首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid deposition is a prominent feature of a number of brain disorders, in which amyloid fibrils are found within blood vessel walls, the neuropil (neuritic plaques), neurons (neurofibrillary tangles). These include Alzheimer's disease (AD), AD changes associated with Down's syndrome, neurologically asymptomatic amyloidosis, Parkinson dementia of Guam, hereditary cerebral hemorrhage with amyloidosis of Icelandic origin (HCHWA-I), hereditary cerebral hemorrhage with amyloidosis of Dutch origin (HCHWA-D), and sporadic cerebral amyloid angiopathy (SCAA). Recently it was shown that the amyloid deposits in AD, Parkinson dementia of Guam, and HCHWA-D are formed by a similar 4-kd polypeptide called beta-protein. Because the nature of the amyloid deposits in other types of cerebral amyloidosis is not known, we have conducted immunocytochemical studies on brains from autopsy cases of AD, HCHWA-D, SCAA and neurologically asymptomatic elderly individuals. Brains from two subjects without neurologic involvement were used as controls. Sections from these specimens were incubated with rabbit polyclonal antibodies against 1) a synthetic peptide of 28 residues (anti-SP28), homologous to the NH2-terminal sequence of the beta-protein, 2) the main amyloid component of the HCHWA-I, a variant of cystatin C, and 3) purified fraction of neurofibrillary tangles. In all cases, anti-SP28 antibody specifically stained amyloid deposits in leptomeningeal and cortical vessels and neuritic plaques. These findings demonstrate that the amyloid deposits of SCAA and aged brains are composed of a protein antigenically similar to AD, HCHWA-D, and Parkinson dementia of Guam beta-protein, suggesting that all of these clinically and etiologically different morbid conditions are pathogenetically related. On this basis, they can be tentatively grouped as beta-protein deposition diseases. In addition, we found that HCHWA-D and SCAA vessels were mainly affected, while in AD parenchymal involvement predominates. These differences in the localization and extent of beta-protein deposits may account from the predominance of vascular complications in HCHWA-D and SCAA and of dementia in AD.  相似文献   

2.
Molecular cloning and cDNA sequencing have indicated that the fibril-forming, amyloidogenic beta/A4 peptide of cerebrovasculature and plaque core in AD is encoded as part of a larger precursor, amyloid precursor protein (APP). A panel of antibodies directed against synthetic peptides, which correspond to distinct domains of this putative APP molecule (i.e., amino acid residues 45-62, 587-596, 597-606, 597-638 [beta/A4 peptide], 638-658 and 653-661), were used to probe immunohistochemically serial sections of formalin-fixed, paraffin-embedded Alzheimer's disease (AD) brains for the presence of APP and/or its derivatives. Histochemical staining of adjacent sections with Bielschowsky's silver impregnation and with Congo red or thioflavin S-staining techniques was also done to identify the structures with amyloid deposition. All these antibodies exhibited intense immunoreactivity with amyloidotic cerebral vessels, including meningeal and parenchymal. This observation indicates that the amyloidotic vasculature of AD brain contains, in addition to the fibril-forming beta/A4 protein, nonamyloidogenic APP and/or its derivatives. More importantly, this APP immunoreactivity colocalized with angiopathic amyloid, which is characterized by phenol-resistant, birefringent congophilia. Parallel analyses with a dual SABC/silver impregnation procedure further confirmed that APP and/or its derivatives, including the amyloidogenic beta/A4, colocalized with argentophilic amyloid in the cerebrovasculature of AD.  相似文献   

3.
Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease (AD). We investigated the involvement of phospholipase D (PLD) in the pathophysiology of AD. We showed dramatic upregulation of PLD1 immunoreactivity in reactive astroglial cells in brain tissue sections from authentic AD patients. Expression and activity of PLD1 were up-regulated in brain tissues from AD patients, especially caveolae membrane fraction, compared with those of control brains. Interestingly, PLD1 physically interacts and colocalizes with APP and caveolin-3. We found that APP was associated with the pleckstrin homology domain of PLD1, and the amyloid region of APP interacted with PLD. Elevated expression of APP stimulated PLD activity in human astroglioma cells. These results suggest that up-regulation of PLD might have a role in the neuronal pathology associated with AD.  相似文献   

