首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male heterozygous Ren-2 transgenic rats and Hannover Sprague-Dawley rats fed a normal or high-salt diet were either untreated or treated with the nonselective receptor ET(A)/ET(B) receptor blocker bosentan or the selective ET(A) receptor blocker, ABT-627, known as atrasentan. Survival rate was partly increased by bosentan and fully normalized by atrasentan. Bosentan did not significantly influence the course of hypertension in TGR, whereas atrasentan significantly decreased BP on both diets. Atrasentan substantially reduced proteinuria, cardiac hypertrophy, glomerulosclerosis and left ventricular ET-1 tissue concentration on both diets. Our data indicate that ET(A) receptor blockade is superior to nonselective blockade in attenuating hypertension, end-organ damage and improving survival rate.  相似文献   

2.
We found previously that selective blockade of endothelin ETA receptors is superior to nonselective ETA/ETB in attenuating hypertension and survival rate in Ren-2 transgenic rats (TGR). In the present pilot study, we were interested in whether similar effects will be found in TGR with inducible malignant hypertension (iTGR; official strain name Cyp1A1-Ren-2rats), which were derived from the original Ren-2 transgenic rat strain. Studies were performed in three-month old male iTGR. Treatment with either bosentan, a non-selective ETA/ETB, or with atrasentan, a selective ETA receptor blocker, was started on day 2 of the experiment. Feeding with indole-3-carbinole (I3C; 0.3% in rat chow), a natural xenobiotic which activates the Cyp1a1 promoter of the mouse Ren-2 gene, began on day 3 and lasted for 4 days until day 6. Systolic BP, body weight, plasma ANG II and tissue ANG II and ET-1 concentrations were determined daily. Severe hypertension developed as early as 1 day after beginning of I3C feeding which was accompanied by a significant reduction in body weight and by increases in plasma and tissue ANG II and left ventricle ET-1 concentrations. Atrasentan or bosentan had no effects on the rise in BP or plasma and tissue ANG II concentrations but prevented the rise in heart ventricle ET-1 concentration. Our data show that blockade of the ET system does not prevent or attenuate the rapid development of severe hypertension in iTGR; a long-term protective effect of ET blockade on cardiac (and renal) damage, however, cannot be excluded and awaits further investigations.  相似文献   

3.
We describe here the pharmacology of (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2,2'-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), a novel selective endothelin ET(A) receptor antagonist synthesized through the modification of the ET(A)/ET(B) non-selective antagonist, bosentan. YM598 inhibited [125I]endothelin-1 binding to cloned human endothelin ET(A) and ET(B) receptor, with K(i) of 0.697 and 569 nM, and inhibited endothelin-1-induced increases in intracellular Ca(2+) concentration in human and rat endothelin ET(A) receptor. YM598 also inhibited endothelin-1-induced vasoconstriction in isolated rat aorta with a pA(2) value of 7.6. In vivo, YM598 inhibited the pressor response to big endothelin-1, a precursor peptide of endothelin-1. DR(2) values of YM598 in pithed rats were 0.53 mg/kg, i.v. and 0.77 mg/kg, p.o., and its antagonism in conscious rats was maintained for more than 6.5 h at 1 mg/kg, p.o. In contrast, YM598 had no effect on the sarafotoxin S6c-induced depressor or pressor responses. YM598 showed not only superior antagonistic activity and higher-selectivity for endothelin ET(A) receptor in vitro, but at least a 30-fold higher potency in vivo than bosentan. In conclusion, YM598 is a potent and orally active selective endothelin ET(A) receptor antagonist.  相似文献   

