首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agonist actions of methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)- pyridine-5-carboxylate (Bay k 8644) were investigated in femoral and mesenteric arteries from 6-week-old spontaneously hypertensive rats (SHRs), and data compared with findings in normotensive Wistar-Kyoto rats (WKYs). The addition of Bay k 8644 produced a dose-dependent contraction in SHR femoral artery with a pD2 value of 8.55. Maximum contraction induced by this agonist (1 X 10(-7) M) was comparable to the maximum developed by K+-depolarization. Bay k 8644 was much less effective in eliciting the contractile responses on WKY femoral artery. Contractile responses of mesenteric and tail arteries to Bay k 8644 were weak and were not significantly different between SHR and WKY. Thoracic aorta was sensitive to the contractile response to Bay k 8644, but the sensitivity was not significantly different between SHR and WKY. Increased responsiveness to exogenously applied K+ was also observed in SHR femoral artery as compared to WKY. Contractile responses of SHR femoral artery to Bay k 8644 were antagonized competitively by nifedipine (pA2 = 8.36), a dihydropyridine Ca++ antagonist, but noncompetitively by diltiazem, a non-dihydropyridine Ca++ antagonist. When the effect of nifedipine on the dose-response curve for Bay k 8644 was determined in WKY femoral artery, there was a similar extent of rightward displacement of the dose-response curve to that seen in SHR. Nifedipine was less efficacious in relaxing the contractile response to Bay k 8644 compared to the contractile response to K+ in SHRs femoral arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Vasoconstrictor effects of Bay k 8644, a dihydropyridine Ca++ agonist, and vasorelaxant effects of nifedipine were investigated in helical strips of dog cerebral (basilar, posterior cerebral and middle cerebral) and peripheral (coronary and mesenteric) arteries. The addition of Bay k 8644 produced a dose-dependent contraction in the absence of any contractile agent in the basilar artery with a pD2 value of 8.53. Similar sensitivity to Bay k 8644 was observed in the posterior cerebral, middle cerebral or coronary artery. Bay k 8644 was much less effective in producing a contraction in the mesenteric artery. An elevation of the concentration of extracellular K+ eliminated the difference between the responses to Bay k 8644 in the basilar and mesenteric artery. Contractile responses of the basilar artery to Bay k 8644 were antagonized competitively by nifedipine (pA2 = 8.17), but non-competitively by diltiazem. The pA2 values for nifedipine antagonism of Bay k 8644 responses with the elevated K+ were the same between the basilar and mesenteric arteries. Increased sensitivity to exogenously added K+ also was observed in cerebral and coronary arteries when compared with the mesenteric artery. The addition of nifedipine to an unstimulated strip produced a dose-dependent relaxation in cerebral and coronary arteries, but not in the mesenteric artery. When the cerebral and peripheral arteries were contracted with K+ to the same magnitude, nifedipine produced similar relaxations among these arteries. Nifedipine was less efficacious in antagonizing the contractile response to Bay k 8644 compared with the contractile response to K+ in cerebral arteries. These results suggest that 1) the voltage-dependent Ca++ channels in the cerebral and coronary arteries are in different states of activation from those in the mesenteric artery, 2) Bay k 8644 contracts the cerebral and coronary arteries by acting primarily on the same site, presumably dihydropyridine receptors of the voltage-dependent Ca++ channels at which nifedipine acts, 3) the dihydropyridine receptors were the same between the basilar and mesenteric arteries and 4) there may be a difference in the state of the Ca++ channel in the arteries between the stimulation with Bay k 8644 and K+-depolarization.  相似文献   

3.
Actions of methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2- trifluoromethylphenyl)-pyridine-5-carboxylate (Bay K 8644) on the mechanical response evoked in intact and skinned mesenteric artery of the rabbit were investigated. The data were compared to that of nisoldipine, another dihydropyridine derivative Bay K 8644 increased the amplitudes of both the phasic and tonic components of the K+-induced contraction which is due to an increase in the voltage-dependent influx of Ca ion. Bay K 8644 antagonized competitively the actions of nisoldipine (a Ca antagonist) on the tonic but not on the phasic component of the K+-induced contraction. The contractions caused by high concentrations of norepinephrine were enhanced to a greater extent by Bay K 8644 than that evoked by lower concentrations of norepinephrine. Bay K 8644 had no effect on Ca++ extrusion from cells, which was estimated from the change in amplitudes of the norepinephrine-induced contractions in Na+- and Ca++-free solutions. This agent had no effect on the contractile proteins and Ca storage sites, as estimated from the Ca++- or caffeine-induced contraction observed in skinned muscles. The results suggested that Bay K 8644 acts primarily on the voltage-dependent Ca++ channel, presumably the same site at which other dihydropyridine derivatives (Ca antagonists) act, and that the influx of Ca++ is accelerated.  相似文献   

