首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinoxalinedione, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), has been introduced as a relatively selective antagonist of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. We studied the ability of CNQX to block excitatory amino acid-induced neurotoxicity in murine cortical cell cultures. 100 microM CNQX blocked the acute neuronal swelling induced by 500 microM kainate, but it also attenuated the swelling and degeneration induced by 500 microM NMDA. Addition of 1 mM glycine to the CNQX eliminated antagonism of NMDA toxicity, while preserving antagonism of the neuronal degeneration induced by kainate or AMPA. This selective non-NMDA antagonist combination of CNQX plus glycine substantially attenuated the acute neuronal swelling induced by brief exposure to 500 microM glutamate, but had little effect on subsequent late degeneration, supporting the conclusion that rapidly triggered glutamate-induced cortical neuronal death is predominantly mediated by NMDA receptors.  相似文献   

2.
The antagonist pharmacology of glutamate neurotoxicity was quantitatively examined in murine cortical cell cultures. Addition of 1-3 mM DL-2-amino-5-phosphonovalerate (APV), or its active isomer D-APV, acutely to the exposure solution selectively blocked the neuroexcitation and neuronal cell selectively blocked the neuroexcitation and neuronal cell loss produced by N-methyl-D-aspartate (NMDA), with relatively little effect on that produced by either kainate or quisqualate. As expected, this selective NMDA receptor blockade only partially reduced the neuroexcitation or acute neuronal swelling produced by the broad-spectrum agonist glutamate; surprisingly, however, this blockade was sufficient to reduce glutamate-induced neuronal cell loss markedly. Lower concentrations of APV or D-APV had much less protective effect, suggesting that the blockade of a large number of NMDA receptors was required to acutely antagonize glutamate neurotoxicity. This requirement may be caused by the amplification of small amounts of acute glutamate-induced injury by subsequent release of endogenous NMDA agonists from injured neurons, as the "late" addition of 10-1000 microM APV or D-APV (after termination of glutamate exposure) also reduced resultant neuronal damage. If APV or D-APV were present both during and after glutamate exposure, a summation dose-protection relationship was obtained, showing substantial protective efficacy at low micromolar antagonist concentrations. Screening of several other excitatory amino acid antagonists confirmed that the ability to antagonize glutamate neurotoxicity might correlate with ability to block NMDA-induced neuroexcitation: The reported NMDA antagonists ketamine and DL-2-amino-7-phosphono-heptanoate, as well as the broad-spectrum antagonist kynurenate, were all found to attenuate glutamate neurotoxicity substantially; whereas gamma-D-glutamylaminomethyl sulfonate and L-glutamate diethyl ester, compounds reported to block predominantly quisqualate or kainate receptors, did not affect glutamate neurotoxicity. The present study suggests that glutamate neurotoxicity may be predominantly mediated by the activation of the NMDA subclass of glutamate receptors--occurring both directly, during exposure to exogenous compound, and indirectly, due to the subsequent release of endogenous NMDA agonists. Given other studies linking NMDA receptors to channels with unusually high calcium permeability, this suggestion is consistent with previous data showing that glutamate neurotoxicity depends heavily on extracellular calcium.  相似文献   

3.
Several lines of evidence indicate a possible interaction between the major inhibitory and excitatory cortical neurotransmitters, GABA and glutamate. To assess the neurochemical basis for such an interaction, we examined the effects of glutamate and several analogs on GABA-dependent chloride uptake in a mouse cortical synaptoneurosome preparation. L-Glutamate and the specific receptor subtype ligands kainate and quisqualate led to a small but significant enhancement in chloride uptake in the presence, but not the absence, of the GABA analog muscimol (5 microM). Enhancement was seen at excitatory amino acid (EAA) concentrations of 2-10 microM, but not at higher concentrations. D-Glutamate, NMDA, the NMDA-related antagonists APV and MK801, and the kainate/quisqualate antagonist CNQX, had no effect on chloride uptake. However, CNQX (50 microM) but not APV (50 microM) blocked the increase in chloride uptake due to kainate or quisqualate (10 microM). In addition, depolarization of synaptoneurosomes using high potassium (40 mM KC1) or ouabain pretreatment (5 microM) blocked the effects of kainate and quisqualate. Glutamate, kainate, and quisqualate had no effect on binding at the benzodiazepine, TBPS, or GABA sites on the GABAA receptor complex.  相似文献   