4.
We determined the role of endothelin ET(B) receptor in the renal hemodynamic and excretory responses to big endothelin-1, using A-192621, a selective endothelin ET(B) receptor antagonist and the spotting-lethal (sl) rat, which carries a naturally occurring deletion in the endothelin ET(B) receptor gene. An intravenous injection of big endothelin-1 produced a hypertensive effect, which is greater in wild-type (+/+) rats pretreated with A-192621 and in homozygous (sl/sl) rats. Big endothelin-1 markedly increased urine flow, urinary excretion of sodium and fractional excretion of sodium in wild-type rats treated with the vehicle. These excretory responses to big endothelin-1 were markedly reduced by pharmacological endothelin ET(B) receptor blockade. On the other hand, big endothelin-1 injection to the endothelin ET(B) receptor-deficient homozygous animals resulted in a small diuretic effect. When renal perfusion pressure was protected from big endothelin-1-induced hypertension by an aortic clamp, the excretory responses in vehicle-treated wild-type rats were markedly attenuated. In homozygous or A-192621-treated wild-type rats, there was a small but significant decreasing effect in urine flow. In addition, big endothelin-1 significantly elevated nitric oxide (NO) metabolite production in the kidney of wild-type rats but not in the homozygous rats. We suggest that the diuretic and natriuretic responses to big endothelin-1 consist of pressure-dependent and pressure-independent effects and that the increased NO production via the activation of endothelin ET(B) receptors in the kidney is closely related to the big endothelin-1-induced excretory responses.  相似文献   

5.
Heterodimerization of G-protein coupled receptors can alter receptor pharmacology. ET A and ET B receptors heterodimerize when co-expressed in heterologous expression lines. We hypothesized that ET A and ET B receptors heterodimerize and pharmacologically interact in vena cava from wild-type (WT) but not ET B receptor deficient (sl/sl) rats. Pharmacological endothelin receptor interaction was assessed by comparing ET-1-induced contraction in rings of rat thoracic aorta and thoracic vena cava from male Sprague Dawley rats under control conditions, ET A receptor blockade (atrasentan, 10 nM), ET B receptor blockade (BQ-788, 100 nM) or ET B receptor desensitization (Sarafotoxin 6c, 100 nM) and ET A plus ET B receptor blockade or ET A receptor blockade plus ET B receptor desensitization. In addition, similar pharmacological ET receptor antagonism experiments were performed in rat thoracic aorta and vena cava from WT and sl/sl rats. ET A but not ET B receptor blockade or ET B receptor desensitization inhibited aortic and venous ET-1-induced contraction. In vena cava but not aorta, when ET B receptors were blocked (BQ-788, 100 nM) or desensitized (S6c, 100 nM), atrasentan caused a greater inhibition of ET-1-induced contraction. Vena cava from WT but not sl/sl rats exhibited similar pharmacological ET receptor interaction. Immunocytochemistry was performed on freshly dissociated aortic and venous vascular smooth muscle cells to determine localization of ET A and ET B receptors. ET A and ET B receptors qualitatively co-localized more strongly to the plasma membrane of aortic compared to venous vascular smooth muscle cells. Our data suggest that pharmacological ET A and ET B receptor interaction may be dependent on the presence of functional ET B receptors and independent of receptor location.  相似文献   

6.
Clinical trials have established bosentan, an orally active non-selective endothelin (ET) receptor antagonist, as a beneficial treatment in pulmonary hypertension. Trials have also shown short-term benefits of bosentan in systemic hypertension and congestive heart failure. However, bosentan also increased plasma levels of ET-1, probably by inhibiting the clearance of ET-1 by endothelin type B (ET(B)) receptors, and this may mean its effectiveness is reduced with long-term clinical use. Preliminary data suggests that selective endothelin type A (ET(A)) receptor antagonists (BQ-123, sitaxsentan) may be more beneficial than the non-selective ET receptor antagonists in heart failure, especially when the failure is associated with pulmonary hypertension. Experimental evidence in animal disease models suggests that non-selective ET or selective ET(A) receptor antagonism may have a role in the treatment of atherosclerosis, restenosis, myocarditis, shock and portal hypertension. In animal models of myocardial infarction and/or reperfusion injury, non-selective ET or selective ET(A) receptor antagonists have beneficial or detrimental effects depending on the conditions and agents used. Thus clinical trials of the non-selective ET or selective ET(A) receptor antagonists in these conditions are not presently warranted. Several selective endothelin-converting enzyme inhibitors have been synthesised recently, and these are only beginning to be tested in animal models of cardiovascular disease, and thus the clinical potential of these inhibitors is still to be defined.  相似文献   

