首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Modulation of nerve membrane sodium channel activation by deltamethrin.   总被引:1,自引:0,他引:1  
Deltamethrin is a highly potent pyrethroid insecticide that causes hypersensitivity, choreoathetosis, tremors, and paralysis in mammals. It is known to modify the sodium channel in such a way as to prolong the tail current associated with step repolarization following a depolarizing pulse. Using the axial-wire voltage-clamp technique with the giant axon of the squid Loligo pealei, we have demonstrated that deltamethrin also greatly slows the opening of the sodium channel. This was first observed as a decrease, by as much as 80%, in the peak sodium current flowing during a short, 10 ms depolarization. Current flowing through these slowly opening deltamethrin modified sodium channels was observed during the first depolarizing pulse after deltamethrin exposure and developed with a time constant of 320 ms. This supports the idea that deltamethrin can modify sodium channels when they are in the closed or resting state. Further, evidence of this hypothesis was provided by experiments using 0.1 and 10 microM deltamethrin and measuring the tail current amplitude after depolarizing pulses of varying duration (1-1200 ms). The mean time constant for the increase in tail current amplitude was almost concentration independent; 253 ms at 0.1 microM and 193 ms at 10 microM. We conclude that deltamethrin modifies the activation kinetics of sodium channels in such a way as to slow opening and that this modification occurs predominantly when channels are in the closed or resting state.  相似文献   

2.
Pyrethroid insecticides disrupt nerve function by modifying the gating kinetics of transitions between the conducting and nonconducting states of voltage-gated sodium channels. Pyrethroids modify rat Na(v)1.6+β1+β2 channels expressed in Xenopus oocytes in both the resting state and in one or more states that require channel activation by repeated depolarization. The state dependence of modification depends on the pyrethroid examined: deltamethrin modification requires repeated channel activation, tefluthrin modification is significantly enhanced by repeated channel activation, and S-bioallethrin modification is unaffected by repeated activation. Use-dependent modification by deltamethrin and tefluthrin implies that these compounds bind preferentially to open channels. We constructed the rat Na(v)1.6Q3 cDNA, which contained the IFM/QQQ mutation in the inactivation gate domain that prevents fast inactivation and results in a persistently open channel. We expressed Na(v)1.6Q3+β1+β2 sodium channels in Xenopus oocytes and assessed the modification of open channels by pyrethroids by determining the effect of depolarizing pulse length on the normalized conductance of the pyrethroid-induced sodium tail current. Deltamethrin caused little modification of Na(v)1.6Q3 following short (10ms) depolarizations, but prolonged depolarizations (up to 150ms) caused a progressive increase in channel modification measured as an increase in the conductance of the pyrethroid-induced sodium tail current. Modification by tefluthrin was clearly detectable following short depolarizations and was increased by long depolarizations. By contrast modification by S-bioallethrin following short depolarizations was not altered by prolonged depolarization. These studies provide direct evidence for the preferential binding of deltamethrin and tefluthrin (but not S-bioallethrin) to Na(v)1.6Q3 channels in the open state and imply that the pyrethroid receptor of resting and open channels occupies different conformations that exhibit distinct structure-activity relationships.  相似文献   

3.
The interaction of pyrethroids with the voltage-dependent sodium channel was studied in voltage-clamped nodes of Ranvier and isolated spinal ganglion neurons of the clawed frog, Xenopus laevis. In the node, pyrethroids prolonged the sodium tail current associated with a step repolarization of the membrane. It was found that the amplitude of the slow, pyrethroid-induced, sodium tail current (PIT) first increased and then decreased as a function of the duration of membrane depolarization (to -5 mV). This decrease of the PIT amplitude was absent when depolarizations to the sodium equilibrium potential (+40 mV) were used. Measurements of changes in sodium reversal potential indicated that sodium ion depletion in the perinodal space is largely responsible for the inactivation of the pyrethroid-modified sodium current. Inactivation is not completely abolished by pyrethroid treatment since the probability of channel opening, measured in membrane patches excised from spinal ganglion cells, decreased slowly during prolonged depolarization. Analysis of unitary currents indicated that both activation and inactivation are retarded by pyrethroids. The arrival of sodium channels in the pyrethroid-modified open state followed a time course that was slower than both activation and inactivation of unmodified sodium channels. Our findings indicate that sodium channels are modified when in the closed resting state and that both opening and closing kinetics are delayed by pyrethroids.  相似文献   