4.
Major pathological findings in Alzheimer's disease (AD) brain include the deposition of amyloid-beta and synapse loss. Synaptic loss has been shown to correlate with the cognitive decline in AD patients, but the relationship between cerebral amyloidosis and synapse loss is complicated by the presence of neurofibrillary tangles and other lesions in AD brain. With the use of the APP23 transgenic mouse model that overexpresses human amyloid precursor protein (APP) with the Swedish double mutation, we investigated whether the development of cortical amyloid deposition was accompanied by synaptic bouton loss. With stereological methods, we show that despite robust age-related cortical amyloid deposition with associated synaptic degeneration, the total number of cortical synaptophysin-positive presynaptic terminals is not changed in 24-month-old animals compared with 3-, 8-, and 15-month-old APP23 mice. Wild-type mice also do not show an age-related loss of presynaptic boutons in the neocortex and are not significantly different from APP23 mice. Synaptophysin Western blotting revealed no significant difference between APP23 mice and wild-type controls at 3 and 25 months of age. Our results suggest that cerebral amyloidosis is not sufficient to account for the global synapse loss in AD. Alternatively, a putative trophic effect of APP may prevent, compensate, or delay a loss of synapses in this mouse model.  相似文献   

5.
Microglia cells are closely associated with compact amyloid plaques in Alzheimer's disease (AD) brains. Although activated microglia seem to play a central role in the pathogenesis of AD, mechanisms of microglial activation by beta-amyloid as well as the nature of interaction between amyloid and microglia remain poorly understood. We previously reported a close morphological association between activated microglia and congophilic amyloid plaques in the brains of APP23 transgenic mice at both the light and electron microscopic levels [25]. In the present study, we have further examined the structural relationship between microglia and amyloid deposits by using postembedding immunogold labeling, serial ultrathin sectioning, and 3-dimensional reconstruction. Although bundles of immunogold-labeled amyloid fibrils were completely engulfed by microglial cytoplasm on single sections, serial ultrathin sectioning and three-dimensional reconstruction revealed that these amyloid fibrils are connected to extracellular amyloid deposits. These data demonstrate that extracellular amyloid fibrils form a myriad of finger-like channels with the widely branched microglial cytoplasm. We conclude that in APP23 mice a role of microglia in amyloid phagocytosis and intracellular production of amyloid is unlikely.  相似文献   

6.
Caspase-cleaved amyloid precursor protein in Alzheimer's disease   总被引:3,自引:0,他引:3  
Caspase-3 mediated cleavage of the amyloid precursor protein (APP) has been proposed as a putative mechanism underlying amyloidosis and neuronal cell death in Alzheimer's disease (AD). We utilized an antibody that selectively recognizes the neo epitope generated by caspase-3 mediated cleavage of APP (alphadeltaC(csp)-APP) to determine if this proteolytic event occurs in senile plaques in the inferior frontal gyrus and superior temporal gyrus of autopsied AD and age-matched control brains. Consistent with a role for caspase-3 activation in AD pathology, alphadeltaC(csp)-APP immunoreactivity colocalized with a subset of TUNEL-positive pyramidal neurons in AD brains. AlphadeltaC(csp)-APP immunoreactivity was found in neurons and glial cells, as well as in small- and medium-size particulate elements, resembling dystrophic terminals and condensed nuclei, respectively, in AD and age-matched control brains. There were a larger number of alphadeltaC(csp)-APP immunoreactive elements in the inferior frontal gyrus and superior temporal gyrus of subjects with AD pathology than age-matched controls. AlphadeltaC(csp)-APP immunoreactivity in small and medium size particulate elements were the main component colocalized with 30% of senile plaques in the inferior frontal gyrus and superior temporal gyrus of AD brains. In some control brains, alphadeltaC(csp)-APP immunoreactivity appeared to be associated with a clinical history of metabolic encephalopathy. Our results suggest that apoptosis contributes to cell death resulting from amyloidosis and plaque deposition in AD.  相似文献   