4.
S Alford  S Grillner 《Brain research》1990,506(2):297-302
The motor pattern underlying locomotion in the lamprey is activated and maintained by excitatory amino acid neurotransmission. The quinoxalinediones 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are potent and selective antagonists of non-N-methyl-D-aspartate (NMDA) receptors in the mammalian central nervous system. In the lamprey, these compounds are now shown to block fast excitatory synaptic potentials elicited in neurones of the spinal ventral horn. They selectively antagonise responses to the application of selective kainate and quisqualate receptor agonists (kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxalone (AMPA)) but do not influence NMDA receptor-mediated responses. Additionally, it is shown that the activation of NMDA receptors is sufficient to elicit and maintain fictive locomotion after blockade of non-NMDA receptors with either DNQX or CNQX. Conversely, activation of quisqualate receptors with AMPA, but not quisqualate leads to fictive locomotion with properties much like that activated by kainate.  相似文献   

5.
We have found that spinal NMDA receptors are involved in control of sympathetic output in pathways to the heart and vessels. The present study was done to determine whether spinal non-NMDA excitatory amino acid receptors participate in cardiovascular regulation. Experiments were done on urethane-anesthetized Sprague-Dawley rats, giving the non-NMDA receptor agonists, quisqualate and kainate, and the antagonist, kynurenate, intrathecally at the spinal T9 level. Both quisqualate (30 nmol; n = 7; to activate AMPA receptors) and kainate (2 nmol; n = 6; to activate K receptors) increased arterial pressure and heart rate. The responses were characterized by a rapid onset, achieving, in most cases, greater than 80% of the maximum response within 1-4 min, and a persistence throughout the remaining 20-24 min of the experiment. I.v. injection of hexamethonium (10 mg/kg) prevented the effects of intrathecal administration of quisqualate (n = 5) but not of kainate (n = 7). To determine whether the hexamethonium-resistant effects of kainate were due to a peripheral action, kainate was given i.v. (n = 6); it was found to be without effect on arterial pressure or heart rate. The increases in arterial pressure and heart rate produced by intrathecal administration of quisqualate (30 nmol; n = 6), kainate (2 nmol; n = 6), glutamate (1 mumol; n = 6) and NMDA (2 nmol; n = 6) but not carbachol (27.4 nmol; n = 6) were prevented by similar preadministration of kynurenate (125 nmol). Intrathecal administration of kynurenate (125 nmol; n = 6; 500 nmol; n = 7) decreased arterial pressure and/or heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide radical production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, kainate plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/kainate receptor antagonist, or kainate plus 2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. We investigated superoxide production and mitochondrial MnSOD activity after injection. The measurements took place at different times (5, 15 min, 2, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. Used glutamate antagonists APV and CNQX both expressed sufficient neuroprotection in sense of decreasing superoxide production and increasing MnSOD levels, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. Following intrahippocampal antagonists injection they, also, interpose different neuroprotection effect on the induction of MnSOD activity in distinct brain regions affected by the injury, which are functionally connected via afferents and efferents. It suggests that MnSOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity.  相似文献   

7.
The actions of the putative quisqualate-selective agonist DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were examined in identified embryonic chick motoneurons using gigaseal recording techniques and compared with properties of the selective non-NMDA excitatory amino acid agonists kainate and quisqualate. Pressure application of AMPA induces an inward going current when neurons are voltage-clamped at negative membrane potentials. The current-voltage relationship for this response is linear with reversal near 0 mV. Over the range of 1 microM-10 mM, the AMPA-induced current is dose-dependent with an ED50 of 40 microM. AMPA currents are insensitive to the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate, and the putative quisqualate selective blocker, glutamate diethyl ester, but are partially inhibited by kynurenic acid. In competition experiments, applications of saturating concentrations of AMPA and either kainate or quisqualate produce responses intermediate between the response to either agonist alone, indicating commonality in the mechanism of these agents. Applications of AMPA with the NMDA-selective agonist aspartate give an additive response. Analysis of current fluctuations indicates that AMPA, quisqualate, and kainate gate a channel with a primary conductance near 20 pS. Differences in maximal macroscopic current evoked by saturating concentrations of AMPA, kainate, and quisqualate cannot be explained by differences in mean channel open time as the most efficacious agonist, kainate, has the shortest channel open time (AMPA = 5.9 +/- 0.4 msec, kainate = 2.7 +/- 0.1 msec, quisqualate = 5.0 +/- 0.5 msec). Rather, kainate induces a greater frequency of channel opening. This finding contrasts with results obtained at the nicotinic ACh receptor, where the most efficacious agonists have the longest mean channel open time. Our results suggest that AMPA acts at the same receptor-channel complex as kainate and quisqualate on chick motoneurons and support the hypothesis that only 2 classes of excitatory amino acid receptor complexes exist in this preparation.  相似文献   