7.
Endothelins are a family of potent endogenous mediators that have been implicated in a number of airway and other diseases. Recently, the non-peptide mixed ET(A)/ET(B) endothelin receptor antagonist bosentan has been successfully tested in the treatment of cardiovascular diseases. It was the aim of the present study to characterize the effects of bosentan on the pulmonary actions of endothelin- (ET-1), endothelin-3 (ET-3) and the ET(B)-receptor agonist IRL1620 in the isolated perfused and ventilated rat lung (IPL) and in precision-cut lung slices (PCLS). In the IPL, bosentan completely prevented the IRL1620-induced vasoconstriction (IC50 3 microM). The inhibition by bosentan of ET-1-elicited vasoconstriction showed a biphasic course, reflecting the inhibition of ET(A)-and ET(B)-mediated vasoconstriction (IC50 0.2 microM and 19 microM, respectively). In addition, bosentan prevented the ET-1- (IC50 6 microM) and IRL1620-induced (IC50 3 microM) prostacyclin release. Bosentan also completely prevented the bronchoconstriction induced by IRL1620 in the IPL (IC50 20 microM) and in PCLS (IC50 13 microM). In PCLS, the pD2-values were ET-1 7.20+/-0.23, ET-3 7.51+/-0.27 and IRL1620 7.33+/-0.29. Bosentan at 100 microM caused a rightward shift of the concentration-response curve of ET-1, ET-3 and IRL1620 by a factor of 5, 46 and 64, respectively. In all cases the slope of the Schild regression was lower than unity, disregarding a simple interaction of bosentan with one receptor. With respect to ET-1-induced bronchoconstriction, in the IPL bosentan in concentrations of up to 10 microM aggravated ET-1-induced bronchoconstriction probably due to the blockade of bronchodilatory ET(A)-receptors (IC50 0.3 microM) and even at 100 microM showed only very little protection from ET- -induced bronchoconstriction in the IPL and in the PCLS. The similar IC50-values for ET-1-induced vasoconstriction and bronchodilation suggest that only one type of ET(A)-receptor is involved. The differing IC50-values between IRL1620-induced bronchoconstriction and prostacyclin release, the slope of the Schild regression and the failure of bosentan to prevent the ET-1-induced bronchoconstriction suggest a complex interaction between the known ET-receptors or the existence of unknown ET(B)-receptor subtypes.  相似文献   

8.
Sitaxsentan in the management of pulmonary arterial hypertension.   总被引:2,自引:0,他引:2  
PURPOSE: The pharmacology, pharmacokinetics, clinical trials, adverse effects, drug interactions, and dosing and administration of the endothelin receptor antagonist, sitaxsentan, and its role in the treatment of pulmonary arterial hypertension (PAH) are reviewed. SUMMARY: PAH is a serious and potentially devastating chronic disorder of the pulmonary circulation. Bosentan is the first and only approved endothelin receptor antagonist for the treatment of PAH. Endothelin-1, a potent endogenous vasoconstrictor and smooth-muscle mitogen, has been shown to be overexpressed in the plasma and lung tissue of patients with PAH; the reduction or blockade of entothelin-1 may aid in disease symptomatology and progression. Activation of ET(A) leads to vasoconstriction and vascular smooth-muscle-cell proliferation. Sitaxsentan is an orally active, organic nonpeptide that binds competitively to the ET(A) receptor. Sitaxsentan, unlike bosentan, has a high affinity for the ET(A) receptor. In one trial, sitaxsentan was compared with placebo, and the results suggested that sitaxsentan was more effective than placebo. A 12-week, open-label trial demonstrated the safety and efficacy of sitaxsentan in 20 patients. The Sitaxsentan to Relieve Impaired Exercise (STRIDE-1) trial randomized patients to receive placebo, sitaxsentan 100 mg orally once daily, or sitaxsentan 300 mg orally once daily. Significant improvements in exercise capacity and cardiopulmonary hemodynamics were demonstrated. The results of STRIDE-2, the second randomized sitaxsentan trial, demonstrated the efficacy and safety of 100 mg sitaxsentan and the unacceptable safety profile of 300 mg sitaxsentan. CONCLUSION: Sitaxsentan is an orally administered endothelin receptor blocker that offers the effective and safe treatment of patients with mild to moderate PAH.  相似文献   

