首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study in the rat deals with the hodological organization of two cytoarchitectonically distinct areas lying caudoventrally (Te2) or ventrally (Te3) to the primary auditory area (Te1). The afferent and efferent systems of connections were identified by using the properties of retrograde and anterograde transport of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). Large tracer deposits in the ventral temporal cortex involving Te2, Te3, and the dorsal bank of the perirhinal cortex induced a dense retrograde and anterograde pattern of labeling in the following nuclei of the medial geniculate (MG) complex: caudodorsal (MGCD), dorsal (MGD), medial (MGM), suprageniculate (SG), and peripeduncular area (PPA). The ventral nucleus (MGV) was only slightly labeled in its caudal division. Several extrageniculate structures were also labeled. Retrograde cell labeling occurred in centers giving rise to ascending systems of diffuse projections: locus coeruleus (LC), dorsal raphe nucleus (DR), and basal magnocellular nucleus (B). Slight anterograde labeling was present in the dorsal and external cortices of the inferior colliculus (IC), central gray, deep layers of the superior colliculus (SC), reticular thalamic nucleus (RT), and caudate putamen (CPU). Callosal connections were also noted with the contralateral homotopic cortex. In the cases in which there was a notable extension of the zone of diffusion of the tracer into the dorsal bank of the perirhinal cortex, a characteristic pattern of labeling in the subparafascicular, reuniens and paraventricular thalamic nuclei, mammillary complex, lateral and dorsal hypothalamic nuclei, amygdaloid complex, laterodorsal tegmental nucleus, subiculum, and retrosplenial cortex was displayed. Tracer deposits restricted to Te2 induced a dense labeling of the caudal, ventrolateral MGD, lateral PPA and, to a lesser extent, MGCD. The MGM and SG were only slightly labeled. Extrageniculate afferents essentially consist of sparse projections from LC, DR, and B, whereas efferent fibers are directed to the dorsal cortex of the IC, central gray, deep SC layers, and CPU. Callosal connections were also identified. Following tracer deposits restricted to Te3, dense labeling occurred in the MGD, mostly in its medial division, in the caudal MGM, and in the PPA. The MGCD, SG, and MGV were only sparsely labeled. Extrageniculate afferents arise from LC, DR, and B, and efferents are directed to the RT and dorsal cortex of the IC. Contralateral connections with the homotopic cortical area were also noted. Te2 and Te3 share some degree of similitude in their pattern of connections with the MG complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The distribution of thalamocortical neurons projecting to layer I of the cat auditory cortical fields was examined by the horseradish peroxidase (HRP) method. After HRP injection into layer I of the primary auditory cortex (AI), HRP-labeled neuronal cell bodies were distributed mainly in the medial, dorsal, and ventrolateral divisions of the medial geniculate nucleus (MGN) and suprageniculate nucleus (Sg), and additionally in the lateral and medial divisions of the posterior group of the thalamus (Pol and Pom), lateroposterior thalamic nucleus (Lp), and nucleus of the brachium of the inferior colliculus (BIN). After HRP injection into layer I of the second auditory cortex (AII), labeled neurons were seen mainly in the medial, dorsal, and ventrolateral divisions of the MGN and Sg and additionally in the Pom, Lp, and BIN. After HRP injection into layer I of the anterior auditory field (AAF), labeled neurons were located mainly in the medial and dorsal divisions of the MGN, Sg, Pol, and BIN, and additionally in the ventrolateral divisions of the MGN, Pom, and Lp. After HRP injection into layer I of the dorsal part of the posterior ectosylvian gyrus (Epd), labeled neurons were observed chiefly in the medial and dorsal divisions of the MGN, Sg, and Lp and additionally in the ventrolateral division of the MGN, Pom, and BIN. After HRP injection into layer I of the ventral part of the posterior ectosylvian gyrus (Epv), labeled neurons were distributed chiefly in the medial and dorsal divisions of the MGN and Pol and additionally in the ventrolateral division of the MGN, Sg, and BIN. Thus no labeled neurons were found in the ventral division of the MGN after HRP injection into layer I of all auditory cortical fields examined in the present study. The average soma diameters of neurons that were labeled after HRP injection into layer I were statistically smaller than those of neurons that were labeled after HRP injection into layer IV.  相似文献   