8.
Cultured astrocytes from neonatal rat cerebral hemispheres are depolarized by the excitatory neurotransmitter glutamate. In this study we have used selective agonists of different neuronal glutamate receptor subtypes, namely, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate type, to characterize pharmacologically the glutamate receptor in astrocytes. The agonists of the neuronal quisqualate receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) and quisqualate, depolarized the membrane. Kainate, an agonist of the neuronal kainate receptor, depolarized astrocytes more effectively than quisqualate. Combined application of kainate and quisqualate depolarized astrocytes to a level which was intermediate to that evoked by quisqualate and kainate individually. Agonists activating the neuronal NMDA receptor, namely NMDA and quinolinate, were ineffective. Application of NMDA did not alter the membrane potential even in combination with glycine or in Mg2+-free solution, conditions under which neuronal NMDA receptor activation is facilitated. The nonselective agonists L-cysteate, L-homocysteate, and beta-N-oxalylamino-L-alanine (BOAA) mimicked the effect of glutamate. Dihydrokainate, a blocker of glutamate uptake, did not, and several antagonists of neuronal glutamate receptors only slightly affect the glutamate response. These findings suggest that astrocytes express one type of glutamate receptor which is activated by both kainate and quisqualate, lending further support to the notion that cultured astrocytes express excitatory amino acid receptors which have some pharmacological similarities to their neuronal counterparts.  相似文献   

9.
The effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, or FG 9065) on excitatory amino acid responses in cultured neurons from rat hippocampus were studied using tight-seal whole-cell recording techniques. CNQX reduced the magnitude of peak inward currents produced by exogenously applied kainate, quisqualate, and N-methyl-D-aspartate (NMDA) with Ki's of 2.5, 3.5, and 96 microM, respectively. The antagonism was competitive against kainate and quisqualate, but noncompetitive against NMDA. Glycine markedly reduced CNQX antagonism of NMDA responses. The same recording technique using pairs of monosynaptically connected neurons demonstrated reversible diminution of excitatory postsynaptic potentials in 7 of 7 pairs, using CNQX at concentrations as low as 10 microM. CNQX applied alone did not evoke inward or outward currents at membrane potentials near the resting membrane potential and did not affect the current-voltage relationship at membrane potentials between -90 and -30 mV. These observations represent the first quantitative characterization of glutamate receptor antagonism by CNQX with respect to physiological rather than biochemical parameters and demonstrate that CNQX is far more potent and more selective than currently available non-NMDA antagonists. The results suggest that CNQX will be a useful pharmacologic tool for the study of synaptic transmission in a variety of systems in which glutamate or related excitatory amino acids are involved.  相似文献   

10.
Cultures of chicken day 8 embryo retinal cells, essentially free of contaminating non-neuronal elements, were used to examine the neurotoxicity of various excitatory amino acid transmitter receptor agonists. At 7 days in vitro, N-methyl-D-aspartate (NMDA), following 24 hr exposure to 0.1-1.0 mM, destroyed 60-70% of the multipolar neurons, but apparently spared photoreceptors. The cytotoxic effect of NMDA was prevented by extracellular Mg2+ or phencyclidine, suggesting a role for the NMDA ion channel; competitive NMDA antagonists were also neuroprotective. The mixed excitatory amino acid receptor agonist glutamate (0.1-1.0 mM) was also neurotoxic (approximately 70% loss of multipolar neurons) and strongly blocked by NMDA (but weakly by non-NMDA) antagonists and Mg2+, indicating a major action at NMDA receptors. As with NMDA, glutamate did not appear to affect photoreceptors. The neurotoxic action of kainate against multipolar retinal neurons, as reported by others, was confirmed here. Kainate neuronal injury was sensitive to the quinoxalinedione non-NMDA antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyanoquinoxaline-2,3-dione (CNQX), but not to Mg2+ or phencyclidine. Ibotenate and quisqualate, even at millimolar concentrations, were not neurotoxic. The monosialoganglioside GM1 was also effective in reducing NMDA and non-NMDA agonist neurotoxicity to retinal neurons. Maximal ganglioside benefit required 1-2 hr of pretreatment with 100-200 microM GM1. The percentage of multipolar neurons remaining after the neurotoxin insult approximately doubled with GM1 treatment. Gangliosides may thus have a therapeutic potential in excitatory amino acid-initiated neuropathologies.  相似文献   