4.
Isolated perfused rabbit ear arteries contract when treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of the calcium-activated, phospholipid-dependent protein kinase or C-kinase. Under conditions where the calcium concentration in the perfusate is 1.5 mM and the potassium concentration is 4.8 mM, there is a latent period of 70 +/- 19 min (mean +/- S.E.M., n = 10) between TPA addition and the onset of the contractile response. Once initiated, the contractile response is progressive and sustained. When perfusion conditions are altered in such a way as to modify calcium flux across the plasma membrane (i.e., raising the extracellular calcium concentration to 2.5 mM Ca++, raising the extracellular potassium concentration to 10 mM, and/or preincubating the tissues in media containing 100 nM Bay K 8644, a potent calcium channel agonist), the latency period between TPA addition and initiation of the contractile response is significantly reduced (2.5 mM Ca++, 37 +/- 7 min; 10 mM K+ and 2.5 mM Ca++, 11 +/- 3 min; 100 nM Bay K 8644 and 1.5 mM Ca++, 20 +/- 7 min; 100 nM Bay K 8644 and 2.5 mM Ca2+, 8.5 +/- 1.7 min; 10 mM K+ and 100 nM Bay K 8644, 11 +/- 5 min). Likewise, the combination of 2.5 mM calcium, 100 nM Bay K 8644, and 3.3 microM ouabain results in a contractile response 4.5 +/- 2.0 min after TPA addition (means +/- S.E.M., n = 4). Control tissues (absence of TPA addition) run simultaneously show no contractile responses to the various Ca++ flux regulators even after 90 min of incubation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Endothelin is a potent mammalian vasoconstrictive peptide with structural homology to cation channel-binding insect toxins. We tested the proposal that this peptide directly activates dihydropyridine-sensitive Ca2+ channels in cultured vascular smooth muscle (VSM) cells. First, we found that cell Ca2+ can be altered in VSM by activation of voltage-operated Ca2+ channels. KCl-induced depolarization and the dihydropyridine Ca2+ channel agonist (-) Bay K 8644 (10 microM) both raised cell Ca2+ more than twofold; the effect of KCl was blocked by the inhibitory enantiomer, (+) Bay K 8644 (40 microM). Similar responses were observed in Chinese hamster ovary (CHO) cells. Synthetic endothelin (4 x 10(-8) M) raised Ca2+ in VSM but not CHO cells from 100 +/- 17 to 561 +/- 34 nM within 12 s. Ca2+ subsequently fell to basal levels after 30 min. Half maximal Ca2+ response was at 4 x 10(-9) M endothelin. Unlike endothelin, thrombin raised Ca2+ in both VSM and CHO cells. The Ca2+ responses to endothelin and thrombin were not affected by nicardipine (1 microM), (+) Bay K 8644, or Ca2+-free solutions. Lastly, both hormones caused release of inositol phosphates in VSM cells. However, the response to thrombin was more than 10-fold larger and was more rapid than the response to endothelin; the thrombin response was sensitive to pertussis toxin, while the response to endothelin was not. Thus endothelin, like thrombin, raises cell Ca2+ in VSM by mobilization of intracellular stores and not by activation of dihydropyridine-sensitive Ca2+ channels. However, their receptors are distinct and they exhibit important differences in signal transduction.  相似文献   

6.
Experiments were performed to test the hypothesis that diabetes mellitus is associated with impaired afferent arteriolar responsiveness to opening of voltage-gated calcium channels. Diabetes was induced by injection of streptozocin (65 mg/kg, i.v.) and insulin was administered via an osmotic minipump to achieve moderate hyperglycemia. Sham rats received vehicle treatments. 2 wk later, the in vitro blood-perfused juxtamedullary nephron technique was used to allow videomicroscopic measurement of afferent arteriolar contractile responses to increasing bath concentrations of either Bay K 8644 or K+. Baseline afferent arteriolar diameter in kidneys from diabetic rats (26.4+/-1.2 microm) exceeded that of Sham rats (19.7+/-1.0 microm). Bay K 8644 evoked concentration-dependent reductions in afferent diameter in both groups of kidneys; however, arterioles from Sham rats responded to 1 nM Bay K 8644 while 100 nM Bay K 8644 was required to contract arterioles from diabetic rats. The EC50 for K+-induced reductions in afferent arteriolar diameter was greater in diabetic kidneys (40+/-4 mM) than in kidneys from Sham rats (28+/-4 mM; P < 0.05). In afferent arterioles isolated by microdissection from Sham rats and loaded with fura 2, increasing bath [K+] from 5 to 40 mM evoked a 98+/-12 nM increase in intracellular Ca2+ concentration ([Ca2+]i). [Ca2+]i responses to 40 mM K+ were suppressed in afferent arterioles from diabetic rats (delta = 63+/-5 nM), but were normalized by decreasing bath glucose concentration from 20 to 5 mM. These observations indicate that the early stage of insulin-dependent diabetes mellitus is associated with a functional defect in afferent arteriolar L-type calcium channels, an effect which may contribute to suppressed afferent arteriolar vasoconstrictor responsiveness and promote glomerular hyperfiltration.  相似文献   