7.
The fine structure of cerebral amyloid angiopathy, especially in small and presumably early deposits, was examined by immunolabeling of the beta/A4 protein in semithin and ultrathin sections from brains with Alzheimer's disease. The following findings emerged: 1) in large leptomeningeal arteries, small, focal amyloid deposits appear to consist of clusters of delicate (approximately 8 nm diameter) amyloid fibrils, not previously described, in the outermost part of the basement membrane (BM) at the media-adventitia junction; 2) in small leptomeningeal arteries and perforating cortical arterioles, small foci of delicate amyloid fibrils were observed within the BM. They appeared mostly in the outer portion of the BM, around intact smooth muscle cells, rather than in the subendothelial region. In larger and presumably more advanced deposits, coarse amyloid fibrils (approximately 10 nm) occupied the abluminal BM, and adjacent smooth muscle cells showed degeneration; and 3) in capillaries, small amounts of delicate (approximately 8 nm) amyloid fibrils, not previously described, were seen within the BM in the smallest discernible deposits. The BM at these sites was abnormally folded and layered. In larger deposits, amyloid fibrils appeared to extravasate from the outer BM of the capillary into the neuropil and were surrounded by astrocytic foot processes and/or microglia. Our results suggest that vascular amyloid fibrils may first be formed within the abluminal vascular BM, that is, outside of cells. The BM may trap degradative intermediates of the amyloid precursor protein that contain the beta/A4 region, and local proteases may then cleave them further to yield amyloidogenic fragments.  相似文献   

8.
Here we report on a monoclonal antibody, H6-33, that labels various beta-amyloid plaques, including diffuse plaques in the formalin-fixed, paraffin-embedded section from the brain affected with Alzheimer''s disease (AD), without formic acid pretreatment. H6-33 also labels some neurofibrillary tangles and all kuru plaques in Gerstmann-Sträussler-Scheinker disease. In sharp contrast, H6-33 did not stain beta amyloid in the leptomeningeal vessel. For specific staining, H6-33 required the presence of fetal calf serum and it was necessary for beta amyloid to be formalin fixed. These results suggest that a novel protein in the calf serum, CSX, binds formalin-fixed beta amyloid, followed by H6-33 binding. The detection of beta amyloid by CSX was nullified by formic acid pretreatment of the tissue section. In accordance with this, CSX reacted only with a polymer form of synthetic beta peptide after fixation, but not with native beta-protein or beta-peptide monomer. These observations strongly suggest that 1) meningovascular beta amyloid should have a beta-pleated sheet structure somewhat dissimilar to that of beta-amyloid cores; and 2) most, if not all, of beta-protein immunoreactivities of diffuse plaques in AD sections are presumably derived from small amounts of amyloid fibrils scattered in the normal-looking neurohil.  相似文献   

9.
Cerebral amyloid angiopathy (CAA) is a key histopathological hallmark of Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). CAA is characterized by amyloid-beta (Aβ) depositions and remodeling of the extracellular matrix (ECM) in brain vessels and plays an important role in the development and progression of both AD and HCHWA-D. Tissue transglutaminase (tTG) modulates the ECM by molecular cross-linking of ECM proteins. Here, we investigated the distribution pattern, cellular source, and activity of tTG in CAA in control, AD, and HCHWA-D cases. We observed increased tTG immunoreactivity and colocalization with Aβ in the vessel wall in early stage CAA, whereas in later CAA stages, tTG and its cross-links were present in halos enclosing the Aβ deposition. In CAA, tTG and its cross-links at the abluminal side of the vessel were demonstrated to be either of astrocytic origin in parenchymal vessels, of fibroblastic origin in leptomeningeal vessels, and of endothelial origin at the luminal side of the deposited Aβ. Furthermore, the ECM proteins fibronectin and laminin colocalized with the tTG-positive halos surrounding the deposited Aβ in CAA. However, we observed that in situ tTG activity was present throughout the vessel wall in late stage CAA. Together, our data suggest that tTG and its activity might play a differential role in the development and progression of CAA, possibly evolving from direct modulation of Aβ aggregation to cross-linking of ECM proteins resulting in ECM restructuring.  相似文献   

