priming with either plasmid DNA or fowlpox virus 85A constructs were enhanced by boosting with modified vaccinia virus Ankara expressing the same antigen administered intradermally. On the basis of the data, it appears that intradermal priming was more effective than intramuscular delivery of the priming dose for boosting with the modified vaccinia virus Ankara strain in cattle. Using either fowlpox virus or DNA priming, there was a significant bias toward induction of CD4(+)- rather than CD8(+)-T-cell responses. These data illustrate the general applicability of priming-boosting vaccination strategies for induction of antigen-specific T-cell responses and suggest that the method may be useful for development of veterinary vaccines.  相似文献   

2.
Trypanosoma cruzi was transformed with the Plasmodium yoelii gene encoding the circum-sporozoite (CS) protein, which contains the well-characterized CD8+ T cell epitope, SYVPSAEQI. In vivo and in vitro assays indicated that cells infected with the transformed T. cruzi could process and present this malaria parasite-derived class I MHC-restricted epitope. Immunization of mice with recombinant influenza and vaccinia viruses expressing the SYVPSAEQI epitope induced a large number of specific CD8+ T cells that strongly suppressed parasitemia and conferred complete protection against the acute T. cruzi lethal infection. CD8+ T cells mediated this immunity as indicated by the unrelenting parasitemia and high mortality observed in immunized mice treated with anti-CD8 antibody. This study demonstrated, for the first time, that vaccination of mice with vectors designed to induce CD8+ T cells is effective against T. cruzi infection.  相似文献   

3.
The importance of the induction of virus neutralizing antibodies to provide protection against foot-and-mouth disease virus (FMDV) infection is well established. However, recent studies with recombinant adenovirus expressing the precursor polypeptide of the viral capsid (P1) indicate that cattle inoculated with this recombinant vector developed partial protection against FMDV infection, in the absence of a detectable specific humoral response. Other viral vectors have been widely used to induce protective immunity against many pathogens, and it has been reported that the use of different vectors for priming and boosting injections can provide a synergistic effect on this response. In this work, we determined the immunogenicity of two recombinant viruses (adenovirus and vaccinia) expressing P1-FMDV, administered either individually or sequentially, and the protection that they induced against FMDV challenge in pigs. A double immunization with the adeno-P1 virus was the most effective strategy at inducing protective immunity. In contrast to previous reports, the use of two different vectors for priming and boosting did not show a synergistic effect on the protection induced against FMD. Interestingly, immunized pigs developed FMDV-specific T cell responses but not detectable antibodies. Thus, the protection observed was likely to be mediated by a cellular immune response.  相似文献   

4.
Understanding how existing antivector immunity impacts live vaccine delivery systems is critical when the same vector system may be used to deliver different antigens. We addressed the impact of antivector immunity, elicited by immunization with attenuated actA-deficient Listeria monocytogenes, on the CD8(+)-T-cell response to a well-characterized lymphocytic choriomeningitis virus epitope, NP118-126, delivered by infection with recombinant L. monocytogenes. Challenges of immune mice with actA-deficient and with wild-type recombinant L. monocytogenes generated similar numbers of CD8(+) T cells specific for the NP118-126 epitope. High-dose immunization with actA-deficient L. monocytogenes resulted in substantial numbers of CD8(+) T cells specific for the L. monocytogenes LLO91-99 epitope in the effector and memory stages of the T-cell response. Challenge of these immune mice with recombinant L. monocytogenes resulted in rapid control of the infection and decreased CD8(+)-T-cell responses against both the secreted and nonsecreted form of the recombinant antigen compared to the response of na?ve mice. In contrast, mice immunized with a low dose of actA-deficient L. monocytogenes had approximately 10-fold fewer effector and memory T cells specific for LLO91-99 and a substantially higher CD8(+)-T-cell response against the recombinant antigen after challenge with recombinant L. monocytogenes. Although mice immunized with low-dose actA-deficient L. monocytogenes had a substantial recall response to LLO91-99, which reached the same levels by 5 to 7 days postchallenge as that in high-dose-immunized mice, they exhibited decreased ability to control L. monocytogenes replication. Thus, the level of antivector immunity impacts the control of infection and efficiency of priming responses against new antigens introduced with the same vector.  相似文献   