4.
Pyrethroid insecticides exert toxic effects by prolonging the opening of voltage-gated sodium channels. More than 20 sodium channel mutations from arthropod pests and disease vectors have been confirmed to confer pyrethroid resistance. These mutations have been valuable in elucidating the molecular interaction between pyrethroids and sodium channels, including identification of two pyrethroid receptor sites. Previously, two alanine to valine substitutions, one in the pore helix IIIP1 and the other in the linker-helix connecting S4 and S5 in domain III (IIIL45), were found in Drosophila melanogaster mutants that are resistant to DDT and deltamethrin (a type II pyrethroid with an α-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids), but their role in target-site-mediated insecticide resistance has not been functionally confirmed. In this study, we functionally examined the two mutations in cockroach sodium channels expressed in Xenopus laevis oocytes. Both mutations caused depolarizing shifts in the voltage dependence of activation, conferred DDT resistance and also resistance to two Type I pyrethroids by almost abolishing the tail currents induced by Type I pyrethroids. In contrast, neither mutation reduced the amplitude of tail currents induced by the Type II pyrethroids, deltamethrin or cypermethrin. However, both mutations accelerated the decay of Type II pyrethroid-induced tail currents, which normally decay extremely slowly. These results provided new insight into the molecular basis of different actions of Type I and Type II pyrethroids on sodium channels. Computer modeling predicts that both mutations may allosterically affect pyrethroid binding.  相似文献   

5.
Effects of local anesthetics and anticonvulsants on the pyrethroid-modified sodium current in cultured mouse neuroblastoma cells have been investigated using the suction pipette voltage clamp technique. In the presence of 10 microM of the pyrethroid deltamethrin the sodium current consists of an enhanced peak current during membrane depolarization and a slowly decaying, deltamethrin-induced tail current remaining after repolarization. At the onset of block the local anesthetics tetracaine, lidocaine and QX 314 reduced the deltamethrin-induced tail current more effectively than the peak current. Lidocaine, but not phenytoin, caused a time-dependent block of tail currents evoked by membrane depolarizations lasting 10-1000 ms. Both lidocaine- and phenytoin-induced blocks were independent of the membrane potential during the tail current. The anticonvulsants phenytoin, phenobarbital and valproate blocked the tail and the peak sodium current to the same extent, but diazepam, mephenesin and urethane blocked the peak current more effectively. Vitamin E, which suppresses pyrethroid-induced paresthesia of the skin, had no effect on the voltage-dependent sodium current. It is concluded that indirect effects of anticonvulsants on pyrethroid-induced toxic symptoms predominate, whereas local anesthetics preferentially block the pyrethroid-induced tail current. Therefore, local anesthetics are potentially useful pyrethroid antidotes.  相似文献   

6.
Depolarization of nerve membranes is an important component of the mode of action of pyrethroids, and its negative temperature dependence parallels that of insecticidal activity. We studied the mechanism and temperature dependence of depolarization of crayfish giant axons by pyrethroids, using intracellular microelectrode and voltage clamp techniques. Membrane depolarization caused by tetramethrin and fenvalerate was greater at 10 degrees C than at 21 degrees C, and was reversible upon changing the temperature. Short-duration depolarizing pulses in voltage-clamped fenvalerate-treated axons induced prolonged sodium currents that are typical of other pyrethroids, but the decay of the tail current following repolarization was extremely slow, lasting several minutes at the large negative holding potential of -120 mV. At the normal resting potential, the tail current did not decay completely, and even without stimulation, a steady-state sodium current developed, which could account for the depolarization. The steady-state current induced by fenvalerate at the resting potential was much larger at 8 degrees C than at 21 degrees C, accounting for the negative temperature dependence of the depolarization. The negative temperature dependence of the steady-state current seems to be due ultimately to the great stabilizing effect of low temperature on the open-modified channel. When the steady-state current was induced at the resting potential, hyperpolarization to more negative potentials caused it to decay with exactly the same time course as tail currents induced by short-duration depolarizing pulses, indicating that both types of currents are carried by identically-modified channels. The modified channels were shown to be inactivated very slowly at potentials more positive than - 100 mV, accounting for the limited depolarization observed in micro-electrode experiments. Even when applied directly to the internal face of the membrane, the effect of fenvalerate on the sodium channel developed slowly, taking more than 90 min to reach its final level. Fenvalerate did not significantly affect potassium currents.  相似文献   

