首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual imaging of lung deposition and gene expression following the pulmonary delivery of a gene formulation is useful for a precise analysis of gene transfection efficiency in vivo. As a novel probe for evaluating lung deposition, in this study, a poly(ethylene glycol)-conjugated near-infrared fluorescent probe (PEG-NIRF) was newly synthesized, and compared with indocyanine green (ICG), for application to pDNA/polyethyleneimine (PEI) complex. PEG-NIRF had superior characteristics including a larger Stokes shift (absorption maximum, 662?nm; emission maximum, 772?nm) and relatively equivalent fluorescence intensity compared with ICG. ICG affected the physicochemical properties of pDNA/PEI complex with a loss of fluorescence intensity, while PEG-NIRF did not. Experiments in mice demonstrated that PEG-NIRF showed greater lung localization than ICG following pulmonary co-delivery with pDNA/PEI complex, indicating the possibility of accurately evaluating lung deposition. Moreover, it was clarified that the evaluation of lung deposition by PEG-NIRF even at 60?min could be significantly correlated with gene expression in each mouse following pulmonary co-delivery with pDNA/PEI complex. These results suggest that PEG-NIRF is widely applicable to the dual imaging of the lung deposition and gene expression of inhaled gene formulations.  相似文献   

2.
Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.  相似文献   

3.
Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.  相似文献   

4.
Safe and efficient systems capable of specifically targeting brain tumour cells represent a promising approach for the treatment glioblastoma multiforme. Neuropilin-1 (NRP-1) is over-expressed in U87 glioma cells. In the current study, the tumour specific peptide RGERPPR, which binds specifically to NRP-1, was used as a targeting ligand in a gene delivery strategy for glioblastoma. The RGERPPR peptide was coupled to branched polyethylenimine (PEI, 25 kDa) using heterobifunctional Mal–PEG–NHS, resulting in a novel gene delivery polymer. Polymer/plasmid DNA (pDNA) complexes were formed and their sizes and zeta potentials were measured. Compared with the unmodified mPEG–PEI/pDNA complexes, the RGERPPR–PEG–PEI/pDNA complex led to a significant enhancement in intracellular gene uptake and tumour spheroid penetration. Furthermore, the RGERPPR–PEG–PEI/pDNA complex facilitated enhanced transfection efficiency levels, as well as a reduction in cytotoxicity when tested in U87 glioma cells in vitro. Most significantly of all, when complexes formed with pDsRED-N1 were injected into the tail vein of intracranial U87 tumour-bearing nude mice, the RGERPPR–PEG–PEI complexes led to improved levels of red fluorescence protein expression in the brain tissue. Taken together, the results show that RGERPPR–PEG–PEI could be used as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene delivery.  相似文献   

5.
Polymer nanoparticles have been used as non-viral gene delivery systems and drug delivery systems. In this study, biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) and poly(D,L-lactide-co-glycolide) (PLGA)/PEI nanoparticles were prepared and characterized as gene delivery systems. The PLA/PEI and PLGA/PEI nanoparticles, which were prepared by a diafiltration method, had spherical shapes and smooth surface characteristics. The size of nanoparticles was controlled by the amount of PEI, which acted as a hydrophilic moiety, which effectively reduced the interfacial energy between the particle surface and the aqueous media. The nanoparticles showed an excellent dispersive stability under storage in a phosphate-buffered saline solution for 12 days. The positive zeta-potentials for the nanoparticles decreased and changed to negative values with increasing plasmid DNA (pDNA) content. Agarose gel electrophoresis showed that the complex formation between the nanoparticles and the pDNA coincided with the zeta-potential results. The results of in vitro transfection and cell viability on HEK 293 cells indicated that the nanoparticles could be used as gene delivery carriers.  相似文献   

