首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The energy requirements for the rapid transmembrane movement of phosphatidylethanolamine in membranes of Bacillus megaterium KM have been investigated by means of pulse label experiments. The transmembrane movement continues at a high rate in cells blocked in the production of metabolic energy by treatment with a combination of inhibitors. The movement is shown to be completely independent of the synthesis of lipid and of protein and, more generally, independent of sources of metabolic energy. The rate constant ki, defined as the fraction of the internal phosphatidylethanolamine that exchanges with the external layer of the membrane per unit time, has been found to have a value of about 0.1 per min. The compositional asymmetry of phosphatidylethanolamine in membranes of B. megaterium persisted, and indeed was somewhat enhance, in energy-poisoned cells under conditions in which rapid mixing of inner and outer layers was taking place. Therefore, the compositional asymmetry is not maintained by kinetic barriers to transbilayer exchange or by expenditure of metabolic energy. It must be an equilibrium condition, and presumably reflects the differential binding of phospholipids by proteins and other ligands on the two sides of the membrane.  相似文献   

2.
In addition to ion-pumping ATPases, most plasma membranes of animal cells contain a Mg2+ ATPase activity, the function of which is unknown. This enzyme, of apparent molecular mass 110 kDa, was purified from human erythrocyte membranes by a series of column chromatographic procedures after solubilization in Triton X-100. When reincorporated into artificial bilayers formed from phosphatidylcholine, it was able to transport a spin-labeled phosphatidylserine analogue from the inner to the outer membrane leaflet provided Mg2+ ATP was present in the incubation mixture. The ATP-dependent transport of the phosphatidylethanolamine analogue required the presence of an anionic phospholipid (e.g., phosphatidylinositol) in the outer membrane leaflet. In contrast the transmembrane distribution of spin-labeled phosphatidylcholine was unaffected in the same experimental conditions. This transmembrane movement of aminophospholipid analogues was inhibited by treatment of the proteoliposomes with a sulfhydryl reagent. We conclude that the Mg2+ ATPase is sufficient for the biochemical expression of the aminophospholipid translocase activity, which is responsible for the inward transport of phosphatidylserine and phosphatidylethanolamine within the erythrocyte membrane. The presence of this transport activity in many animal cell plasma membranes provides a function for the Mg2+ ATPase borne by these membranes.  相似文献   

3.
Transmembrane movement of cholesterol in human erythrocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
We studied the exchange of cholesterol between radioactively labeled plasma and human erythrocytes. Results from experiments in which [3H]cholesterol and [14C]-cholesterol were exchanged sequentially into the cells and back out into unlabeled plasma, showed that transmembrane movement of cholesterol occurred with a half-time that was either less than 50 min or greater than 10 days. To obtain further information about the transmembrane movement of cholesterol, we used a technique [Jacobson, B. S. & Branton, D. (1977) Science 195, 302-304] for exposure of the cytoplasmic surface of erythrocyte membranes. This method involved the ionic attachment of erythrocytes to derivatized glass beads followed by disruption of the cells, leaving the beads covered by membrane with the cytoplasmic surface exposed [3H]Cholesterol was exchanged into intact erythrocytes which then were attached to beads. The beads with attached membrane were incubated with phospholipid-cholesterol vesicles and the exchange of cholesterol between the membrane cytoplasmic surface and vesicles was studied. We found that [3H]cholesterol was present at the cytoplasmic surface, indicating that transmembrane movement of cholesterol had occurred within the 2.5 hr required to complete the experiment. This result suggests that the more rapid rate of transmembrane cholesterol movement, inferred from the experiments described above, is the one that applies.  相似文献   