3.
It has been reported that the acoustic thalamus of the rat sends projection fibers to both the temporal cortical areas and the lateral amygdaloid nucleus to mediate conditioned emotional responses to an acoustic stimulus. In the present study, fluorescent retrograde double labeling with Fast Blue and Diamidino Yellow has been used in the rat to examine whether single neurons in the posterior thalamic region send axon collaterals to both the temporal cortical areas and lateral amygdaloid nucleus. One of the tracers was injected into the lateral amygdaloid nucleus and the other into the temporal cortical areas close to the rhinal sulcus. Neurons double-labeled with both tracers were found mainly in the posterior intralaminar nucleus and suprageniculate nucleus, and to a lesser extent in the subparafascicular nucleus and medial division of the medial geniculate nucleus. No double-labeled neurons were seen in either the dorsal or ventral division of the medial geniculate nucleus. When one of the tracers was injected into the lateral amygdaloid nucleus and the other into either the dorsal portion of the temporal cortex, the dorsal portion of the entorhinal cortex, or the posterior agranular insular cortex, no double-labeled neurons were found in the posterior thalamic region. The present results indicate that a substantial number of single neurons in the acoustic thalamus project to both the limbic cortical areas and lateral amygdaloid nucleus by way of axon collaterals. These neurons may be implicated in affective and autonomic components of responses to multi-sensory stimuli, including acoustic ones. J. Comp. Neurol. 384:59-70, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Auditory thalamocortical connections are organized as parallel pathways originating in various nuclei of the medial geniculate body (MGB). The development of these pathways has not been studied. Therefore it remains unclear whether thalamocortical connections segregate before the onset of hearing or whether refinement of exuberant thalamocortical connections occurs following hearing onset. We studied this issue in the pallid bat. In adult pallid bats, parallel thalamocortical pathways represent two different sounds used in two different behaviors. The suprageniculate (SG) nucleus of the dorsal division of the MGB (MGBd) projects to a high‐frequency cortical region selective for the echolocation calls, but not to a low‐frequency cortical region sensitive to noise transients used in the localization of prey. Conversely, the ventral division (MGBv) projects to the low‐frequency, but not the high‐frequency, cortical region. Here we studied the development of these parallel pathways. Based on retrograde tracer injections in electrophysiologically characterized cortical loci, we show that there is an asymmetrical overlap in projection patterns from postnatal (P) day 15–60. The low‐frequency region receives extensive input from both the SG and the MGBv. In contrast, the high‐frequency region receives the great majority of its input from the SG, as in adults, whereas projections from the MGBv appear to make only a minor contribution, if any. By P150, these pathways are segregated and adult‐like. These data suggest that these anatomically segregated pathways arise through postnatal refinement of initially overlapping connections. J. Comp. Neurol. 515:231–242, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Several anatomical and physiological studies have thus far failed to confirm the existence of striatocortical projections proposed in 1895 by Cajal. Evidence for such striatocortical projections was obtained in the present study using the horseradish peroxidase (HRP) tracing method. When 0.1–0.8 μ1 of 30–50% HRP in saline was injected into different cortical regions in cats, HRP was transported to cells in different thalamic nuclei, striatum and the globus pallidus. Only large striatal cells, 30–60 μm in their long axes, contained HRP reaction product. After injection in area AI, the striatocortical cells were located in the dorsal parts of the middle third of putamen, where auditory cortical afferents are known to project, thereby suggesting reciprocal connections between the cerebral cortex and the striatum.  相似文献   

6.
The purpose of the present study was to define auditory cortical areas in the dog on the basis of thalamocortical connectivity patterns. Connections between the posterior thalamic region and auditory ectosylvian cortex were studied using axonally transported tracers: fluorochromes and biotinylated dextran amine. Cyto- and chemoarchitecture provided grounds for the division of the posterior thalamic region into three complexes, medial geniculate body (MGB), posterior nuclei (Po), and lateromedial and suprageniculate nuclei (LM-Sg). Distinctive cytoarchitectonic features and the distribution of dominant thalamocortical connections (determined quantitatively) allowed us to define four ectosylvian areas: middle (EM), anterior (EA), posterior (EP), and composite (CE). We found that each area was a place of convergence for projections from five to eleven nuclei of the three thalamic complexes, with dominant projections derived from one or two nuclei. Dominant topographical projections from the ventral nucleus to area EM confirmed physiological reports that it may be considered a primary auditory area (AI). We found the anterior part of the EM to be distinct in having unique strong connections with the deep dorsal MGB nucleus. Area EA, which receives dominant projections from the lateral Po (Pol) and medial MGB nuclei, as well as area EP, which receives dominant connections from the dorsal caudal MGB nucleus, compose two parasensory areas. Area CE receives dominant projections from the extrageniculate nuclei, anterior region of the LM-Sg, and Pol, supplemented with an input from the somatosensory VP complex, and may be considered a polymodal association area.  相似文献   