7.
Type I and type II pyrethroids are known to modulate the sodium channel to cause persistent openings during depolarization and upon repolarization. Although there are some similarities between the two types of pyrethroids in their actions on sodium channels, the pattern of modification of sodium currents is different between the two types of pyrethroids. In the present study, interactions of the type I pyrethroid tetramethrin and the type II pyrethroid deltamethrin at rat hippocampal neuron sodium channels were investigated using the inside-out single-channel patch clamp technique. Deltamethrin-modified sodium channels opened much longer than tetramethrin-modified sodium channels. When 10 microM tetramethrin was applied to membrane patches that had been exposed to 10 microM deltamethrin, deltamethrin-modified prolonged single sodium currents disappeared and were replaced by shorter openings which were characteristic of tetramethrin-modified channel openings. These single-channel data are compatible with previous whole-cell competition study between type I and type II pyrethroids. These results are interpreted as being due to the displacement of the type II pyrethroid molecule by the type I pyrethroid molecule from the same binding site or to the allosteric interaction of the two pyrethroid molecules at separate sodium channel sites.  相似文献   

8.
The pyrethroid insecticides are known to modify neuronal sodium channels to cause a prolongation of whole cell current. The sodium channels expressed in the dorsal root ganglion neurons of the rat are of two types, one highly sensitive to tetrodotoxin and the other highly resistant to tetrodotoxin. The pyrethroid allethrin exerted profound effects on tetrodotoxin-resistant sodium channels while causing minimal effects on tetrodotoxin-sensitive sodium channels. Currents derived from tetrodotoxin-resistant sodium channels were greatly prolonged during a step depolarization; the tail currents upon repolarization were also augmented and prolonged. In the tetrodotoxin-sensitive sodium channel currents, these changes caused by allethrin were much smaller or negligible. The activation and inactivation voltages of tetrodotoxin-resistant peak sodium currents were not significantly altered by allethrin. The differential action of allethrin on the two types of sodium channels would be important not only in identifying the target molecular structure but also in interpreting the symptoms of poisoning in mammals.  相似文献   

9.
The effects of the pyrethroid insecticide tetramethrin on voltage-dependent sodium channels were studied with internally perfused crayfish giant axons. At low concentrations in the order of 10-8-10-9M, tetramethrin caused an increase in depolarizing after-potential which in turn triggered repetitive after-discharges. Under Voltage clamp conditions, the sodium current was markedly prolonged during a step depolarization, and a large and prolonged sodium tail current appeared upon step repolarization. A population of sodium channels having activation and inactivation kinetics identical to those in control axons was observed in the tetramethrin-poisoned axons, indicating that only a fraction of the channels was modified. The modified channels exhibited remarkably slow kinetics, activating with a time course of 100 msec to 2 sec and inactivating with a time course of 1-5 sec depending on the membrane potential. The voltage dependence of the modified channels was shifted in the direction of hyperpolarization by about 10-20 mV with respect to normal sodium channels. The large inward sodium tail current associated with step repolarization of the membrane decayed with a time course of 20-600 msec. A kinetic hypothesis describing the behavior of sodium channels in a tetramethrin-poisoned axon is presented and discussed in relation of the behavior of the sodium channels modified by other toxins.  相似文献   

10.
Kinetics of pyrethroid-modified sodium channels and the interaction of N-octylguanidine with the modified channels have been studied with internally perfused and voltage-clamped squid giant axons. The pyrethroids used were 1R-cis-phenothrin; 1R-cis-permethrin; 1R-cis-cyphenothrin; and 1R-cis-deltamethrin. Modification of sodium channels by pyrethroids resulted in marked slowing of opening and closing kinetics. The rate at which sodium channels arrived at the open pyrethroid-modified state during a depolarizing step was independent of the concentration of pyrethroids applied. The time of exposure to pyrethroids required for the pyrethroid-induced sodium tail current following a step depolarization to reach a steady-state amplitude was independent of the frequency of short (5 ms) depolarizing pulses, and in the pronase-treated axons was independent of the membrane potential (0 mV or -90 mV). We conclude that sodium channels are modified by pyrethroids primarily in the closed resting state. A small fraction of sodium channels is modified in the open state. The dose-response curve for N-octylguanidine block of sodium channels was not shifted by pyrethroids. The rate at which the pyrethroid-modified sodium channels were blocked by octylguanidine during a depolarizing step depended neither on the concentration of pyrethroids nor on the depolarizing potential, but depended on the concentration of octylguanidine. The time course of the pyrethroid-induced slow sodium tail current was not altered by octylguanidine. We conclude that the actions of pyrethroids and N-octylguanidine on sodium channels are independent of each other.  相似文献   