4.
We studied the effect of sickling on the transmembrane reorientation and distribution of phospholipids in the red blood cells of patients homozygous for sickle cell anemia (SS). To this purpose, we followed the redistribution kinetics of trace amounts of spin-labeled analogues of natural phospholipids first introduced in the membrane outer leaflet of normal or sickle erythrocytes exposed to air or nitrogen. Deoxygenation had no effect on the lipid redistribution kinetics in normal (AA) cell membranes. At atmospheric pO2, unfractionated SS cells were not different from normal cells. However, on deoxygenation inducing sickling, phosphatidylcholine passive diffusion was accelerated and the rate of the adenosine triphosphate-dependent transport of aminophospholipids was reduced, especially for phosphatidylserine. The stationary distribution of the aminophospholipids between the two leaflets was slightly less asymmetric, a phenomenon more pronounced with phosphatidylethanolamine. These changes were rapidly reversible on reoxygenation. When SS cells were separated by density, both dense and light cells exhibited the properties cited above. However, dense cells exposed to air possessed a lower aminophospholipid transport rate. These data favor the relationship between aminophospholipid translocase activity and phospholipid transmembrane asymmetry. Sickle cell disease is the first case of aminophospholipid translocase pathology.  相似文献   

5.
The membrane phospholipid organization in human red blood cells (RBC) is rigidly maintained by a complex system of enzymes. However, several elements of this system are sensitive to oxidative damage. An important component in the destruction of β-thalassemic RBC is the generation of reactive oxygen species and the release of redox-active iron by the unpaired α-hemoglobin chains. Consequently, we hypothesized that the presence of this oxidative stress to the RBC membrane could lead to alterations in membrane lipid organization. Model β thalassemic RBC, prepared by the introduction of excess α-globin in the cell, have previously been shown to exhibit structural and functional changes almost identical to those observed in β-thalassemic cells. After 24 hr at 37°C, the model β thalassemic cells exhibited a significant loss of deformability, as measured by ektacytometric analysis, indicative of extensive membrane damage. However, a normal steady-state distribution of endogenous phospholipids was found, as evidenced by the accessibility of membrane phospholipids to hydrolysis by phospholipases. Similarly, the kinetics of transbilayer movement of spin-labeled phosphatidylserine (PS) and phosphatidylethanolamine (PE) in all samples was in the normal range and was not affected by the presence of excess α-globin chains. In contrast, a faster rate of spin-labeled phosphatidylcholine (PC) transbilayer movement was observed in these cells. While control RBC exhibited a complete loss of their initial (2 mol%) lysophosphatidylcholine (LPC) levels following 24 hr of incubation at 37°C, 1.5 mol% LPC was still present in model β-thalassemic cells, suggesting an altered phospholipid molecular species turnover, possibly as a result of an increased repair of oxidatively damaged phospholipids. © 1996 Wiley-Liss, Inc.  相似文献   

6.
32P in membrane phosphatidylethanolamine (PE) and red cell 14C, reflecting cytoplasmic hemoglobin, were measuredsequentially in rats given transfusions ofdoubly-labeled reticulocytes. With reticulocytes from normal rats there was a smalldecline in the levels of both the membraneand the cytoplasmic labels; the changeswere almost parellel, although loss ofmembrane PE-32P exceeded that of 14C toa small extent. By contrast, with "stressreticulocytes" from bled donors, there wasa markedly disproportionate loss of themembrane label; this asymmetrical lossof membrane material was diminishedwhen recipients had been splenectomized.With transfusions of doubly-labeled reticulocytes from rats with severe iron deficiency anemia, there was a marked lossof both membrane PE-32P and red cell 14Cwhich was only moderately asymmetrical.The asymmetrical loss of the membranelabel found with stress reticulocytes supports the conclusion that these cells undergo a process of surface remodeling duringtheir maturation in the peripheral blood.The spleen is partly responsible for thisprocess. Normal reticulocytes also appearto undergo a minor degree of remodeling.On the other hand, the almost symmetricalloss of membrane and cytoplasmic labelobserved with reticulocytes from iron deficient rats indicates that many of thecells in this model of ineffective erythropoiesis are hemolyzed in their entirety.These experiments demonstrate that stressreticulocytes differ under different conditions and may lose cellular material bytwo, possibly interrelated, mechanisms:surface remodeling or whole-cell hemolysis.