7.
The temporal cortex of grey squirrels contains three architectonically distinct regions. One of these regions, the temporal anterior (Ta) region has been identified in previous physiological and anatomical studies as containing several areas that are largely auditory in function. Consistent with this evidence, Ta has architectonic features that are internally somewhat variable, but overall sensory in nature. In contrast, the caudally adjoining temporal intermediate region (Ti) has architectonic features that suggest higher order and possibly multisensory processing. Finally, the most caudal region, composed of previously defined temporal medial (Tm) and temporal posterior (Tp) fields, again has more of the appearance of sensory cortex. To understand their functional roles better, we injected anatomical tracers into these regions to reveal their thalamic connections. As expected, the dorsal portion of Ta, containing two primary or primary-like auditory areas, received inputs from the ventral and magnocellular divisions of the auditory medial geniculate complex (MGv and MGm). The most caudal region, Tm plus Tp, received inputs from the large visual pulvinar of squirrels, possibly accounting for the sensory architectonic characteristics of this region. However, Tp additionally receives inputs from the magnocellular (MGm) and dorsal (MGd) divisions of the medial geniculate complex, implicating Tp in multisensory processing. Finally, the middle region, Ti, had auditory inputs from MGd and MGm, but not from the visual pulvinar, providing evidence that Ti has higher order auditory functions. The results indicate that the architectonically distinct regions of temporal cortex of squirrels are also functionally distinct. Understanding how temporal cortex is functionally organized in squirrels can guide interpretations of temporal cortex organization in other rodents in which architectonic subdivisions are not as obvious.  相似文献   

8.
Neuronal connections in the primary auditory cortex (AI) of the cat were studied electrophysiologically by using intracellular recording techniques. Fast-conducting fibers from the medial geniculate nucleus (MG) projected monosynaptically onto AI neurons in layers III-VI (mainly in layer IV), whereas slow-conducting MG-fibers projected monosynaptically onto AI neurons in layer I. AI neurons which received monosynaptic inputs from the auditory association cortices (AII and Ep) and/or from the contralateral AI were distributed in all layers of the AI; the commissural fibers from the contralateral AI were divided into fast- and slow-conducting ones. AI neurons were categorized into seven types: type I neurons which received monosynaptic inputs from slow-conducting MG-fibers were located in layer I. Type II neurons which received polysynaptic inputs from the MG were located in layers II-VI. Type III neurons which sent their axons to the AII or Ep were mainly located in layer III. Type IV neurons which sent their axons to the contralateral AI were located mainly in layer III. Type V neurons which received monosynaptic inputs from fast-conducting MG-fibers were located mainly in layer IV. Type VI neurons which projected onto the inferior colliculus were located in the upper part of the layer V. Type VII neurons which projected onto the MG were located in layers V and VI.  相似文献   

9.
Auditory cortex of macaque monkeys is located on the lower bank of the lateral sulcus and the adjoining superior temporal gyrus. This region of cortex contains a core of primary-like areas surrounded by a narrow belt of associated fields. Adjacent to the lateral belt on the superior temporal gyrus is a parabelt region which contains at least two subdivisions (rostral and caudal). In previous studies we defined the parabelt region as cortex with topographic cortical connections with the belt areas surrounding the core, and connections with the dorsal and magnocellular divisions of the medial geniculate complex, but minimal connections with the core region and ventral division of the medial geniculate complex. The callosal connections of the parabelt auditory cortex were determined by placing injections, of up to six distinguishable tracers, into different locations of the parabelt region in each of four macaque monkeys. The results indicated that the strongest callosal projections arise from homotopic areas in parabelt cortex, and they roughly matched the rostrocaudal levels of the medial and lateral belt cortex. Weaker callosal inputs to the parabelt originate from the corresponding levels of the superior temporal gyrus and superior temporal sulcus. The core region does not contribute significant callosal projections to the parabelt region. The results provide further support for the conclusion that the parabelt region represents a third level of auditory cortical processing beyond direct activation by primary subcortical and cortical auditory structures.  相似文献   