11.
Stimulation of glutamate receptors induces neuronal nitric oxide (NO) release, which in turn modulates glutamate transmission. The involvement of ionotropic glutamate NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainite (KA) receptors in the induction of NO production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, KA+6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/KA receptor antagonist, or KA+2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with KA unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times (5 min, 15 min, 2 h, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum and cerebellum homogenates. The detected increase of NO production in distinct brain regions, which are functionally connected via afferents and efferents, suggests that these regions are affected by the injury. The effect of KA on nitrite production was blocked by the glutamate antagonists. Intrahippocampal KA+CNQX injection resulted in decrease of nitrite production, around control levels, in all tested brain structures. Significant decrease in nitrite levels was found only in comparison to KA-treated animals, i.e. the overall effect of selective AMPA/KA receptor antagonist was a decrease of KA-induced excitotoxicity. The accent effect of intrahippocampal KA+APV injection resulted, also, in decrease of nitrite production. However, this effect was detected after 5 min from the injection indicating the existence of an NMDA receptor-mediated component of basal nitrite production in physiological conditions and difference in mechanisms and time dynamics between CNQX and APV. The used antagonists showed same pattern in all tested brain structures. APV and CNQX both expressed sufficient neuroprotection in sense of reducing nitrite concentrations, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/KA receptors are differentially involved in NO production.  相似文献   

12.
Inoue N  Soga T  Kato T 《Neuroreport》1999,10(16):3289-3293
Rat cerebral neurons matured in culture were stimulated with glutamate analogues, and the K+ uptake activities of Na pump isoforms were measured. Ionotropic receptor agonists, kainate, AMPA, and NMDA, increased total K+ uptake activity via activation of the alpha2/alpha3 isoforms and an inhibition of the alpha1 isoform as reported previously for glutamate. The effects of kainate or AMPA were antagonized by CNQX and those of NMDA were by APV or MK-801. In contrast, metabotropic receptor agonist ACPD had no effects on the Na pump isoform activities. Glutamate transporter substrate, PDC, was effective, but NMDA receptor antagonists abolished the effects of PDC. These results suggest that the ionotropic glutamate receptors mediate the regulation of Na pump isoform activities in neurons.  相似文献   

13.
In hippocampus and other regions, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors are inserted into synapses during long-term potentiation and removed during long-term depression. However, little is known about regulation of AMPA receptor trafficking in the nucleus accumbens (NAc), despite growing evidence that glutamate-dependent forms of plasticity in the NAc contribute to drug addiction. Using postnatal rat NAc cultures and an immunocytochemical method that selectively detects newly internalized GluR1, we studied the regulation of AMPA receptor internalization in NAc neurons by glutamate agonists. Newly internalized GluR1 was detected during 15 or 30 min of incubation at room temperature, indicating a basal rate of GluR1 turnover. The rate of GluR1 internalization was increased by glutamate (50 microM) within 5 min of its addition. Glutamate-induced GluR1 internalization was partially blocked by either an AMPA receptor antagonist (CNQX; 20 microM) or an N-methyl-D-aspartate (NMDA) receptor antagonist (APV; 50 microM). Both NMDA (50 microM) and AMPA (50 microM) increased GluR1 internalization in a Ca(2+)-dependent manner. The NMDA effect was blocked by APV while the AMPA effect was blocked by APV or CNQX. We interpret these findings to suggest that NMDA and AMPA ultimately trigger GluR1 internalization through the same NMDA receptor-dependent pathway. The effect of glutamate was also partially blocked by the group 1 metabotropic glutamate receptor antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC; 50 microM), while the group 1 agonist 3,5-dihydroxyphenylglycine (DHPG; 50 microM) stimulated GluR1 internalization. These data suggest that AMPA receptors on NAc neurons may be subject to rapid regulation of their surface expression in response to changes in the activity of glutamate inputs from cortical and limbic regions.  相似文献   