10.
The major three secretory isoforms of Alzheimer beta A4 amyloid precursor protein (APP) were quantified in cerebrospinal fluid (CSF) using (1) a newly developed enzyme-linked immunosorbent assay (ELISA) and (2) densitometric analysis of CSF Western blots. The protease inhibitor-containing APP751/770 isoforms represented an average of 10.5% of total APP in CSF of patients with Alzheimer's disease (AD, n = 22), multi-infarct dementia (MID, n = 5) and normal controls (n = 10). APP levels in CSF did not depend on total CSF protein. Both findings are inconsistent with a hematogeneous origin of APP in CSF and suggest an intracerebral source. Total APP, APP695 and APP751/770 were significantly decreased in the AD and in the MID groups, but were not correlated to the ages of patients or controls.  相似文献   

11.
The authors have previously shown that amyloid precursor protein (APP) accumulates in neurites present in senile plaques of Alzheimer's disease (AD). In this ultrastructural immunocytochemical study, we describe the subcellular site of APP accumulation. Vibratome sections of glutaraldehyde-paraformaldehyde fixed hippocampi from five cases of AD were pretreated with methanol and immunostained with an antibody raised against recombinant APP 770 by using either indirect immunogold or peroxidase methods. Immunolabeling was localized in cell processes filled with amorphous, irregular-shaped materials, which were identified as dense bodies deformed by postmortem autolysis and methanol treatment, as well as multilamellar membranous bodies. Identification of these bodies was obtained with comparative ultrastructural examination of biopsy and autopsy tissue fixed with and without methanol treatment. These electron-dense organellae were positive for the lysosomal marker, acid phosphatase. At light microscopy, acid phosphatase and APP colocalized to the same cell processes in senile plaques. Many of those cell processes contained abnormal straight or paired helical filaments supporting their neuritic nature. These results suggest that APP accumulates in the lysosomal system of the dystrophic neurites present in senile plaques and are consistent with a neuronal origin of the APP forming the amyloid in senile plaques.  相似文献   

12.
The presence of amyloid P-component (AP) within cerebral amyloid deposits was investigated by means of biochemical and immunocytochemical methods. Immunoperoxidase on formalin-fixed, paraffin-embedded tissue sections from Alzheimer's Disease, Down's Syndrome, asymptomatic age-related cerebral amyloidosis, sporadic cerebral amyloid angiopathy, hereditary cerebral hemorrhage with amyloidosis-Icelandic type, and hereditary cerebral hemorrhage with amyloidosis-Dutch type revealed the presence of AP in the affected vessel walls in all cases, and in parenchymal deposits resembling neuritic plaques of Alzheimer's disease, sporadic cerebral amyloid angiopathy, and hereditary cerebral hemorrhage with amyloidosis-Dutch type. A short digestion of tissue sections with pepsin was required for immunodetection of AP in these latter structures. After extraction of leptomeningeal amyloid fibrils, AP was characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis, Western blot, gel chromatography, and partial amino acid sequencing. Our results indicate that: (a) AP from cerebral amyloidosis has similar biochemical properties and homologous amino terminal sequence to AP from systemic amyloidosis; (b) AP is associated to a variety of brain amyloid deposits regardless of their chemical nature. The presence of AP, a serum protein, within the brain parenchyma points to an impairment of the blood-brain barrier in these diseases.  相似文献   

13.
Amyloid beta protein (Abeta) deposition in the brain is a hallmark of Alzheimer's disease (AD). The fibrillar form of Abeta is neurotoxic, although the mechanism of its toxicity is unknown. We showed that conversion of Abeta to the fibrillar form markedly increased binding to specific neuronal membrane proteins, including amyloid precursor protein (APP). Nanomolar concentrations of fibrillar Abeta bound cell-surface holo-APP in cortical neurons. Reduced vulnerability of cultured APP-null neurons to Abeta neurotoxicity suggested that Abeta neurotoxicity involves APP. Thus Abeta toxicity may be mediated by the interaction of fibrillar Abeta with neuronal membrane proteins, notably APP. An Abeta-APP interaction reminiscent of the pathogenic mechanism of prions may thus contribute to neuronal degeneration in AD.  相似文献   