10.
The insular cortex plays important roles in vocal communication, but the origin of auditory input to the insular cortex has not been fully clarified. Here we studied the auditory thalamic input to the insular cortex using mice as a model system. An insular auditory field (IAF) has recently been identified in mice. By using retrograde neuronal tracing, we identified auditory thalamic neurons projecting to the IAF, primary auditory cortex (AI), and anterior auditory field (AAF). After mapping the IAF, AAF, and AI by using optical imaging, we injected a distinct fluorescent tracer into each of the three fields at frequency‐matched locations. Tracer injection into the IAF resulted in retrogradely labeled cells localized ventromedially in the lemniscal division, i.e., the ventral subdivision of the medial geniculate body (MGv). Cells retrogradely labeled by injections into the AAF were primarily found in the medial half of the MGv, whereas those from AI injections were located in the lateral half, although some of these two subsets were intermingled within the MGv. Interestingly, retrogradely labeled cells projecting to the IAF showed virtually no overlap with those projecting to the AAF or the AI. Dual tracer injections into two sites responding to low‐ and high‐frequency tones within each of the three auditory fields demonstrated topographic organizations in all three thalamocortical projections. These results indicate that the IAF receives thalamic input from the MGv in a topographic manner, and that the MGv–IAF projection is parallel to the MGv–AAF and MGv–AI projections. J. Comp. Neurol. 522:1373–1389, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
12.
Neurogenesis in the auditory pathway of the marsupial Dasyurus hallucatus was studied. Intraperitoneal injections of tritiated thymidine (20-40 microCi) were made into pouch-young varying from 1 to 56 days pouch-life. Animals were killed as adults and brain sections were prepared for autoradiography and counterstained with a Nissl stain. Neurons in the ventral cochlear nucleus were generated prior to 3 days pouch-life, in the superior olive at 5-7 days, and in the dorsal cochlear nucleus over a prolonged period. Inferior collicular neurogenesis lagged behind that in the medial geniculate, the latter taking place between days 3 and 9 and the former between days 7 and 22. Neurogenesis began in the auditory cortex on day 9 and was completed by about day 42. Thus neurogenesis was complete in the medullary auditory nuclei before that in the midbrain commenced, and in the medial geniculate before that in the auditory cortex commenced. The time course of neurogenesis in the auditory pathway of the native cat was very similar to that in another marsupial, the brushtail possum. For both, neurogenesis occurred earlier than in eutherian mammals of a similar size but was more protracted.  相似文献   

13.
HRP injected into layer I of the primary auditory cortex (AI) in the cat labeled neuronal cell bodies ipsilaterally in the medial, dorsal and ventrolateral divisions of the medial geniculate nucleus (MGN), suprageniculate nucleus, and nucleus of the brachium of the inferior colliculus. MGN neurons labeled after HRP injected into layer I were statistically smaller than those labeled after HRP injected into layer IV.  相似文献   

14.
The amygdala mediates both emotional learning and fear potentiation of startle. The lateral amygdala nucleus (LA) receives auditory inputs from both the auditory thalamus (medial geniculate nucleus; MGN) and auditory association cortex (AAC), and is critical for auditory fear conditioning. The central amygdala nucleus, which has intra-amygdaloid connections with LA, enhances startle magnitude via midbrain connections to the startle circuits. Tetanic stimulation of either MGN or AAC in vitro or in vivo can induce long-term potentiation in LA. In the present study, behavioural consequences of tetanization of these auditory afferents were investigated in awake rats. The acoustic startle reflex of rats was enhanced by tetanic stimulation of MGN, but suppressed by that of AAC. All the tetanization-induced changes of startle diminished within 24 h. Blockade of GABAB receptors in the LA area reversed the suppressive effect of tetanic stimulation of AAC on startle but did not change the enhancing effect of tetanic stimulation of MGN. Moreover, transient electrical stimulation of MGN enhanced the acoustic startle reflex when it lagged behind acoustic stimulation, but inhibited the acoustic startle reflex when it preceded acoustic stimulation. The results of the present study indicate that MGN and AAC afferents to LA play different roles in emotional modulation of startle, and AAC afferents are more influenced by inhibitory GABAB transmission in LA.  相似文献   