14.
Previous studies with the N18-RE-105 neuronal-like cell line and primary cortical cultures demonstrate that glutamate can produce a calcium-dependent, delayed form of neuronal degeneration that results from its competitive inhibition of cystine transport, which leads to cellular glutathione depletion and death by oxidative stress. Idebenone, a centrally active antioxidant used to treat multiinfarct dementia, protects cells from this form of glutamate-induced cytotoxicity in vitro. In the present study, we have examined the effects of systemic treatment with idebenone on the neurotoxic consequences of intrastriatal injection of kainic acid, quisqualic acid, or quinolinic acid, an NMDA receptor agonist, on neuronal degeneration. Striatal damage was assessed by quantitative neurochemistry with measurement of choline acetyltransferase activity and glutamate decarboxylase activity, by histochemical analysis for acetylcholinesterase and NADPH diaphorase staining and by behavioral assessment of circling produced by systemic apomorphine treatment 10 days after the unilateral lesion. The results indicate that treatment with idebenone provides significant protection against the neuronal degeneration induced by intrastriatal injection of kainic acid and quisqualic acid, but not the NMDA receptor agonist, quinolinic acid. The results suggest that oxidative stress may contribute to the proximate cause of neuronal degeneration induced by quisqualate and by kainate receptor agonists and that the mechanisms of neuronal degeneration caused by quisqualate/kainate receptor agonists differ from those associated with NMDA receptor agonists.  相似文献   

15.
S E Dryer 《Brain research》1988,443(1-2):173-182
The characteristics of excitatory amino acid-evoked currents and of excitatory synaptic events have been examined in lamprey Müller neurons using voltage clamp and current clamp recording techniques. Application of glutamate evoked depolarizations associated with a decrease in input resistance. The reversal potential of the responses was -35 mV. Under voltage clamp conditions, a series of excitatory amino acid agonists evoked inward currents associated with little or no increase in baseline current noise. The order of potency of the excitatory amino acid agonists was quisqualate greater than kainate greater than glutamate greater than aspartate, while N-methyl-D-aspartic acid (NMDA) was inactive. Inward currents evoked by glutamate, as well as by kainate and quisqualate were attenuated reversibly by 1 mM kynurenic acid (KYN). In contrast, glutamate-evoked currents were not affected by 100 microM D(-)-2-amino-5-phosphonovaleric acid (APV), a selective NMDA antagonist. Spontaneously occurring and stimulus-evoked excitatory postsynaptic events were antagonized reversibly by 1 mM KYN. At this concentration, KYN had no effect on membrane potential, input resistance, or excitability of the cells. In contrast, excitatory postsynaptic currents were unaffected by APV. It is concluded that both glutamate responses and excitatory synaptic transmission in lamprey Müller neurons are mediated by non-NMDA-type receptors and that these receptors are associated with ionic channels with a low elementary conductance. The combined pharmacological and biophysical characteristics of these responses are therefore different from those previously reported in other preparations. Spontaneous (but not stimulus-evoked) inhibitory synaptic events in Müller neurons were blocked reversibly by 1 mM KYN but not by 100 microM APV, suggesting that excitation of interneurons inhibitory to Müller cells was also mediated by non-NMDA receptors.  相似文献   