14.
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD) pathogenesis through its cleavage leading to the accumulation of the peptide βA4. Diffusible oligomeric assemblies of amyloid beta peptide are thought to induce synaptic dysfunction, an early change in AD. We tested the hypothesis that a reduction in presynaptic APP could itself lead to a decrease in synaptic efficacy in vivo. Twenty-four hours after intraocular injection, siRNA targeted against APP accumulated in retinal cells and the APP in retinal terminals in the superior colliculus was significantly reduced. Surprisingly, the amyloid precursor-like protein 2 (APLP2) was reduced as well. Functional imaging experiments in rats during visual stimulation showed that knockdown of presynaptic APP/APLP2 significantly reduced the stimulation-induced glucose utilization in the superior colliculus. Our results suggest that perturbations in the amount of APP/APLP2 axonally transported to, and/or in their turnover in the nerve terminal alter synaptic function and could be a pathogenic mechanism in AD.  相似文献   

15.
Alzheimer’s disease (AD) is characterized by extracellular deposits of amyloid beta peptide (Aβ), a peptide that is generated upon proteolytic cleavage of amyloid precursor protein (APP). The events leading to the development of AD and their sequence are not yet fully understood. Protein kinase C (PKC) has been suggested to have a significant role in controlling neuronal degeneration and in the aberrant signal transduction taking place in AD. Several studies document a deficit in PKC levels and activity in brains of AD patients when compared with those of normal controls. Such a decrease in PKC could have serious implications since certain PKC isozymes were shown to drive the APP proteolytic cleavage into a non-amyloidogenic pathway. Reduced levels of distinct PKC isozymes could thus contribute to driving APP processing toward an amyloidogenic pathway.  相似文献   

16.
Studies were conducted to identify neural cells that synthesize and/or process cerebral amyloid using antisera and monoclonal antibodies (MAbs) raised to synthetic peptides based on the first 28 amino acids of the amyloid beta-protein. Using rabbit and mouse antisera, and 7 MAbs, sections of neocortex, hippocampus, cerebellum, and spinal cord from Alzheimer's disease (AD), Down's syndrome (DS), and control cases were probed. The antibodies produced 3 distinct immunohistochemical patterns: 1) staining restricted to neuritic plaque and blood vessel amyloid only (antisera, 1 of 7 MAbs); 2) immunoreactivity confined to cytoplasmic granules in diverse neuronal, glial (astrocytes, ependyma) and other (leptomeningeal, perivascular, choroid plexus) cells (1 of 7 MAbs); 3) a summation of these 2 patterns (5 of 7 MAbs). Controls resembled the AD and DS cases, except for a paucity of immunoreactive plaques and blood vessels in the controls. Immunoreactivity was reduced or removed by the peptides used to produce these antibodies. Formalin- and Bouins-fixed tissues reacted weakly or not at all with these antibodies while microwave denatured tissues reacted very intensely with them. Specific staining was enhanced by treatment of the tissue sections with Triton X-100, NaDodSO4, or trypsin. These studies significantly extend earlier studies that localized amyloid beta-protein precursor mRNA to human brain cells, and they suggest that the beta-protein, its precursor, and/or fragments thereof may exist in diverse neural cell types in AD, DS, and control brains.  相似文献   

17.
The E693Q mutation in the amyloid beta precursor protein (APP) leads to cerebral amyloid angiopathy (CAA), with recurrent cerebral hemorrhagic strokes and dementia. In contrast to Alzheimer disease (AD), the brains of those affected by hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) show few parenchymal amyloid plaques. We found that neuronal overexpression of human E693Q APP in mice (APPDutch mice) caused extensive CAA, smooth muscle cell degeneration, hemorrhages and neuroinflammation. In contrast, overexpression of human wild-type APP (APPwt mice) resulted in predominantly parenchymal amyloidosis, similar to that seen in AD. In APPDutch mice and HCHWA-D human brain, the ratio of the amyloid-beta40 peptide (Abeta40) to Abeta42 was significantly higher than that seen in APPwt mice or AD human brain. Genetically shifting the ratio of AbetaDutch40/AbetaDutch42 toward AbetaDutch42 by crossing APPDutch mice with transgenic mice producing mutated presenilin-1 redistributed the amyloid pathology from the vasculature to the parenchyma. The understanding that different Abeta species can drive amyloid pathology in different cerebral compartments has implications for current anti-amyloid therapeutic strategies. This HCHWA-D mouse model is the first to develop robust CAA in the absence of parenchymal amyloid, highlighting the key role of neuronally produced Abeta to vascular amyloid pathology and emphasizing the differing roles of Abeta40 and Abeta42 in vascular and parenchymal amyloid pathology.  相似文献   