9.
Role of endothelin and vasopressin in DOCA-salt hypertension   总被引:1,自引:0,他引:1  
1. The relative roles of endothelin (ET) and vasopressin (AVP) in the regulation of blood pressure (BP), cardiac output (CO) and total peripheral resistance (TPR) were investigated in the early stages (24 - 31 days) of development of hypertension in the conscious deoxycorticosterone acetate (DOCA)-salt hypertensive rat model. 2. BP was recorded with radiotelemetry devices and CO with ultrasonic transit-time probes. TPR was calculated from the BP and CO recordings. The contributions of endogenous ET and AVP were studied by infusing [d(CH(2))(5)(1),O-Me_Tyr(2),Arg(8)]-vasopressin, a V(1)-receptor antagonist, and bosentan, a mixed ET(A)/ET(B) receptor antagonist (Study 1). Vascular responsiveness was estimated from the changes in TPR evoked by i.v. infusions of ET-1 and AVP (Study 2). 3. In study 1, infusion of bosentan reduced TPR and BP dramatically in DOCA-salt hypertensive rats but not in SHAM control rats, and this effect was greater when the AVP system had been blocked. In contrast, the V(1) receptor antagonist alone failed to change TPR and BP in DOCA-salt hypertensive rats. However, subsequent infusion of the V(1) receptor antagonist during the plateau phase of the response in bosentan pretreated DOCA-salt hypertensive rats led to significant decreases in both BP and TPR. 4. In study 2, TPR and BP responses to ET-1, but not AVP, were greater in DOCA-salt rats than in control rats. CO responses to ET-1 or AVP were similar in the two groups. 5. The results suggest that both ET and AVP play a role in the maintenance of TPR and BP; when one system is blocked the other compensates. However, the magnitude of the contribution to the hypertensive state appears greater for ET than for AVP. Enhanced vascular responses to ET appear to contribute to this greater role.  相似文献   

10.
Clinical trials have established bosentan, an orally active non-selective endothelin (ET) receptor antagonist, as a beneficial treatment in pulmonary hypertension. Trials have also shown short-term benefits of bosentan in systemic hypertension and congestive heart failure. However, bosentan also increased plasma levels of ET-1, probably by inhibiting the clearance of ET-1 by endothelin type B (ETB) receptors, and this may mean its effectiveness is reduced with long-term clinical use. Preliminary data suggests that selective endothelin type A (ETA) receptor antagonists (BQ-123, sitaxsentan) may be more beneficial than the non-selective ET receptor antagonists in heart failure, especially when the failure is associated with pulmonary hypertension. Experimental evidence in animal disease models suggests that non-selective ET or selective ETA receptor antagonism may have a role in the treatment of atherosclerosis, restenosis, myocarditis, shock and portal hypertension. In animal models of myocardial infarction and/or reperfusion injury, non-selective ET or selective ETA receptor antagonists have beneficial or detrimental effects depending on the conditions and agents used. Thus clinical trials of the non-selective ET or selective ETA receptor antagonists in these conditions are not presently warranted. Several selective endothelin-converting enzyme inhibitors have been synthesised recently, and these are only beginning to be tested in animal models of cardiovascular disease, and thus the clinical potential of these inhibitors is still to be defined.  相似文献   