16.
Experiments were conducted with halothane-anesthetized cats implanted with a push-pull cannula in the caudate nucleus in order to estimate the effects of glutamate (GLU) agonists on the release of 3H-dopamine continuously synthesized from 3H-tyrosine. In the presence of tetrodotoxin (TTX), glutamate (10-8 M, 10-4 M) and kainate (KAI) (10-5 M) stimulated the release of 3H-dopamine while quisqualate (10-5 M) and N-methyl-D-aspartate (NMDA) (10-5 M) were without effect. The stimulatory effect of kainate (10-5 M) on 3H-dopamine release did not seem to be mediated by glutamate released from corticostriatal fibers, as not only kainate, but also quisqualate (QUI) and N-methyl-D-aspartate enhanced the efflux of glutamate through a tetrodotoxin-resistant process. Riluzole (10-5 M), gamma-D-glutamyl-glycine (GDGG) (10-5 M) and glutamine-diethyl-ester (10-5 M) prevented the stimulatory effect of kainate (10-5 M) while 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) (10-5 M), kynurenate (10-5 M) and 2-amino-5-phosphonovalerate (APV) (10-5 M) were without effect. In the presence of concanavalin A (CONA) (10-7 M), a lectin which is known to prevent the quisqualate-evoked desensitization of glutamate receptors, quisqualate (10-5 M) stimulated the release of 3H-dopamine. In addition, in the absence of concanavalin A, quisqualate (10-5 M) blocked the stimulatory effects of kainate (10-5 M) or glutamate (10-4 M) on 3H-dopamine release. These results suggest the involvement of receptors of the quisqualate/kainate subtype in the direct glutamate-induced presynaptic facilitation of dopamine release. In contrast to what was observed in the presence of tetrodotoxin, in the absence of the neurotoxin, high concentrations of glutamate (10-4 M) and kainate (10-5 M) reduced rather than stimulated the release of 3H-dopamine. A weak inhibitory effect was also observed with quisqualate (10-5 M) while N-methyl-D-aspartate (10-5 M) was without effect. In the light of previous studies, these latter observations suggest that glutamate can also exert an indirect inhibitory presynaptic influence on the release of dopamine from nerve terminals of the nigrostriatal dopaminergic neurons by acting on receptors of the quisqualate/kainate subtype located on striatal GABAergic neurons.  相似文献   

17.
Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective activation of N-methyl-D-aspartate (NMDA) receptors. L-Glutamate was the most potent NMDA agonist (EC50 2.3 microM) and quinolinic acid the least potent (EC50 2.3 mM). Dose-response curves were well fit by the logistic equation, or by a model with 2 independent agonist binding sites. The mean limiting slope of log-log plots of NMDA receptor current versus agonist concentration (1.93) suggests that a 2-site model is appropriate. There was excellent correlation between agonist EC50S determined in voltage clamp experiments and KdS determined for NMDA receptor binding (Olverman et al., 1988). With no added glycine, and 1 mM extracellular Mg, responses to NMDA were completely blocked; responses to kainate and quisqualate were unchanged. Under these conditions, glutamate and the sulfur amino acids activated a rapidly desensitizing response, similar to that evoked by micromolar concentrations of quisqualate and AMPA, but mM concentrations of L-aspartate, homoquinolinic acid, and quinolinic acid failed to elicit a non-NMDA receptor-mediated response. Except for L-glutamate (EC50 480 microM), the low potency of the sulfur amino acids prevented the study of complete dose-response curves for the rapidly desensitizing response at quisqualate receptors. Small-amplitude nondesensitizing quisqualate receptor responses were activated by much lower concentrations of all quisqualate receptor agonists. Full dose-response curves for the nondesensitizing response were obtained for 9 amino acids; L-glutamate was the most potent endogenous agonist (EC50 19 microM). Domoate (EC50 13 microM) and kainate (EC50 143 microM) activated large-amplitude, nondesensitizing responses.  相似文献   