11.
We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation. Tetramethrin and permethrin both bind to the closed state of the channel as suggested by the presence of an obvious tail current after the first single depolarization applied in the presence of either compounds. Moreover, at first sight, channel opening seems to promote tetramethrin and permethrin binding as evidenced by the progressive tail current summation along with trains of stimulations, tetramethrin being more potent at modifying channels than permethrin. However, a use-dependent increase in the sodium peak current along with stimulations suggests that the tail current accumulation could also be a consequence of progressively unmasked silent channels. Experiments with the sea anemone toxin ATX-II that suppresses sodium channels fast inactivation are consistent with the hypothesis that these silent channels are either in an inactivated state at rest, or that they normally inactivate before they open so that they do not participate to the control sodium current. In honeybee ORNs, three processes lead to a use-dependent pyrethroid-induced tail current accumulation: (i) a recruitment of silent channels that produces an increase in the peak sodium current, (ii) a slowing down of the sodium current inactivation produced by prolongation of channels opening and (iii) a typical deceleration in current deactivation. The use-dependent recruitment of silent sodium channels in honeybee ORNs makes pyrethroids more potent at modifying neuronal excitability.  相似文献   

12.
Decay of sodium currents in repolarization ("tail current") was studied in from axonal membrane. The decay in the membrane repolarization to -40 divided by -60 mV has two exponential components: fast and slow. The fraction of the slow component in the total "tail current" (theta M) decreases as the repolarization potential (Vp) becomes more negative; at Vp more negative than -80 mV "tail" follows practically one-exponential time course. When lengthening the test pulse (at the given Vp) the fraction of the fast component in the "tail" decreases quicker than that of the slow component, following approximately the kinetics of inactivation during the tests pulse. Scorpion toxin treatment results in slowing down "tail" kinetics mainly at the expense of increasing the fraction of the slow component. A kinetic diagram assuming two open state for the channel is suggested. A hypothesis is advanced that scorpion toxin, DDT and trinitrophenol have a common "site" to interact with the gating mechanism of the sodium channel.  相似文献   

13.
Pyrethriods are known to increase the steady-state sodium current during a step depolarization and to increase and prolong the tail sodium current associated with a step repolarization of the membrane. The pyrethroid-induced tail sodium current of squid axons developed as a function of the duration of the conditioning depolarizing pulse. However, with further lengthening the conditioning pulse duration, it decreased, further increased, or remained constant depending on the direction of sodium current during the depolarization, irrespective of the membrane potential per se. The depletion or accumulation of sodium in the periaxonal space during a 200-ms conditioning depolarizing pulse in the axon internally treated with pronase, pyrethroids, or both, was demonstrated by measurements of the changes in sodium reversal potential. Thus the observed changes in tail current amplitude as a function of the conditioning pulse duration are explicable in terms of changes in sodium concentration in the periaxonal space without assuming inactivation of the pyrethroid-modified channel.  相似文献   

14.
The pyrethroid tetramethrin greatly prolongs the sodium current during step depolarization and the sodium tail current associated with step repolarization of the squid axon membrane. Non-linear current-voltage relationships for the sodium tail current were analyzed to assess the open sodium channel properties which included the permeation of various cations, calcium block and cation selectivity. Tetramethrin had no effect on any of these properties. It was concluded that tetramethrin modifies the sodium channel gating machinery without affecting the pore properties.  相似文献   

15.
Sodium currents were recorded in rat fast and slow twitch muscle fibers. Changes in the membrane potential around the resting potential produced slow changes in the sodium current amplitude due to alterations of the slow inactivation process that was increased by steady depolarization and removed by prolonged hyperpolarization. In contrast, classical fast inactivation was not operative around the resting potential, and depolarizations of greater than 20 mV were required to close half of the channels by fast inactivation. Because slow inactivation is operative around the resting potential of mammalian muscle fibers, it may partially explain why small depolarizations, such as those that occur in some patients with periodic paralysis, can reduce excitability.  相似文献   

16.
Key effects of the pyrethroid insecticide allethrin, delivered to or washed out from cells at 10 or 100 μM in 0.1% DMSO, on neuronal Na+ channel currents were studied in rat dorsal root ganglion (DRG) cells under whole-cell patch clamp. Tetrodotoxin-resistant (TTX-R) Na+ channels were more responsive to allethrin than tetrodotoxin-sensitive (TTX-S) Na+ channels. On application of 10 or 100 μM allethrin to cells with TTX-R Na+ channels, the Na+ tail current during repolarization developed a large slowly decaying component within 10 min. This slow tail developed multiphasically, suggesting that allethrin gains access to Na+ channels by a multiorder process. On washout (with 0.1% DMSO present), the slow tail current disappeared monophasically (exponential τ=188±44 s). Development and washout rates did not depend systematically on temperature (12°, 18°, or 27°C), but washout was slowed severely if DMSO was absent. As the duration of a depolarizing pulse was increased (range 0.32–10 ms), the amplitude of the slow component of the succeeding tail conductance first increased then decreased. Tail current amplitude had the same dependence on preceding pulse duration (at 18°) at 10 or 100 μM, consistent with allethrin modification of Na+ channels at rest before opening. At 10 μM, slow tail conductance was at maximum 40% of the peak conductance during the previous depolarization, independent of temperature; evidently, the fraction of open modified channels did not change. However, at low temperature, the tail is more prolonged, bringing more Na+ ions into a cell. In functioning neurons, this Na+ influx would cause a larger depolarizing afterpotential, a condition favoring the repetitive discharges, which are signatory of pyrethroid intoxication.  相似文献   