11.
Diabetic nephropathy is associated with enhanced renal synthesis of endothelin (ET)-1. The goal of this study was to investigate the effects of dual ET receptor antagonism in the early phase (2 months) and in the late phase (5 months) of diabetic nephropathy in rats, and to compare this approach to angiotensin-converting enzyme inhibition. Four groups of uninephrectomized streptozotocin-induced diabetic rats were assigned to receive orally vehicle, bosentan, enalapril, or their combination. A fifth group consisted of nondiabetic, uninephrectomized rats. At 2 weeks, untreated diabetic rats exhibited increased glomerular filtration rate and renal plasma flow. Bosentan, enalapril, and the combination all prevented hyperfiltration and hyperperfusion. By 5 months, diabetic rats developed marked increases in mean arterial pressure and renal vascular resistance, progressive proteinuria, and renal structural damage with glomerular sclerosis and hypertrophy. Bosentan completely prevented the development of hypertension and renal vasoconstriction, and largely prevented the development of proteinuria and renal structural injury. The renal protective effect of bosentan was comparable to that of enalapril or the combination, although its anti-proteinuric effect was less. Clinical studies are warranted to assess whether ET receptor antagonism can have additive effects on top of ACE inhibition, the current treatment of choice in diabetic nephropathy.  相似文献   

12.
Within five years of discovering endothelin (ET-1) in 1988, the first report of an orally available ET receptor antagonist was published. Within twelve years, bosentan, the first ET receptor antagonist to gain marketing authorization, was made available for the treatment of pulmonary artery hypertension (PAH). Since this milestone in ET biology, several ET receptor antagonists have been developed, principally to target cardiovascular disease states. ET-1 acts through two receptors--ET(A) and ET(B). Currently, the mixed antagonist, bosentan, and the selective ET(A) antagonist, sitaxsentan, are both licensed for the treatment of PAH, and clinical trials with these and other agents are ongoing for many diseases, including scleroderma, diabetic nephropathy and prostate cancer. Although there has been no argument about the importance of blocking ET(A) receptors, there remains a long-running debate as to whether additional ET(B) antagonism is of benefit, and this is the topic of the following review.  相似文献   

13.
1. Endothelin (ET) receptor antagonists are cardioprotective during myocardial ischaemia and reperfusion through a nitric oxide (NO)-dependent mechanism. The aim of the present study was to investigate whether the ET receptor antagonist, bosentan, is cardioprotective in atherosclerotic mice. 2. Buffer-perfused hearts from apolipoprotein E/LDL receptor double knockout (KO) and wild-type (WT) mice were subjected to global ischaemia and reperfusion. 3. Following reperfusion, the recovery of rate-pressure product (RPP; left ventricular developed pressure (LVDP) x heart rate) was equally impaired in WT and KO mice given vehicle (34+/-8 and 29+/-9%, respectively). The ET(A)/ET(B) receptor antagonist bosentan (10 micromol l(-1)) improved recoveries to 57+/-10% in WT and to 68+/-10% in KO mice (P<0.01). Similar effects were observed for the recovery of left ventricular end-diastolic pressure (LVEDP), developed pressure and dP/dt. 4. Bosentan improved the recovery of coronary flow in both KO and WT mice. Recovery of coronary flow was significantly higher in the KO mice given bosentan (135+/-15%) than in the WT group (111+/-12%; P<0.01). ET-1 (1 nmol l(-1)) impaired recovery of coronary flow in both WT and KO mice though this effect was more pronounced in the KO mice (P<0.01). 5. Coronary outflow of NO during reperfusion was enhanced in both KO and WT mice following bosentan administration. 6. The ET(A)/ET(B) receptor antagonist bosentan protects the atherosclerotic mouse heart from ischaemia/reperfusion injury. The observation that ET receptor blockade and stimulation have a greater effect on coronary flow in atherosclerotic hearts indicates an increased activation of the ET system in atherosclerotic coronary arteries.  相似文献   