Submitted on January 9, 1974 Accepted on June 19, 1974  相似文献   

7.
Semliki Forest virus was mixed with liposomes containing phosphatidylcholine,phosphatidylethanolamine, sphingomyelin, and cholesterol. When the pH of the mixture was dropped to 6 or below, rapid fusion between the membranes of the virus and the liposomes occurred, resulting in the transfer of viral nucleocapsids into the liposomes. Fusion was demonstrated biochemically by trapping RNase or trypsin within the liposomes. Trapped RNase digested the viral RNA into acid-soluble form, providing a simple quantitative assay for fusion. Trapped trypsin digested the viral capsid protein. Fusion was also demonstrated by electron microscopy as the formation of large vesicles containing viral glycoproteins on the surface and nucleocapsids inside. The efficiency of fusion was 91 +/- 6%. In addition to low pH, it required that the viral glycoproteins be intact. In the target liposomes, cholesterol (but none of the individual phospholipids) was essential. Divalent cations were not required. Our previous studies with tissue culture cells indicated that the final step in the penetration of the Semliki Forest virus genome into host cells might involve a fusion event between the membrane of lysosomally trapped viruses and the lysosomal membrane [Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. (1980) J. Cell Biol, 84, 404--420]. The data presented here are fully compatible with this hypothesis.  相似文献   

8.
Intramembrane proteolysis is a core regulatory mechanism of cells that raises a biochemical paradox of how hydrolysis of peptide bonds is accomplished within the normally hydrophobic environment of the membrane. Recent high-resolution crystal structures have revealed that rhomboid proteases contain a catalytic serine recessed into the plane of the membrane, within a hydrophilic cavity that opens to the extracellular face, but protected laterally from membrane lipids by a ring of transmembrane segments. This architecture poses questions about how substrates enter the internal active site laterally from membrane lipid. Because structures are static glimpses of a dynamic enzyme, we have taken a structure-function approach analyzing >40 engineered variants to identify the gating mechanism used by rhomboid proteases. Importantly, our analyses were conducted with a substrate that we show is cleaved at two intramembrane sites within the previously defined Spitz substrate motif. Engineered mutants in the L1 loop and active-site region of the GlpG rhomboid protease suggest an important structural, rather than dynamic, gating function for the L1 loop that was first proposed to be the substrate gate. Conversely, three classes of mutations that promote transmembrane helix 5 displacement away from the protease core dramatically enhanced enzyme activity 4- to 10-fold. Our functional analyses have identified transmembrane helix 5 movement to gate lateral substrate entry as a rate-limiting step in intramembrane proteolysis. Moreover, our mutagenesis also underscores the importance of other residue interactions within the enzyme that warrant further scrutiny.  相似文献   

9.
The synthesis of phosphatidylcholine from phosphatidylethanolamine is carried out by two methyltransferases in erythrocyte membranes. The first enzyme uses phosphatidylethanolamine as a substrate, requires Mg2+, and has a high affinity for methyl donor, S-adenosyl-L-methionine. The second enzyme methylates phosphatidyl-N-monomethylethanolamine to phosphatidylcholine and has a low affinity for S-adenosyl-L-methionine. The first enzyme is localized on the cytoplasmic side of the membrane and the second enzyme faces the external surface. This asymmetric arrangement of the two enzymes across the membrane makes possible the stepwide methylation of phosphatidylethanolamine localized on the cytoplasmic side and facilitates the rapid transmembrane transfer of the final product, phosphatidylcholine, to the external surface of the membrane. A mechanism for an enzyme-mediated flip-flop of phospholipids from the cytoplasmic to the outer surface of erythrocyte membranes is described.  相似文献   

10.
Ca2+ ions control the cGMP-gated channel of rod photoreceptor cells from the external and internal face. We studied ion selectivity and blockage by Ca2+ of wild-type and mutant channels in a heterologous expression system. External Ca2+ blocks the inward current at micromolar concentrations in a highly voltage-dependent manner. The blockage at negative membrane voltages shows a steep concentration dependence with a Hill coefficient of approximately 2. The blockage from the internal face requires approximately 1000-fold higher Ca2+ concentrations. Neutralization of a glutamate residue (E363) in the putative pore region between transmembrane segments H4 and H5 induces outward rectification and changes relative ion conductances but leaves relative ion permeabilities nearly unaffected. The current blockage at -80 mV requires approximately 2000-fold higher external Ca2+ concentrations and the voltage dependence is almost abolished. These results demonstrate that E363 represents a binding site for monovalent and divalent cations and resides in the pore lumen.  相似文献   