5.
Zuo J  Stohlman SA  Bergmann CC 《Virology》2005,331(2):338-348
Memory CD8+ T cells are comprised of CD122hi IL-15-dependent and CD122lo IL-15-independent subsets. Induction and retention of IL-15-independent memory CD8+ T cells was assessed in IL-15-/- and wild-type (wt) mice immunized with recombinant vaccinia virus (rVV) or Sindbis virus (rSIN) vectors expressing the identical foreign epitope. Both vectors induced epitope-specific CD8+ T cell expansion and function, independent of IL-15. Similar kinetics of rVV clearance confirmed effective CD8+ T cell function in IL-15-/- mice. CD44hi CD122hi CD8+ T cells, mainly of the CD62L-/lo phenotype, increased more dramatically and declined more rapidly in IL-15-/- mice, independent of the vector. Rapid IL-15-independent memory CD8+ T cell expansion following challenge of immune mice compensated for the limited memory CD8+ populations in IL-15-/- mice. However, despite expansion and expression of potent effector function, viral clearance was delayed in the absence of IL-15, coinciding with a rapid loss in cytolytic function.  相似文献   

6.
Recombinants based on vaccinia virus vectors, especially on the highly attenuated modified vaccinia virus Ankara (MVA) strain, are now being tested in clinical trials for safety and immunogenicity, using prime/boost heterologous regimes of vaccination. Due to the limited replication capacity of MVA, it is necessary to develop procedures that can enhance the specific cellular immune responses to the recombinant antigen delivered by the MVA vector. In this investigation, we have characterized the systemic immune responses in BALB/c mice using interferon-gamma (IFN-gamma) or interleukin-12 (IL-12) in an adjuvant-like manner elicited by MVA recombinants or naked DNA vectors expressing one of those cytokines in combination with the human immunodeficiency virus type 1 (HIV-1) envelope (Env) as antigen. In infected mice, virus gene expression in splenocytes and levels of cytokines IFN-gamma and IL-12 in serum were maximal by 6h post-infection (hpi) with MVA recombinants expressing IFN-gamma (MVAIFN-gamma) or IL-12 (MVAIL-12). In the infected animals, co-expression of HIV-1 env (MVAENV) and either IFN-gamma or IL-12 from MVA recombinants produced a two and three-fold increase of anti-env CD8+ T cell response, respectively. When priming was carried out with DNA vectors expressing HIV-1 env and either IFN-gamma or IL-12, the magnitude of the specific anti-env CD8+ T cell stimulation after MVAENV booster was further enhanced. Our findings revealed that IFN-gamma or IL-12 can be used to potentiate the cellular immune response to HIV-1 env, when delivered either from a single MVA recombinant or from a DNA vector. The increment of the CD8+ T cell response was higher in a DNA/MVA prime/boost protocol. Thus, the immune response of MVA vectors can be improved with the co-delivery of the cytokines IFN-gamma or IL-12.  相似文献   

7.
Currently, no vaccine exists for hepatitis C virus (HCV), a major pathogen thought to infect 170 million people globally. Many studies suggest that host T cell responses are critical for spontaneous resolution of disease, and preclinical studies have indicated a requirement for T cells in protection against challenge. We aimed to elicit HCV-specific T cells with the potential for protection using a recombinant adenoviral vector strategy in a phase 1 study of healthy human volunteers. Two adenoviral vectors expressing NS proteins from HCV genotype 1B were constructed based on rare serotypes [human adenovirus 6 (Ad6) and chimpanzee adenovirus 3 (ChAd3)]. Both vectors primed T cell responses against HCV proteins; these T cell responses targeted multiple proteins and were capable of recognizing heterologous strains (genotypes 1A and 3A). HCV-specific T cells consisted of both CD4+ and CD8+ T cell subsets; secreted interleukin-2, interferon-γ, and tumor necrosis factor-α; and could be sustained for at least a year after boosting with the heterologous adenoviral vector. Studies using major histocompatibility complex peptide tetramers revealed long-lived central and effector memory pools that retained polyfunctionality and proliferative capacity. These data indicate that an adenoviral vector strategy can induce sustained T cell responses of a magnitude and quality associated with protective immunity and open the way for studies of prophylactic and therapeutic vaccines for HCV.  相似文献   