6.
Previously, we had reported improving transfection efficiency of the chitosan-plasmid DNA (CS/pDNA)complex via enhancing intracellular unpacking of the exogene by the utilization of phosphorylatable short peptide conjugated chitosan (pSP-CS). In this article, we addressed a novel strategy of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) modification for further optimization of the transfection efficiency. NNS, consisting of "PKKRKVREEAIKFSEEQRFRR", contained a SV40 nucleus localization signal and a potentially phosphorylatable serine residue. The short peptide could be selectively phosphorylated in the nucleus in various mammalian cells. This phosphorylatable NNS (pNNS) was conjugated to chitosan and combined with Cy3 fluorescence labeled plasmid DNA to form a pNNS-CS/pDNA complex. In vitro phosphorylation and DNA releasing assays verified that pNNS could be effectively and selectively phosphorylated by nucleic lysate, hence promoting pDNA unpacking from the complex. Thereafter, C2C12 myoblast cells were transfected. Nuclear localization of the pDNA was represented by the fluorescence in the nucleus and transfection efficiency was determined by the expression of the luciferase reporter gene, which is carried by the plasmid DNA. The results revealed that, compared with lipofactamine2000 and the previously reported pSP-CS, pNNS-CS could transport more pDNA into the nucleus and intensively augment luciferase reporter gene expression. In conclusion, nucleus localization and unpacking from the delivery vector are both critical factors in influencing exogene expression, and pNNS modification is valuable in improving transfection efficacy of the chitosan.  相似文献   

7.
Effective delivery of DNA encoding antigen into the dendritic cells (DCs), which are non-dividing cells, is very important for the development of DNA vaccines. In a previous study, we developed the PLGA nanospheres that contained a cationic nanomaterial and showed high transfection efficiency in COS7 cells, which divide. In the present study, to produce an effective vector for the DNA vaccines, the gene expression and intracellular trafficking of pDNA complexed with PLGA/PEI nanospheres, in combination with an NF-κB analog as a nuclear localization signal (NLS) and electroporation were evaluated in human monocyte-derived DCs (hMoDCs). Cellular uptake of pDNA both in COS7 cells and hMoDCs was enhanced using the PLGA/PEI nanospheres. On the other hand, the PLGA/PEI nanospheres significantly promoted the transfection in COS7 cells, but had almost no effect on transfection in hMoDCs. The intranuclear transport of pDNA by PLGA/PEI nanospheres in COS7 cells was significantly higher than that in hMoDCs. These results indicate that pDNA complexed with PLGA/PEI nanospheres cannot enter into the nuclei of non-dividing cells. However, PLGA/PEI nanospheres combinated with NLS and electroporation (experimental permeation enhancer) greatly elevated the transfection efficiency by improvement of not only intracellular uptake but also intranuclear transport of pDNA in the hMoDCs. Thus, this delivery system using nanospheres combined with synthesized NLS might be applicable to DC-based gene vaccines when much non-invasive application such as needle-free injector should be required.  相似文献   

8.
Non-viral vectors such as liposomes, polycations, and nanoparticles have been used as gene delivery systems. In this study, we prepared and characterized biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) nanoparticles as gene carriers. pCMV/β-gal and pEGFP-C1 were utilized as model plasmid DNAs (pDNA). Nanoparticles were prepared using a double emulsion-solvent evaporation technique, and their pDNA binding capacity was assessed by agarose gel electrophoresis. Transfection was studied in HEK 293 and HeLa cell lines, and the transfection efficiencies were determined by β-galactosidase assay or flow cytometry. Three kinds of PLA/PEI systems were studied by varying the molecular weight of PEI. The PLA/PEI 25K system had a higher transfection efficiency than the PLA/PEI 0.8K or PLA/PEI 750K systems. The transfection efficiency was found to be dependent on the ratio of PLA/PEI nanoparticles to pDNA with an optimum ratio of 60:1 (w/w). The cytotoxicity was dependent on the quantity of PLA/PEI nanoparticles used, but it was comparable to that of commercial Lipofectin™. These results demonstrate the potential of PLA/PEI nanoparticles as gene carriers.  相似文献   