17.
Kinetic and steady-state characteristics of aconitine-modified sodium channels were studied in the Ranvier node membrane. Aconitine-modified sodium channels are shown to be inactivated only partially. The voltage dependence of the fraction of noninactivated channels (h infinity) may be described by a three-state model of the channel with closed, open and inactivated states. A reasonable agreement with the data was obtained when parameters of the inactivated state were supposed to be not changed after aconitine modification of the channels. The membrane repolarization to -70 divided by -110 mV, after long (10 ms) depolarizing shift induces firstly fast current decay ("tail") and then its rather slow increase to a steady-state level. Kinetics of this current requires two or more open states to be postulated.  相似文献   

18.
External application of 0.05-1.0 mM flurazepam was found to partially block both sodium and potassium currents in voltage-clamped squid giant axons. At the same concentration the fractional block of the potassium current was found to be 3 times greater than that of the sodium current. In the presence of the drug the potassium current appeared to "inactivate', as flurazepam block became more profound during the course of the depolarization. The decay of the potassium current can be explained by a model in which flurazepam enters and blocks the potassium channels only after they have opened. Once bound in the potassium channel, removal of flurazepam from its binding site develops slowly (tau = 48 ms). Thus repetitive stimulation of the nerve produced a cumulative block. When applied inside the axon flurazepam was found to be 1.5 (n = 4) times more potent blocker of potassium channels than following external application. This result suggests that when applied externally, a neutral form of the drug diffuses across the membrane and blocks occurs from the inner end of the channel.  相似文献   

19.
The effect of antiarrhythmic drug ethmozine on sodium channels in Ranvier node was studied by the voltage clamp technique. Both outside and inside application of ethmozine induced a decrease of sodium current I Na, the time course of I Na and the sodium inactivation being unchanged. The ethmozine-induced Na channel blockade induced tonic (stationary) and phasic (transient stimulus-dependent) components. The tonic blockade of I Na developed slowly and could be accelerated by frequent electric stimulation of the membrane. The phase dependent blockade became more profound with an increase in the pulse rate or amplitude of depolarizing pulses. The prolonged (1 s) membrane depolarization did not bring about an additional blockade of I Na. It is concluded that the phasic blockade is due to the interaction of ethmozine with open Na channels. The noninactivating batrachotoxin-modified Na channels were insensitive to ethmozine. It is found that the increase in outside potassium concentration from 2.5 to 20mM induced both a decrease of the tonic blockade and an increase of the phasic one. The possible nature of the ionic blockade is discussed. The effect of ethmozine is compared with that of tertiary and quaternary local anesthetics.  相似文献   

20.
Insecticidal pyrazolines inhibit voltage-sensitive sodium channels of both insect and mammalian neurons in a voltage-dependent manner. Studies on the effects of pyrazoline insecticides on mammalian sodium channels have been limited to experimentation on the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channel populations of rat dorsal root ganglion (DRG) neurons. In this study, we examined the effects of the insecticidal pyrazolines indoxacarb, the N-decarbomethoxyllated metabolite of indoxacarb (DCJW), and RH 3421 on rat Na(v)1.4 sodium channels expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique. Both DCJW and RH 3421 were ineffective inhibitors of rat Na(v)1.4 sodium channels at a membrane potential of -120 mV, but depolarization to -60 mV or -30 mV during insecticide exposure resulted in substantial block. Inhibition by pyrazoline insecticides was nearly irreversible with washout, but repolarization of the membrane relieved block. DCJW and RH 3421 also caused hyperpolarizing shifts in the voltage dependence of slow inactivation without affecting the voltage dependence of activation or fast inactivation. These results suggest that DCJW and RH 3421 interact specifically with the slow inactivated state of the sodium channel. Indoxacarb did not cause block at any potential, yet it interfered with the ability of DCJW, but not RH 3421, to inhibit sodium current. Phenytoin, an anticonvulsant, reduced the efficacy of both DCJW and RH 3421. These data imply that the binding site for pyrazoline insecticides overlaps with that for therapeutic sodium channel blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号