8.
We tested the immunogenicity of two Trypanosoma cruzi antigens injected into mice in the form of DNA vaccine. Immunization with DNA encoding dihydroorotate dehydrogenase did not confer protective immunity in all mouse strains tested. Immunization with DNA encoding trans-sialidase surface antigen (TSSA) protected C57BL/6 (H-2(b)) mice but not BALB/c (H-2(d)) or C3H/Hej (H-2(k)) mice against lethal T. cruzi infection. In vivo depletion of CD4(+) or CD8(+) T cells abolished the protective immunity elicited by TSSA gene in C57BL/6 mice. Enzyme-linked immunospot assay with splenocytes from T. cruzi-infected mice or TSSA gene-vaccinated mice identified an H-2K(b)-restricted antigenic peptide, ANYNFTLV. The CD8(+)-T-cell line specific for this peptide could recognize T. cruzi-infected cells in vitro and could protect naive mice from lethal infection when adoptively transferred. Coadministration of the interleukin-12 (IL-12) gene with the TSSA gene facilitated the induction of ANYNFTLV-specific CD8(+) T cells and improved the vaccine efficacy against lethal T. cruzi infection. These results reinforced the utility of immunomodulatory adjuvants such as IL-12 gene for eliciting protective immunity against intracellular parasites by DNA vaccination.  相似文献   

9.
Recombinant avipoxvirus vectors are attractive candidates for use in vaccination strategies for infections such as human immunodeficiency virus type 1 (HIV-1), where induction of a CD8+ T cell response is thought to be an important component of protective immunity. Here, we report the expression of a multiepitope polypeptide (TAB9) composed of the central 15 amino acids of the V3 loop from six different isolates of HIV-1 in a fowlpox virus (FWPV) vector, and the use of this vector (FPTAB9LZ) to induce strong HIV-specific CD8+ T cell responses in mice. In animals immunized twice intravenously with FPTAB9LZ, almost 2% of the CD8+ T cells in the spleen were shown to produce IFN-gamma in response to stimulation with HIV-1 peptides 1 week after the second immunization. The most dominant response was to the HIV-1 IIIB peptide. A strong HIV-specific response was also induced by intraperitoneal immunization of mice with FPTAB9LZ, whilst subcutaneous immunization elicited a weaker response. Intraperitoneal immunization with FPTAB9LZ was also shown to provide protection against challenge with a recombinant vaccinia virus expressing antigens, including those in TAB9. These results confirm the potential of FWPV vectors for use in HIV vaccination strategies.  相似文献   

10.
The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 microg of p PyCSP plus 30 microg of pGM-CSF) or low-dose (1 microg of p PyCSP plus 1 microg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8(+)-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-gamma) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8(+) T cells. In contrast, the memory CD8(+)-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8(+) T cells, but at the single-cell level it produced significantly higher levels of IFN-gamma than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system.  相似文献   

11.
Protective immune responses against malaria are induced by immunization with radiation-attenuated Plasmodium sporozoites. In contrast, non-viable, heat-killed sporozoites do not induce protection, emphasizing the requirement for live parasites to achieve effective immune responses. Using an experimental system with CD8+ T cells from T cell receptor-transgenic mice, we analyzed the primary CD8+ T cell responses elicited by heat-killed inactivated sporozoites. We found that the numbers of specific CD8+ T cells induced were much lower compared to when immunizing with attenuated sporozoites; however, the kinetics of activation and the phenotype of these T cells were similar in both groups. Despite their low frequency after priming, high numbers of specific CD8+ T cells were observed after boosting with a recombinant vaccinia virus. Upon induction of the recall response, the same level of protection was observed when either heat-killed or attenuated sporozoites were used for priming. We propose that live parasites are not critical for the induction of memory T cell populations against the malaria liver stages.  相似文献   