9.
Our previous studies demonstrated that cationic nanoparticles composed of well-defined poly(methyl methacrylate) (PMMA) cores surrounded by a hairly poly(ethyleneimine) (PEI) shells have comparative advantages over the PEI system for gene delivery. In this study, we focused on the intracellular uptake and release of PEI-PMMA nanoparticle/pDNA complexes. The behavior of the nanoparticle/pDNA complexes in recipient cells was monitored by using confocal laser scanning microscopy. We found that the nanoparticle/pDNA complexes were internalized very effectively by endocytosis. In the recipient cells the nanoparticles were found localized in the cytoplasm. At the same time, the pDNA carried by the nanoparticles successfully detached from the nanoparticles and localized in the nucleus of the HeLa cells.  相似文献   

10.
Chitosan is a polysaccharide that has generated significant interest as a non-viral gene delivery vehicle due to its cationic and biocompatible characteristics. However, transfection efficiency of chitosan is significantly lower compared to other cationic gene delivery agents, e.g. polyethyleneimine (PEI), dendrimers or cationic lipids. This is primarily attributed to its minimal solubility and low buffering capacity at physiological pH leading to poor endosomal escape of the gene carrier and inefficient cytoplasmic decoupling of the complexed nucleic acid. Here we have developed an imidazole acetic acid (IAA)-modified chitosan to introduce secondary and tertiary amines to the polymer in order to improve its endosomal buffering and solubility. The modified polymer was characterized by ninhydrin and (1)H NMR assays for degree of modification, while buffering and solubility were analyzed by acid titration. Nanocomplex formation, studied at various polymer-nucleic acid ratios, showed an increase in particle zeta potential for chitosan-IAA, as well as an increase in the effective diameter. Up to 100-fold increase in transfection efficiency of pDNA was seen for chitosan-IAA as compared to native chitosan, nearly matching that of PEI. In addition, transfection of siRNA by the modified polymers showed efficient gene knockdown equivalent to commercially available siPORT Amines. Collectively, these results demonstrate the potential of the imidazole-grafted chitosan as a biocompatible and effective delivery vehicle for both pDNA and siRNA.  相似文献   

11.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 approximately 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

12.
13.
Controlled release of plasmid DNA (pDNA) from biodegradable poly lactic-co-glycolic acid (PLGA) microparticles has the potential to enhance transgene expression. However, barriers to this approach include limited encapsulation efficiency, pDNA damage during fabrication and confinement of the microparticles inside phagolysosomal compartments. Combining PLGA with poly ethyleneimine (PEI) can improve protection of pDNA during fabrication, increase encapsulation efficiencies and impart the PLGA microparticles with the capacity to escape the phagolysosomal compartments. This study compares three promising formulation methods for preparing PLGA PEI pDNA microparticles and evaluates for buffering capacity, cellular uptake, transfection efficiency and toxicity. In the first method, PLGA PEI pDNA microparticles are prepared by entrapping pDNA in blended PLGA/PEI using the double emulsion water-in-oil-in-water solvent evaporation technique (PA). In a second approach, PEI-pDNA polyplexes are prepared and then entrapped in PLGA microparticles using a double emulsion solvent evaporation method (PB). Microparticles prepared using formulation methods PA and PB are then compared against PLGA microparticles with PEI conjugated to the surface using carbodiimide chemistry (PC); 0.5% PVA is identified as the optimum concentration of surfactant for generating the strongest transfection efficiencies. N:P ratios of 5 and 10 are selected for preparation of each group. Gel electrophoresis demonstrates that all PLGA microparticle formulations have strong pDNA binding capacity. An MTT assay shows that in vitro cytotoxicity of PLGA PEI microparticles is significantly lower than PEI alone. PLGA PEI pDNA microparticles mediate higher cellular uptake efficiency and consequently higher transgene expression than unmodified PLGA microparticles in COS7 and HEK293 cells. Preparing PEI-pDNA polyplexes prior to entrapment in PLGA microparticles (PB) results in the highest pDNA loading. This is 2.5-fold higher than pDNA loading in unmodified PLGA microparticles. PLGA PEI pDNA microparticles prepared using method PB generates the strongest transfection efficiencies, which are 500-fold higher than unmodified PLGA pDNA microparticles in HEK293 cells and 1800-fold higher in COS-7 cells. The highest transfection efficiencies generated from microparticles prepared using method PB is achieved using an N:P ratio of 5.  相似文献   