11.
Increased accumulation of lipofuscin in cells of the retinal pigment epithelium (RPE) is seen in several forms of macular degeneration, a common cause of blindness in humans. A major fluorophore of lipofuscin is the toxic bis-retinoid, N-retinylidene-N-retinylethanolamine (A2E). Previously, we generated mice with a knockout mutation in the abcr gene. This gene encodes rim protein (RmP), an ATP-binding cassette transporter in rod outer segments. Mice lacking RmP accumulate A2E in RPE cells at a greatly increased rate over controls. Here, we identify three precursors of A2E in ocular tissues from abcr-/- mice and humans with ABCR-mediated recessive macular degenerations. Our results corroborate the scheme proposed by C. A. Parish, M. Hashimoto, K. Nakanishi, J. Dillon & J. Sparrow [Proc. Natl. Acad. Sci. USA (1998) 95, 14609-14613], for the biosynthesis of A2E: (i) condensation of all-trans-retinaldehyde (all-trans-RAL) with phosphatidylethanolamine to form a Schiff base; (ii) condensation of the amine product with a second all-trans-RAL to form a bis-retinoid; (iii) oxidation to yield a pyridinium salt; and (iv) hydrolysis of the phosphate ester to yield A2E. The latter two reactions probably occur within RPE phagolysosomes. As predicted by this model, formation of A2E was completely inhibited when abcr-/- mice were raised in total darkness. Also, once formed, A2E was not eliminated by the RPE. These data suggest that humans with retinal or macular degeneration caused by loss of RmP function may slow progression of their disease by limiting exposure to light. The precursors of A2E identified in this study may represent pharmacological targets for the treatment of ABCR-mediated macular degeneration.  相似文献   

12.
Intracellular ATP levels in whole cells of Methanococcus voltae respond to electron transfer coupled to methanogenesis. ATP synthesis can also be induced by an artificially imposed transmembrane electrical potential [formed by electrogenic movement outwards of potassium (induced by valinomycin) or of protons (induced by an uncoupler], or by a pH gradient (acid outside). These results implicate the existence of a reversible ATPase coupled to electrogenic movement of an ion(s) other than potassium or proton, and that ionophores are competent to catalyze ion movement across the cytoplasmic membrane of this organism (which is the sole membrane structure in this species). ATP synthesis driven by electron transfer is, however, insensitive to the addition of such ionophores. These results indicate that although cells possess an ion-translocating ATPase (possibly involved in the maintenance of internal ionic composition homeostasis), methanogenesis-driven ATP synthesis does not involve the intermediacy of a transmembrane ion gradient. Primarily because methane formation has been previously demonstrated to involve true electron transfer, substrate-level phosphorylation (at least in analogy to other systems) has been generally ruled out. The results presented here suggest that at least one methanogenic bacterium may use a direct linkage of ATP synthesis to electron transfer.  相似文献   

13.
The mechanism for active transport of ions across a membrane probably involves two distinct conformational states of the transport protein, in which the binding sites for the transported ion face opposite sides of the membrane. It is likely that the binding affinity for the ion changes in synchrony with the change in site orientation, such that the affinity is high on the uptake side of the membrane and low on the discharge side. A structural model is proposed for the transmembrane portion of such a protein, based on the known multihelical structure of bacteriorhodopsin. This structure is well adapted to a cyclical alternation between two conformations that differ simultaneously in orientation and binding affinity. No unfolding of the helices or other significant alterations in secondary structure is required. The model is explicitly intended as a hypothetical representation of the E1 and E2 states of ATP-driven Na+,K+ and Ca2+ pumps.  相似文献   