15.
The effects of excitatory classical conditioning on cytochrome oxidase activity in the central auditory system were investigated using quantitative histochemistry. Rats in the conditioned group were trained with consistent pairings of a compound conditional stimulus (a tone and a light) with a mild footshock, to elicit conditioned suppression of drinking. Rats in the pseudorandom group were exposed to pseudorandom presentations of the same tone, light and shock stimuli without consistent pairings. Untrained rats in a naive group did not receive presentations of the experimental stimuli.
 The findings demonstrated that auditory fear conditioning modifies the metabolic neuronal responses of the auditory system, supporting the hypothesis that sensory neurons are responsive to behavioural stimulus properties acquired by learning. There was a clear distinction between thalamocortical and lower divisions of the auditory system based on the differences in metabolic activity evoked by classical conditioning, which lead to an overt learned behavioural response versus pseudorandom stimulus presentations, which lead to behavioural habituation. Increases in cytochrome oxidase activity indicated that tone processing is enhanced during associative conditioning at upper auditory structures (medial geniculate nucleus and secondary auditory cortices). In contrast, metabolic activation of lower auditory structures (cochlear nuclei and inferior colliculus) in response to the pseudorandom presentation of the experimental stimuli suggest that these areas may be activated during habituation to tone stimuli. Together these findings show that mapping the metabolic activity of cytochrome oxidase with quantitative histochemistry can be successfully used to map regional long‐lasting effects of learning on brain systems.  相似文献   

16.
Anatomy of the auditory thalamocortical system of the guinea pig   总被引:7,自引:0,他引:7  
We investigated the projection from the medial geniculate body (MG) to the tonotopic fields (the anterior field A, the dorsocaudal field DC, the small field S) and to the nontonotopic ventrocaudal belt in the auditory cortex of the guinea pig. The auditory fields were first delimited in electrophysiological experiments with microelectrode mapping techniques. Then, small quantities of horseradish peroxidase (HRP) and/or fluorescent retrograde tracers were injected into the sites of interest, and the thalamus was checked for labeled cells. The anterior field A receives its main thalamic input from the ventral nucleus of the MG (MGv). The projection is topographically organized. Roughly, the caudal part of the MGv innervates the rostral part of field A and vice versa. After injection of tracer into low or medium best-frequency sites in A, we also found a topographic gradient along the isofrequency contours: the dorsal (ventral) part of a cortical isofrequency strip receives afferents from the rostral (caudal) portions of the corresponding thalamic isofrequency band. However, it is not so obvious whether such a gradient exists also in the high-frequency part of the projection. A second, weaker projection to field A originates in a magnocellular nucleus that is situated caudomedially in the MG and was therefore named the caudomedial nucleus. The dorsocaudal field DC receives input from the same nuclei as the anterior field, but the location of the labeled cells in the MGv is different. This was demonstrated by injection of different tracers into sites with like best frequencies in fields A and DC, respectively. After injection of HRP into the 1-2-kHz isofrequency strip in field A and injection of Nuclear Yellow (NY) into the 1-2-kHz site in field DC, the labeled cells in the MGv form one continuous array that runs from caudal to rostral over the whole extent of the MGv. The anterior part of this array consists of NY-labeled cells; i.e., it projects to field DC. The caudal part is formed by HRP-labeled cells; i.e., it innervates field A. These findings indicate that there is only one continuous tonotopic map in the MGv. This map is split when projected onto the cortex so that two adjacent tonotopic fields (A and DC) result. The cortical maps are rotated relative to the thalamic map in that rostral portions of the MGv project to caudal parts of the tonotopic cortex and vice versa.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Connections of a posteromedial region of the ventral nucleus of the lateral lemniscus were examined in the cat using the autoradiographic tracing method. This sub-collicular region previously had been shown, using retrograde transport of horseradish peroxidase, to send axons to the superior colliculus10. The autoradiographic findings revealed that many axons from the posteromedial region of the ventral nucleus of the lateral lemniscus that entered the superior colliculus continued into the midbrain reticular formation. Moreover, other axons traced rostral to the inferior colliculus into the thalamus ended in the medial geniculate nucleus, bilaterally. Experiments in which horseradish peroxidase was placed in the medial geniculate nucleus retrogradely labeled the large neurons in the posteromedial region supporting the autoradiographic observations. Other sub-collicular regions also contained labeled cells in these cases, including the main body of the ventral nucleus of the lateral lemnicus and scattered cell groups around the superior olivary complex.  相似文献   