18.
Quantitative concentration-toxicity relationships were determined for the injury of cultured murine cortical neurons by several excitatory amino acid (EAA) agonists. All tested agonists produced concentration-dependent neuronal injury at concentrations between 1 and 1000 microM. With 5 min exposure, glutamate, aspartate, N-methyl-D-aspartate (NMDA), L-homocysteate (HCA), and quisqualate all had similar potencies, destroying half of the neuronal population (LD50) at concentrations of 50-200 microM, and similar efficacies, with 88-92% neuronal loss produced by exposure to high agonist concentrations. Quinolinate and kainate were substantially weaker toxins, producing only 20-30% neuronal loss after 5 min exposure to 3 mM concentrations; with prolonged (24 hr) exposure, 85-95% neuronal loss could be attained. The comparative EAA vulnerability of a specific cortical neuronal subpopulation containing high concentrations of the enzyme, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), was also examined. Glutamate had no differential toxicity on these cells, damaging them at all concentrations in proportion to the general population; however, other, more selective, agonists produced strikingly differential injuries. These NADPH-d-containing [NADPH-d(+)]neurons were selectively resistant to damage by low concentrations of the NMDA agonists quinolinate, HCA, aspartate, or NMDA itself. By contrast, NADPH-d(+)neurons were selectively destroyed by concentrations of quisqualate or kainate too low to produce much general neuronal injury. The differential susceptibility of these neurons was not absolute, as high concentrations of all tested agonists produced nonselective neuronal injury. In light of recent evidence that forebrain NADPH-d(+)neurons are selectively spared in Huntington's disease, the present study continues to support the hypothesis that neuronal loss in Huntington's disease might result from excessive NMDA-receptor stimulation by any selective NMDA agonist. Furthermore, the demonstration that the differential susceptibility of NADPH-d(+)neurons is agonist concentration-dependent, rather than absolute, could provide a basis for explaining some existing conflicting experimental data.  相似文献   

19.
The synthesis of nerve growth factor (NGF) and nerve growth factor receptor (NGFR) were studied in a C6 glioma cell line by Northern blot hybridization. In response to a glutamate agonist N-methyl-D-aspartic acid (NMDA), NGF mRNA increased by up to 2-fold after 4-12 h of culture. The non-NMDA receptor agonists, quisqualate and kainate, did not induce any increase of NGF mRNA, and kainate actually produced a decrease. The increase in NGF mRNA in response to NMDA was dose-dependent at 1, 5 and 10 microM. NGF receptor (NGFR) mRNA showed changes in expression which were similar to those for NGF mRNA, but were less marked. The specific glutamate antagonist 2-aminophosphonovaleric acid (APV) blocked the increase of NGF mRNA produced by NMDA. In the absence of Ca2+, an increase of NGF mRNA was still observed but in the presence of 1 mM ethylglycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA), NGF mRNA production abolished. The mechanism producing an increase in NGF mRNA by NMDA may be mediated by cyclic AMP since intracellular cyclic AMP and NGF mRNA levels both increased following treatment with NMDA or dibutyryl cyclic AMP.  相似文献   

20.
R B Langdon  M Sur 《Brain research》1992,599(2):283-296
In the rat visual cortex in vitro, single-shock stimulations applied to the border between layer VI and the white matter evoke synchronized burst-firing by units in layer III. We have examined the effects of glutamate receptor antagonists on this activity, with antagonists applied via the bath to allow correlation of effects with concentrations. All synaptically driven components (recorded extracellularly as field potential 'S2' spikes, dipoles 'W1' and 'W2', and coinciding single-unit spikes) were inhibited by greater than 90% in 1.0 mM kynurenic acid and in 3 or 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, which selectively blocks AMPA/kainate receptors). S2 spike amplitudes were reduced by half in 0.7 microM CNQX. 2-Amino-5-phosphonovalerate (APV), a specific blocker of NMDA receptors, did not prevent S2 spike burst or horizontal spread of bursting within layer III. However, APV reduced the duration of synchronized bursts and the slower potentials which followed. In Mg(2+)-free medium, new components appeared which were APV-sensitive: (1) low amplitude spikes, distributed spatially like S2 spike, but recurring more slowly, and (2) slow potentials, distributed spatially like W1 and W2 potentials, but lasting for hundreds of milliseconds. The amplitudes of these spikes were reduced by half in 3 microM D-APV. Our data imply that: (1) glutamate receptors play a major role in mediating local, excitatory neurotransmission in the supragranular layers of neocortex, with NMDA and AMPA/kainate subtypes each subserving somewhat different functions; (2) AMPA/kainate receptors mediate rapid excitatory transmission between layer III neurons, responsible for driving the first 15 ms of synchronized bursts; (3) currents gated by NMDA receptors determine the duration of coherent firing bursts, and drive asynchronous neuronal firing following bursts; and (4) under conditions which circumvent block by extracellular Mg2+, activation of NMDA receptors greatly enhances and prolongs the response to single-shock stimulations. In vivo, activation of layer III neurons is likely to depend significantly upon currents gated by NMDA receptors whenever repetitively firing excitatory inputs summed over several tens of milliseconds provide enough depolarization to lift block by extracellular Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号