14.
Voltage-gated Na(+) channels initiate action potentials during electrical signaling in excitable cells. Opening and closing of the pore of voltage-gated ion channels are mechanically linked to voltage-driven outward movement of the positively charged S4 transmembrane segment in their voltage sensors. Disulfide locking of cysteine residues substituted for the outermost T0 and R1 gating-charge positions and a conserved negative charge (E43) at the extracellular end of the S1 segment of the bacterial Na(+) channel NaChBac detects molecular interactions that stabilize the resting state of the voltage sensor and define its conformation. Upon depolarization, the more inward gating charges R2 and R3 engage in these molecular interactions as the S4 segment moves outward to its intermediate and activated states. The R4 gating charge does not disulfide-lock with E43, suggesting an outer limit to its transmembrane movement. These molecular interactions reveal how the S4 gating charges are stabilized in the resting state and how their outward movement is catalyzed by interaction with negatively charged residues to effect pore opening and initiate electrical signaling.  相似文献   

15.
The Arabidopsis thaliana AtHKT1 protein, a Na(+)/K(+) transporter, is capable of mediating inward Na(+) currents in Xenopus laevis oocytes and K(+) uptake in Escherichia coli. HKT1 proteins are members of a superfamily of K(+) transporters. These proteins have been proposed to contain eight transmembrane segments and four pore-forming regions arranged in a mode similar to that of a K(+) channel tetramer. However, computer analysis of the AtHKT1 sequence identified eleven potential transmembrane segments. We have investigated the membrane topology of AtHKT1 with three different techniques. First, a gene fusion alkaline phosphatase study in E. coli clearly defined the topology of the N-terminal and middle region of AtHKT1, but the model for membrane folding of the C-terminal region had to be refined. Second, with a reticulocyte-lysate supplemented with dog-pancreas microsomes, we demonstrated that N-glycosylation occurs at position 429 of AtHKT1. An engineered unglycosylated protein variant, N429Q, mediated Na(+) currents in X. laevis oocytes with the same characteristics as the wild-type protein, indicating that N-glycosylation is not essential for the functional expression and membrane targeting of AtHKT1. Five potential glycosylation sites were introduced into the N429Q. Their pattern of glycosylation supported the model based on the E. coli-alkaline phosphatase data. Third, immunocytochemical experiments with FLAG-tagged AtHKT1 in HEK293 cells revealed that the N and C termini of AtHKT1, and the regions containing residues 135-142 and 377-384, face the cytosol, whereas the region of residues 55-62 is exposed to the outside. Taken together, our results show that AtHKT1 contains eight transmembrane-spanning segments.  相似文献   

16.
The Ca2+-dependent cytolytic activity of isolated T-lymphocyte granules was purified to apparent homogeneity by high-salt extraction, gel filtration, and ion-exchange chromatography. The lytic activity resided in a 72- to 75-kDa protein of cytolytic granules. Incubation of the isolated protein with erythrocytes in the presence of Ca2+ ions resulted in hemolysis and the formation of membrane lesions of 160 A in diameter, corresponding in size and morphology to membrane lesions formed on target cells by cloned, intact natural killer (NK) and cytolytic T lymphocytes. Hence, the 75-kDa granule protein is identified as monomeric perforin 1 (P1), postulated previously from the analysis of membrane lesions formed during NK and T-cell-mediated cytolysis. P1-mediated hemolysis is Ca2+-dependent and is inhibited by Zn2+ ions. Lysis is accompanied by the polymerization of P1 to membrane-associated tubular complexes (poly-P1) that form large transmembrane pores. P1 causes a rapid membrane depolarization of J774 cells in the presence of Ca2+. Purified P1 also induces transmembrane monovalent and divalent ion flow across lipid vesicles only in the presence of Ca2+. Whole-cell patch-clamp recordings of S49 lymphoma cells show a P1-dependent inward membrane current flow in the presence but not in the absence of Ca2+. The current increase can be dissected as a summation of discrete current events, indicative of formation of functional channels by polymerization of P1.  相似文献   

17.
目的探讨转染磷脂酰乙醇胺N-甲基转移酶2(PEMT2)基因抑制大鼠肝癌CBRH-7919细胞增殖的机制。方法采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和Western blot方法,观察转染PEMT2基因对大鼠肝癌CBRH 7919细胞磷脂酶C γ 1(PLC γ 1)磷酸化及在细胞内转位的影响;同时观察转染PEMT2基因对肝细胞生长因子受体(c- Met)自身磷酸化活化的影响。结果转染PEMT2后,质膜结合的PLC γ下降,为对照组的45%。膜结合的磷酸化PLC γ 1约为对照组细胞的27%,同时c-Met磷酸化程度显著下降,约为对照组细胞的32%。结论转染PEMT2基因可抑制细胞PLC γ 1磷酸化及由胞浆向质膜转位,抑制c-Met自身磷酸化活化,从而下调CBRH-7919细胞c-Met/PLC γ 1信号转导途经。  相似文献   