18.
In the inferior temporal (IT) cortex of monkeys, which has been shown to play a critical role in colour discrimination, there are neurons sensitive to a narrow range of hues and saturation. By contrast, neurons in the retina and the parvocellular layer of the lateral geniculate nucleus (pLGN) encode colours in a way that does not provide explicit representation of hue or saturation, and the process by which hue- and saturation-selectivity is elaborated remains unknown. We therefore tested the colour-selectivity of neurons in the primary visual cortex (V1) and compared it with those of pLGN and IT neurons. Quantitative analysis was performed using a standard set of colours, systematically distributed within the CIE (Commission Internationale de l'Eclairage)-xy chromaticity diagram. Selectivity for hue and saturation was characterized by analysing response contours reflecting the overall distribution of responses across the chromaticity diagram. We found that the response contours of almost all pLGN neurons were linear and broadly tuned for hue. Many V1 neurons behaved similarly; nonetheless, a considerable number of V1 neurons had clearly curved response contours and were selective for a narrow range of hues or saturation. The relative frequencies of neurons exhibiting various selectivities for hue and saturation were remarkably similar in the V1 and IT cortex, but were clearly different in the pLGN. Thus, V1 apparently plays a very important role in the conversion of colour signals necessary for generating the elaborate colour selectivity observed in the IT cortex.  相似文献   

19.
The cortex of the primary auditory area in Alzheimer''s disease   总被引:3,自引:0,他引:3  
The cortex of the superior temporal gyrus has been examined in two brains with Alzheimer's disease. Numerous neurofibrillary tangles and neuritic plaques that are characteristic of the disease, were present in area 38 in the anterior part of the gyrus and in area 22 more posteriorly but the primary auditory cortex, area 41, was virtually unaffected by these pathological changes. This relatively minor involvement of the primary auditory cortex, like that of the primary somatic and visual areas, again emphasises the uniqueness of the olfactory system in being severely degenerate. The findings are considered to support the suggestion that the distribution of the pathological changes in Alzheimer's disease has an anatomical basis due to spread of the disease process along certain well-defined sets of cortical fibre connections.  相似文献   

20.
The ventral and dorsal medial geniculate (MGV and MGD) constitute the major auditory thalamic subdivisions providing thalamocortical inputs to layer IV and lower layer III of auditory cortex. No quantitative evaluation of this projection is available. Using biotinylated dextran amine (BDA)/biocytin injections, we describe the cortical projection patterns of MGV and MGD cells. In primary auditory cortex the bulk of MGV axon terminals are in layer IV/lower layer III with minor projections to supragranular layers and intermediate levels in infragranular layers. MGD axons project to cortical regions designated posterodorsal (PD) and ventral (VA) showing laminar terminal distributions that are quantitatively similar to the MGV-to-primary cortex terminal distribution. At the electron microscopic level MGV and MGD terminals are non-γ-aminobutyric acid (GABA)ergic with MGD terminals in PD and VA slightly but significantly larger than MGV terminals in primary cortex. MGV/MGD terminals synapse primarily onto non-GABAergic spines/dendrites. A small number synapse on GABAergic structures, contacting large dendrites or cell bodies primarily in the major thalamocortical recipient layers. For MGV projections to primary cortex or MGD projections to PD or VA, the non-GABAergic postsynaptic structures at each site were the same size regardless of whether they were in supragranular, granular, or infragranular layers. However, the population of MGD terminal-recipient structures in VA were significantly larger than the MGD terminal-recipient structures in PD or the MGV terminal-recipient structures in primary cortex. Thus, if terminal and postsynaptic structure size indicate strength of excitation then MGD to VA inputs are strongest, MGD to PD intermediate, and MGV to primary cortex the weakest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号