14.
The peptide endothelin plays a significant role in a wide array of pathological conditions, including primary pulmonary hypertension and pulmonary arterial hypertension associated with collagen vascular disease. These are life-threatening conditions that can severely compromise the function of the lungs and heart. Inhibiting the actions of endothelin by blockade of its receptors provides a new and effective approach to therapy for patients with these conditions. Bosentan (Tracleer ) is the first orally-active dual endothelin receptor antagonist and has recently been approved in the US, Canada, Switzerland and the EU for the treatment of pulmonary arterial hypertension. Bosentan significantly improves exercise capacity, symptoms and functional status in patients with this disease and also slows clinical deterioration, which may be indicative of a delay of disease progression. Results from large-scale studies of bosentan in patients with pulmonary arterial hypertension and chronic heart failure have established its long-term safety and tolerability profiles. The introduction of the dual endothelin receptor antagonist bosentan has provided an essential treatment for pulmonary arterial hypertension and ongoing trials are evaluating its potential role in the management of other endothelin-mediated disease states.  相似文献   

15.
Bosentan     
Bosentan (Tracleer), an orally administered dual endothelin (ET)(A) and ET(B) receptor antagonist, is indicated in the treatment of pulmonary arterial hypertension (PAH).The efficacy of oral bosentan 125 mg twice daily in improving exercise capacity has been demonstrated in well designed trials in adult patients with idiopathic PAH or PAH associated with connective tissue disease or congenital systemic-to-pulmonary shunts, and in other trials in patients with idiopathic PAH or PAH associated with congenital heart disease or HIV infection. The beneficial effects of first-line bosentan treatment may be maintained for up to 1 year in patients with idiopathic PAH or PAH associated with connective tissue disease. Despite the potential for treatment-related teratogenicity and hepatotoxicity, long-term data indicate that bosentan is generally well tolerated at the approved dosages. Although well designed trials are required to establish the efficacy of bosentan versus or in combination with other specific PAH therapies, especially sildenafil, the convenient oral administration and lack of serious injection-related adverse effects may render bosentan preferable to other PAH therapies. Preliminary data indicate that bosentan may be effective in pediatric PAH patients, although randomized trials are required. Furthermore, bosentan may be a useful option for the prevention of digital ulcer development in patients with systemic sclerosis. Thus, in accordance with current clinical guidelines, bosentan is a convenient, effective, and generally well tolerated agent for use in the first-line treatment of class III PAH or second-line treatment of class IV PAH.  相似文献   

16.
Endothelin (ET)-1 is an endothelium-derived peptide with potent vasoconstrictor and proliferative properties. The ET system is activated in several cardiovascular disease states associated with functional and structural vascular changes, including hypertension and heart failure. The two ET receptor subtypes are known as ET(A)R and ET(B)R. The former is located mainly on vascular smooth muscle cells and is responsible for mediating vasoconstriction and proliferation. The latter is present predominantly on endothelial cells and mediates vasorelaxation as well as ET-1 clearance. Activation of smooth muscle ET(B)R causes vasoconstriction. Selective ET(A)R antagonists as well as nonselective ET(A)R-ET(B)R antagonists have been developed. Studies with animal models and early-phase clinical trials provided strong evidence that these agents are effective in the treatment of heart failure, essential hypertension, pulmonary hypertension, and atherosclerosis. However, the complexity of biologic effects mediated by two different receptor subtypes complicates therapy with selective versus nonselective ET receptor antagonists. In addition to subtype selectivity and potency, changes in receptor subtype distribution under different pathologic conditions and different patient populations will play a crucial role in the evaluation of these potentially therapeutic drugs.  相似文献   