12.
Viner KM  Girgis N  Kwak H  Isaacs SN 《Virology》2007,361(2):356-363
Recombinant vaccinia viruses have shown promise as vaccine vectors. However, their effectiveness is markedly reduced by pre-existing anti-vaccinia immunity. The possibility of new vaccinia immunizations in the event of a bioterror-related smallpox release poses an additional negative impact on the utility of vaccinia-based vectors. Thus, we aimed to design a vaccinia vector that would enhance the immune response to an expressed foreign protein in a pre-immune animal model. To do this, we made use of the finding that most neutralizing antibodies against the extracellular form of vaccinia virus are directed against the B5 protein. We found that mice immunized with vaccinia, primed with Gag plasmid DNA, and boosted with a recombinant vaccinia virus lacking the majority of the B5 ectodomain expressing a test antigen, HIV Gag, had stronger anti-Gag immune responses than mice that were boosted with a wild-type virus-expressing Gag. These findings are particularly striking given the more attenuated phenotype of this virus, as compared to its wild-type counterpart. Importantly, we found that vaccination with a B5R deletion virus, followed by boosting with the Gag-expressing virus lacking the majority of the B5 ectodomain, resulted in poorer anti-Gag immune responses. Thus, recombinant vaccinia viruses lacking the B5 ectodomain may serve as vaccine vectors in DNA prime-vaccinia boost vaccinations of individuals with pre-existing immunity against vaccinia. These data open the possibility of extending the potential benefit of replication competent recombinant vaccinia virus vectors to a larger population.  相似文献   

13.
The cytotoxic T-lymphocyte response (CTL) has been shown to be determinant in the clearance of many viral infections and hence, vaccine candidates against AIDS are designed to enhance this arm of the immune system. In this study, we have analyzed the antigen specific immune responses triggered in mice by different combinations of vaccine vehicles expressing the multiepitope polypeptide TAB13. This chimeric protein contains the V3 region of the gp120 from eight different HIV-1 isolates and was efficiently expressed by a DNA vector (DNA-TAB), and also by vaccinia virus recombinants (rVV) based either on the attenuated modified vaccinia virus Ankara (MVA-TAB) or Western Reserve (VV-TAB) strains. Inoculation of a DNA-TAB vector in priming followed by a booster with VV-TAB or MVA-TAB induces a humoral immune response against TAB13 protein and efficiently enhanced the CD8+ T cell response against V3 epitopes from HIV-1 isolates LR150, MN, and IIIB in comparison with animals immunized with two doses of DNA-TAB. A protocol that incorporates a DNA vector expressing IFN-gamma (DNA-IFN-gamma) with DNA-TAB in the priming, followed by a booster with MVA-TAB, triggered the highest values of specific CD8+ T cell response. By examining the cytokine pattern, the immune response induced by these vaccination approaches was predominantly of Th-1 type. These findings establish safe strategies for the enhanced generation of T cell mediated immunity to HIV-1 that can benefit in the design of an effective vaccine against AIDS.  相似文献   

14.
Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus.  相似文献   

15.
Immunization with DNA followed by modified vaccinia virus Ankara strain, both expressing the antigen 85A, induced both CD4(+)- and CD8(+)-T-cell responses in BALB/c mice. Following challenge with Mycobacterium tuberculosis, this prime-boost regimen produced protection equivalent to that conferred by Mycobacterium bovis BCG. Following immunization with dendritic cells pulsed with an antigen 85A CD4(+)- or CD8(+)-restricted epitope, alone or in combination, copresentation of both epitopes on the same dendritic cell was required for protection, demonstrating that induced CD8(+) T cells can play a protective role against tuberculosis.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108 PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.  相似文献   

17.
This study examines the suitability of replication-defective adenovirus vectors for engineering recombinant vaccines. The immunological abilities and limitations of E1-deleted adenoviruses containing the lac Z gene (Ad-β-gal) were investigated by examining the humoral and cellular immune responses to the β-galactosidase protein. BALB/c mice (H-2d) were given in a single injection of recombinant adenovirus. The cytotoxic T lymphocyte (CTL) response of spleen cells was evaluated. Recognized target cells were H-2d-derived tumor cells transfected by the lac Z gene, or incubated with the 876–884 β-galactosidase peptide known to be restricted by the Ld molecule of the major histocompatibility complex. A long-lasting β-galactosidase-specific cytotoxic T cell response was obtained. By contrast, CTL from mice immunized with the Ld-restricted peptide were less specific for the endogenous epitope presented by the transfectants expressing β-galactosidase. Ad-β-gal-immunized mice were also protected against an intra-cerebral challenge with a recombinant vaccinia virus expressing the lac-Z gene. These results suggest that Ad-β-gal-induced CTL have protective abilities in vivo. The induction of β-galactosidase-specific T helper lymphocytes and humoral IgG responses were also examined. A proliferative response occurred only late after immunization and the primed T lymphocytes produced interleukin-2, but no interleukin-4. A humoral IgG response to the β-galactosidase protein was detected 15–30 days after a single immunization and remained stable for 6 months without boosting. Lastly, we followed the evolution of the immune response over the course of successive immunizations. The magnitude and kinetics of the cellular and humoral responses were similar to those obtained after a single immunization. Consistent with these observations, an adenovirus-specific neutralizing antibody response was detected as early as the second immunization. Thus, a single immunization with a replication-defective adenovirus recombinant vector induces long-lasting humoral and cellular immune responses specific to the transgene product.  相似文献   