14.
The main objective of this study was to prepare two types of nanoparticles with poly(d,l-lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) polymers. Plasmid DNA (pDNA) was adsorbed either on PLGA/PEI nanoparticles, or as PEI/DNA complex onto the surface of PLGA nanoparticles. Both types of nanoparticles were prepared by the double emulsion method. The nanoparticles were characterized by their size, zeta potential and pDNA or PEI/DNA complex adsorption. The PEI/DNA complex adsorption was confirmed with ethidium bromide assay. pDNA adsorption onto PLGA/PEI nanoparticles (PLGA/PEI-DNA) was studied by electrophoresis on agarose gel. Cytotoxicity and transfection efficiency of both types of nanoparticle and PEI/DNA complexes formulations were studied in head and neck squamous carcinoma cell line (FaDu). To improve endosomal release, photochemical internalization (PCI) was used. The zeta potential increased when the PEI/DNA complex adsorbed onto PLGA nanoparticles (PLGA-PEI/DNA). Optimal pDNA adsorption efficiency was achieved for nitrogen/phosphorous ratio≥20/1. In vitro transfection and cells viability on FaDu cells with or without PCI were found to be variable depending on the type and concentration of nanoparticles. The results showed that transfection efficiency for PLGA/PEI-DNA or PLGA-PEI/DNA nanoparticles ranged between 2 and 80%, respectively. PCI was found to slightly improve the transfection efficiency for all formulations.  相似文献   

15.
BACKGROUND: Gene targeting by RNA interference (RNAi) is mediated through small interfering RNA (siRNA), which, as plasmid DNA molecules, can be delivered into cells by polyethylenimines (PEI). Grafting with poly(ethylene glycol) has been introduced previously to improve PEI biocompatibility; however, data on the effects of PEGylation have been somewhat contradictory and various PEI(-PEG) need to be evaluated independently for DNA transfection and siRNA gene targeting efficacies. AIM: We directly compare plasmid DNA transfection and siRNA-mediated gene targeting efficacies, employing a larger set of polyethylenimine-graft-poly(ethylene glycol) (PEI-g-PEG; PEI(-PEG)) with different molecular weights and degrees of PEG substitution. METHOD: We performed tissue culture-based bioassays on DNA transfection and siRNA-mediated targeting efficacies as well as on toxicity and cellular nucleic acid uptake, and, using sensitive assays based on radioactive labelling, physicochemically characterize the complexes regarding the degree of nucleic acid complexation and complex stabilities under various conditions. RESULTS: In contrast to the DNA transfection efficacy, siRNA-mediated gene targeting is much less dependent on the PEGylation of PEI or on the N/P ( = PEI nitrogen/nucleic acid phosphate) ratio. A more detailed analysis reveals that, in order to define optimal N/P ratios for DNA transfection, complex toxicities and nucleic acid uptake are the most critical parameters. In contrast, at optimal N/P ratios, complex stabilities and complexation efficacies determine PEI(-PEG)/DNA transfection efficacies and the major differences between various PEI(-PEG) are observed. All these parameters are less critical for PEI(-PEG)/siRNA gene targeting efficacy. Thus, our data lead to the distinction between three PEI(-PEG) groups, which relies on the differences in transfection rather than gene targeting efficacies, and which is correlated with the molecular weights and degrees of PEG substitution. CONCLUSION: In contrast to PEI(-PEG)/DNA complexes, a broader panel of PEI-PEG are capable of siRNA-mediated gene targeting. Thus, PEG grafting of PEI requires a separate evaluation of siRNA and DNA complexes, which expands the portfolio of available PEI(-PEG) for the preparation of non-toxic, biocompatible siRNA delivery reagents for the induction of RNAi.  相似文献   

16.
This study investigated the stability and transfection efficiency of plasmid DNA (pDNA) and sea urchin sperm histone H1 (Sp H1) complexes embedded in albumin microsphere formulations. Sp H1 increased the stability and transfection efficiency of pDNA, while providing a favourable sustained pDNA release profile. Encapsulating Sp H1-complexed pDNA into albumin microspheres further protected the pDNA from physical stress and heparin treatment. When compared with free pDNA encapsulated in albumin microspheres, the Sp H1-pDNA microsphere formulations exhibited decreased hydrophilicity, slower pDNA release profiles, protection against heparin-induced degradation of embedded pDNA and increased stability against physical stress. These results indicate that complex formation of pDNA with Sp H1 facilitates intracellular DNA transfer and that albumin microspheres-Sp H1-pDNA gene delivery formulations are suitable for controlled-release delivery of pDNA while offering protection of the pDNA from degradation and maintaining pDNA biological activity.  相似文献   