18.
Hereditary cerebral hemorrhage with amyloidosis - Dutch type (HCHWA-D) is an autosomal dominant disease caused by deposition of β-amyloid in the leptomeningeal arteries and cortical arterioles, in addition to preamyloid deposits and amyloid plaques in the brain parenchyma.
The disease is due to a point mutation at codon 693 of the amyloid precursor protein (βPP) gene at chromosome 21. Since this point mutation is diagnostic for HCHWA-D, presymptomatic testing is feasible and offered, together with genetic counselling and psychological support, to subjects at risk. HCHWA-D is clinically characterized by recurrent strokes, in addition to dementia, which can occur after the first stroke but also preceding it. Radiological studies revealed focal lesions (hemorrhages, hemorrhagic and non-hemorrhagic infarctions) and diffuse white matter damage. Diffuse white matter hyperintensities on MRI are an early symptom of HCHWA-D since they have been found on MRI scans of subjects who had not suffered a stroke.
The presence of the diagnostic point mutation makes HCHWA-D a useful model to study the effects of cerebral amyloid angiopathy in vivo. The characteristic pathological abnormalities and its implications for Alzheimer's disease will be discussed in Part II of this article  相似文献   

19.
The recent finding that the serine protease inhibitor, alpha 1-antichymotrypsin, is tightly associated with the amyloid deposits in brains of normal aged individuals and patients with Alzheimer's disease [Abraham C. R., Selkoe D. J. and Potter H. (1988) Cell 52, 487-501], suggests a role for this inhibitor in the progressive deposition of brain amyloid in humans. We have used immunocytochemistry to detect alpha 1-antichymotrypsin in the amyloid that accumulates in brains of aged monkeys, a naturally occurring animal model of Alzheimer-like neuropathology. In monkeys of increasing age, the earliest alpha 1-antichymotrypsin immunoreactivity was found in cortical perivascular cells, before the appearance of either Thioflavin S-detectable amyloid deposits or beta-protein reactivity in the vessel walls. Subsequently, amyloid deposits appeared in small meningeal blood vessels and cortical neuritic plaques. The oldest monkeys also showed microvascular amyloid in the cortical gray matter. Amyloid was never seen in white matter. The amyloid deposits in meningeal vessels were always positive for both beta-protein and alpha 1-antichymotrypsin, whereas in the cortex, alpha 1-antichymotrypsin immunoreactivity seemed to appear somewhat later than that of beta-protein. These findings demonstrate that two of the brain amyloid components of human senescence and Alzheimer's disease--the beta-protein and the protease inhibitor alpha 1-antichymotrypsin--are also present in the amyloid deposits of normal aged monkey brain. The extended molecular parallels between normal brain aging and Alzheimer's disease suggest that similar biochemical mechanisms may underlie progressive amyloid deposition in both situations.  相似文献   

20.
Alzheimer's disease causing mutations in the amyloid precursor protein (APP) or in the Presenilin 1 (PS1) or Presenilin 2 (PS2) genes increase the production of amyloid peptides (Aβ) that precipitate in amyloid plaques. Since amyloid plaques are also a prominent feature of sporadic Alzheimer's disease (AD), abnormal proteolysis of APP and the generation of amyloid beta (Aβ) are key events in the pathogenesis of AD. The proteases (secretases) that cleave APP are therefore important therapeutic targets, both for the rare familial forms but likely also for the sporadic forms of AD. The identification and understanding of the (neuro)biological functions of the α-, β-, and presenilin/γ-secretase (complexes) is important for the development of drugs and the delineation of their associated side effects. The potential impact of this type of research exceeds the AD field since the function of these secretases are also linked to cellular pathways like ectodomain shedding of growth factors and regulated intramembrane proteolysis of receptors in developmental biology, tissue homeostasis, and tumorigenesis. The generation of mice deficient in presenilin 1, presenilin 2, the α-secretase ADAM10, and the β-secretases BACE1 and BACE2 were instrumental for the elucidation of the physiological functions of these proteases. Using these mouse models understanding how these secretases regulate amyloid peptide formation and how they exert their diverse biological functions could be significantly increased. This review attempts to summarize selected aspects of the current view of the multiple roles such proteases play in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号