18.
Summary.  Recombinant vaccinia viruses expressing foot-and-mouth disease virus (FMDV) P1 and VP1 genes have been used to study the immune response induced by these viral polypeptides in guinea pigs. Anti-FMDV antibodies, but not neutralizing activity, were detected in the sera from immunized animals. The results indicate that both CD4+ and CD8+ FMDV-specific T cells were induced by the vaccinia recombinants. Consistently with the activation of CD4+ T cells, lymphocytes from immunized animals specifically proliferated in vitro in response to whole virus. The induction of virus-specific CD8+ T cells was determined by CTL assay of immune splenocytes restimulated in vitro with FMDV infected cells. Altogether, the results obtained indicate that both B and T cell immune responses to FMDV are elicited upon immunization of guinea pigs with vaccinia recombinants expressing FMDV structural polypeptides. Accepted September 18, 1997 Received June 19, 1997  相似文献   

19.
Immunization of BALB/c mice with a plasmid containing the gene for Trypanosoma cruzi trans-sialidase (TS) induced antibodies that inhibited TS enzymatic activity, CD4+ Th1 and CD8+ Tc1 cells, and protective immunity against infection. We used this model to obtain basic information on the requirement of CD4 or CD8 or B-cell epitopes for an effective DNA-induced immunity against T. cruzi infection. For that purpose, mice were immunized with plasmids containing DNA sequences encoding (i) the entire TS protein, (ii) the TS enzymatic domain, (iii) the TS CD4+ T-cell epitopes, (iv) the TS CD8+ T-cell epitope, or (v) TS CD4+ and CD8+ T-cell epitopes. Plasmids expressing the entire TS or its enzymatic domain elicited similar levels of TS-inhibitory antibodies, gamma interferon (IFN-gamma)-producing T cells, and protective immunity against infection. Although the plasmid expressing TS CD4 epitopes was immunogenic, its protective efficacy against experimental infection was limited. The plasmid expressing the CD8 epitope was poorly immunogenic and provided little protective immunity. The reason for the limited priming of CD8+ T cells was due to a requirement for CD4+ T cells. To circumvent this problem, a plasmid expressing both CD4+ and CD8+ T-cell epitopes was produced. This plasmid generated levels of IFN-gamma-producing T cells and protective immunity comparable to that of the plasmid expressing the entire catalytic domain of TS. Our observations suggest that plasmids expressing epitopes recognized by CD4+ and CD8+ T cells may have a better protective potential against infection with T. cruzi.  相似文献   

20.
The transforming protein E7 of human papilloma virus type 16 can stimulate cytotoxic T lymphocytes (CTL) which can protect experimental animals against growth of E7 expressing tumour cells. In this study we compared CTL responses in mice immunized with either E7 protein in MF59 adjuvant or with recombinant vaccinia virus expressing E7 (Vac-E7). We have chosen H-2d mice because no E7-specific CTL responses have been described in this MHC haplotype. Immunization of these mice with Vac-E7 generated CTL which lysed target cells infected with Vac-E7 or transfected with the E7 gene. CTL from mice immunized with E7 protein in MF59 adjuvant showed specificity for the same target cells. Antibody blocking experiments revealed that both immunization with Vac-E7 and E7 protein stimulated CD8+ effector CTL. The find specificity of CTL induced by the two immunization protocols was similar. A major CTL epitope was mapped to the carboxyl terminal amino acids 48–98 of the E7 protein. Peptide isolation from E7 expressing cells followed by HPLC separation indicated that CTL induced by immunization with protein and Vac-E7 recognized the same HPLC purified peptide fractions. Together, the study suggests that vaccines based on protein can activate CTL with similar fine specificity to CTL induced by vaccines based on recombinant vaccinia virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号