17.
Endothelins (ET-1, ET-2 and ET-3) are 21-amino-acid peptides with two disulfide bonds that belong to the sarafotoxin family. ET-1, ET-2 and ET-3 are produced endogenously from preproendothelin to give big endothelins, which are cleaved by endothelin-converting enzyme (ECE) to yield the active protein. Endothelin has been shown to play important physiological and pathological roles by interacting with its G-protein-coupled receptors. There are two cloned ET receptors: the ET(A) receptor, which is selective for ET-1, and the ET(B) receptor, which binds ET-1, ET-2 and ET-3 with similar affinities. Since the discovery of endothelin, and especially since the availability of peptide ET antagonists such as BQ-123 and BQ-788, and nonpeptide compounds such as bosentan, considerable effort has been spent on better understanding the role of endothelin and its receptor antagonists. As a result, endothelin has been implicated in a variety of serious diseases, such as congestive heart failure, hypertension, pulmonary hypertension and prostate cancer. Research in pharmaceutical and biotechnology laboratories has generated many endothelin antagonists with either sulfonamide or triaryl carboxylic acid scaffolds, and a number of ET(A)-selective or nonselective ET(A)/ET(B) endothelin antagonists have entered clinical trials. This article will review the small-molecule ET(A)-selective and nonselective ET(A)/ET(B) antagonists that are under clinical evaluation, and highlight a member of this group of compounds, sitaxsentan. A summary of the medicinal chemistry that led to the identification of sitaxsentan will be presented, followed by selected animal and human clinical trial data. (c) 2001 Prous Science. All rights reserved.  相似文献   

18.
This article describes the pharmacological properties and the overall preclinical and clinical profiling of bosentan (Ro 47-0203), a non-peptide endothelin receptor antagonist with oral activity. Bosentan is a combined and competitive antagonist of both ETA and ETB receptors that is selective for the endothelin system. In vitro and in vivo, bosentan potently antagonises the vascular response elicited by the endothelins. Preclinical efficacy is demonstrated in a variety of pathological models including pulmonary and essential hypertension, renal failure of ischaemic and nephrotic origin and cerebral vasospasm following subarachnoid haemorrhage. Effects are particularly marked in experimental models of heart failure (HF) where bosentan acts as a potent vasodilator that improves overall left ventricular performance. After chronic treatment, bosentan also improves survival in rats with HF. As a result of the first encouraging clinical results that show pulmonary and systemic vasodilation, long-term studies are ongoing in the treatment of congestive heart failure (CHF).  相似文献   

19.
This article describes the pharmacological properties and the overall preclinical and clinical profiling of bosentan (Ro 47-0203), a non-peptide endothelin receptor antagonist with oral activity. Bosentan is a combined and competitive antagonist of both ETA and ETB receptors that is selective for the endothelin system. In vitro and in vivo, bosentan potently antagonises the vascular response elicited by the endothelins. Preclinical efficacy is demonstrated in a variety of pathological models including pulmonary and essential hypertension, renal failure of ischaemic and nephrotic origin and cerebral vasospasm following subarachnoid haemorrhage. Effects are particularly marked in experimental models of heart failure (HF) where bosentan acts as a potent vasodilator that improves overall left ventricular performance. After chronic treatment, bosentan also improves survival in rats with HF. As a result of the first encouraging clinical results that show pulmonary and systemic vasodilation, long-term studies are ongoing in the treatment of congestive heart failure (CHF).  相似文献   

20.
In addition to its potent vasoconstricting effect, endothelin (ET)-1 induces proliferation of pulmonary vascular cells and appears to play a pathogenic role in the development of pulmonary arterial hypertension (PAH). Blockade of the ET receptors has been proposed for the treatment of this condition. Bosentan (Tracleer, Actelion Pharmaceuticals), an oral ETA/ETB receptor antagonist, has been shown to improve exercise capacity, quality of life, haemodynamics and time to clinical worsening of patients with PAH in short-term placebo-controlled trials. These improvements were sustained, and a long-term observational study on idiopathic PAH patients suggested a favourable effect on survival in this subset. In the present report, the pharmacology, clinical efficacy and safety profile of bosentan are summarised. The place of bosentan among the current therapies available for the treatment of PAH is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号