18.
Dystrophin has been shown to occur in Torpedo electrocyte [Chang, H. W., Bock, E. & Bonilla, E. (1989) J. Biol. Chem. 264, 20831-20834], a highly polarized syncytium that is embryologically derived from skeletal muscle and displays functionally distinct plasma membrane domains on its innervated and noninnervated faces. In the present study, we investigated the subcellular distribution of dystrophin in the adult electrocyte from Torpedo marmorata and the evolution of its distribution during embryogenesis. Immunofluorescence experiments performed on adult electrocytes with a polyclonal antibody directed against chicken dystrophin revealed that dystrophin immunoreactivity codistributed exclusively with the acetylcholine receptor along the innervated membrane. At the ultrastructural level, dystrophin immunoreactivity appears confined to the face of the subsynaptic membrane exposed to the cytoplasm. In developing electrocytes (45-mm embryo), dystrophin is already detectable at the acetylcholine receptor-rich ventral pole of the cells before the entry of the electromotor axons. Furthermore, we show that dystrophin represents a major component of purified membrane fractions rich in acetylcholine receptor. A putative role of dystrophin in the organization and stabilization of the subsynaptic membrane domain of the electrocyte is discussed.  相似文献   

19.
Pulse-chase experiments with [3H]serine provide evidence that significant amounts of phosphatidylserine turn over to form phosphatidylethanolamine in mammalian cells in tissue culture. Phospholipase C hydrolysis of [3H]phosphatidylethanolamine synthesized from [3H]serine by baby hamster kidney (BHK-21) cells demonstrates that nearly all of the radiolabel remains in the ethanolamine moiety. Uniform labeling experiments with [3H]serine further demonstrate that the distribution of radiolabel in phosphatidylserine and phosphatidylethanolamine is nearly identical to the mass ratio of these lipids. Physiological concentrations of ethanolamine (20 microM) have only a marginal effect upon the ability of cells in culture to incorporate radiolabeled serine into either phosphatidylserine or phosphatidylethanolamine. These data provide compelling evidence that phosphatidylethanolamine synthesis via phosphatidylserine and phosphatidylserine decarboxylase contributes significantly to membrane biogenesis in mammalian cells.  相似文献   

20.
The most widely accepted mechanism of electron and proton transfer within the cytochrome (Cyt) b/f complex derives from the Q-cycle hypothesis originally proposed for the mitochondrial Cyt b/c1 complex by Mitchell [Mitchell, P. (1975) FEBS Lett. 57, 135-137]. In chloroplasts, the Cyt b/f complex catalyzes the oxidation of a plastoquinol at a site, Qo (the plastoquinol binding site), close to the inner aqueous phase and the reduction of a quinone at a site, Qi (the plastoquinone binding site), close to the stromal side of the membrane. In an alternative model, the semiquinone cycle [Wikström, M. & Krab, K. (1986) J. Bioenerg. Biomembr. 18, 181-193], a charged semiquinone formed at site Qo is transferred to site Qi where it is reduced into quinol. Flash-induced kinetics of the redox changes of Cyt b and of the formation of a transmembrane potential have been measured in Chlorella sorokiniana cells incubated in reducing conditions that induce a full reduction of the plastoquinone pool. The experiments were performed in the presence of an uncoupler that collapses the permanent electrochemical proton gradient and thus accelerates the rate of the electrogenic processes. The results show that the electrogenic reaction driven by the Cyt b/f complex precedes the processes of reduction or oxidation of the b-hemes. This electrogenic process is probably due to a transmembrane movement of a charged semiquinone, in agreement with the semiquinone-cycle hypothesis. This mechanism may represent an adaptation to reducing conditions when no oxidized quinone is available at the Qi site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号