17.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 ~ 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

18.
Purpose  To improve the gene delivery efficiency and safety of non-viral vector in liver cells, avidin, which exhibited good biocompatibility and remarkable accumulation in liver, was bioconjugated with biotinylated polyethylenimine to obtain a novel gene vector. Materials and methods  Biotinylated polyethyleneimine/avidin bioconjugate (ABP) was synthesized through grafting biotin to high molecular weight branched polyethylenimine (PEI, 25 kDa) and then bioconjugating with avidin by the biotin-avidin interaction. Physiochemical characteristics of ABP/pDNA complexes were analyzed, and in vitro cytotoxicity and transfection of ABP were also evaluated in HepG2, Hela and 293 T cells by using 25 kDa PEI as the control. Results  It was found that ABP was able to condense pDNA efficiently at N/P ratio of 4. The particle sizes of ABP/pDNA complexes were less than 220 nm, and the average surface charges were around 27 mV at the N/P ratio ranging from 2 to 60. Among three different cell lines, ABP and its DNA complexes demonstrated much lower cytotoxicity and higher transfection efficacy in HepG2 cells as compared with 25 kDa PEI. Conclusion  ABP presented higher transfection efficacy and safety in HepG2 cells due to the biocompatibility of avidin and the specific interactions between avidin and HepG2 cells.  相似文献   

19.
Polyethylenimine (PEI) is widely used for non-viral transfection in vitro and in vivo. Hepatectomy is an interesting and considerable factor modifying PEI-mediated gene expression. We investigated the gene expression in mice over time following partial hepatectomy after an intravenous injection of PEI/plasmid DNA (pDNA) complex. pDNA encoding firefly luciferase was used as the model reporter gene. The hepatectomized liver was rapidly regenerated until 72 h. After 168 h, the liver weight of hepatectomized mice was similar to that of control mice. Slight liver function impairment was only observed at 1-24 h after hepatectomy in alanine aminotransferase and aspartate aminotransferase levels. Luciferase activity in the liver of partial hepatectomized mice at 48 h after partial hepatectomy increased by 70 times compared with that of control mice; however, luciferase activities did not significantly differ between hepatectomized mice and control mice in the spleen, lung, kidney, and heart. Among the lobes, luciferase activity by gram of tissue was not significantly different, indicating that gene expression enhancement by partial hepatectomy occurred equally throughout the liver. In conclusion, our findings demonstrate that liver resection is an influencing factor on PEI-mediated gene delivery in mice. These results indicate the necessity of considering cell division in PEI-mediated pDNA delivery.  相似文献   

20.
藻酸盐/PEI/DNA复合载体作为一种新型基因递送系统   总被引:4,自引:0,他引:4  
目的克服多聚乙烯亚胺(PEI,polyethlenimine)/DNA载体对细胞的毒性以及在含血清培养基里对癌细胞基因的转移率低的问题。方法利用具有水溶性、可生物降解的、并带有负电的藻酸盐(alginate)对PEI/DNA载体进行包衣,制备出复合载体,并在体外含50%血清培养基里,与PEI/DNA载体比较对C3癌细胞转染率。结果 在含50%血清的培养基里,藻酸盐包衣制备的复合体载体[alginate:DNA,0.15 (w/w);PEI:DNA,N:P=10]与PEI/DNA载体相比,对C3癌细胞基因转染率高出10~30倍,而且其表面正电荷数比PEI/DNA载体减少了一半,颗粒较小,并降低对细胞毒性和红血球集聚反应。结论作为新型的藻酸盐包衣制备的复合载体能提高在体外含高浓度血清培养基里对C3癌细胞的转染率,并能减少其对细胞毒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号