7.
The role of endothelium in the relaxation of rat aortic smooth muscle to raised extracellular magnesium concentration (Mg2+)o has been examined. Following contractile responses to norepinephrine (NE) or high-K+ in Mg2+-free media, cumulative increases in (Mg2+)o caused concentration-dependent relaxations in intact (+E) as well as endothelium-denuded (-E) strips. In NE-stimulated strips, Mg2+-induced relaxation was significantly greater in +E strips, whereas the reverse was the case in K+-stimulated strips. Bay K8644, a Ca2+ channel agonist, did not modify Mg2+-induced relaxation in NE-stimulated strips, but significantly attenuated the relaxation in K+-stimulated strips in the order: -E greater than +E. The results suggest that Mg2+-induced relaxation of rat aorta is associated, at least in part, with the release of an endothelium-derived relaxant factor in receptor-mediated, but not in depolarisation-dependent contractions.  相似文献   

8.
The antagonism by cicletanine of contractile responses to histamine has been examined in vitro on ring preparations of rabbit mesenteric arteries. Cicletanine (10(-8)-10(-6) M) caused a parallel rightward shift of histamine concentration response curve, with a pA2 value of 7.48 (slope = 0.89 +/- 0.19, not significantly different from unity). Histamine-induced contractions were nifedipine-sensitive and associated with cicletanine-sensitive increased 45Ca uptake. Endothelium removal resulted in enhanced contractile responses to histamine, but did not significantly modify cicletanine-induced antagonism: KB (dissociation constant) values for cicletanine antagonism in the presence or absence of endothelium were: 3.7 (+/- 0.1) X 10(-8) M and 3.6 (+/- 0.3) X 10(-8) M, respectively. Cicletanine (greater than 10(-4) M) also significantly attenuated 10 mM caffeine-induced contractions in rings exposed to Ca-free 100 mM K+ depolarizing medium. The results suggest that cicletanine-induced antagonisms of histamine H1 receptor-mediated contractions of rabbit mesenteric arteries is associated with interference with calcium entry as well as at high concentrations, release from intracellular stores.  相似文献   

9.
To test the hypothesis that direct contact between sympathetic neurons and myocytes regulates expression and function of cardiac Ca channels, we prepared cultures of neonatal rat ventricular myocytes with and without sympathetic ganglia. Contractile properties of myocytes were assessed by an optical-video system. Contractility-pCa curves showed a 60% greater increase in contractility for innervated myocytes compared with control cells at 6.3 mM [Ca]0 (n = 8, P less than 0.05). Cells grown in medium conditioned by growth of ganglia and myocytes were indistinguishable physiologically from control cells. [Bay K 8644]-contractility curves revealed a 60 +/- 10% enhancement of the contractility response at 10(-6) M for innervated cells compared with control cells. The increased response to Bay K 8644 was not blocked by alpha- or beta-adrenergic antagonists. Moreover, increased efficacy of Bay K 8644 was maintained for at least 24 h after denervation produced by removal of ganglia from the culture. Dihydropyridine binding sites were assessed with the L channel-specific radioligand 3[H]PN200-110. PN200-110 binding sites were increased by innervation (51 +/- 5 to 108 +/- 20 fmol/mg protein, P less than 0.01), with no change in KD. Peak current-voltage curves were determined by whole-cell voltage clamp techniques for myocytes contacted by a neuron, control myocytes, and myocytes grown in conditioned medium. Current density of L-type Ca channels was significantly higher in innervated myocytes (10.5 +/- 0.4 pA/pF, n = 5) than in control myocytes (5.9 +/- 0.3 pA/pF, n = 8, P less than 0.01) or myocytes grown in conditioned medium (6.2 +/- 0.2 pA/pF, n = 10, P less than 0.01). Thus, physical contact between a sympathetic neuron and previously uninnervated neonatal rat ventricular myocytes increases expression of functional L-type calcium channels as judged by contractile responses to Ca0 and Bay K 8644, as well as by electrophysiological and radioligand binding properties.  相似文献   

10.
The interactions between UK-14304 and other vasoconstrictor agents were investigated using isolated canine mesenteric vascular rings mounted in tissue baths for the measurement of isometric contraction. In the mesenteric artery, exposure to UK-14304 caused a small contraction, producing 8% of the KCl maximal response. In the presence of either 20 mM KCl or 10(-9) M endothelin-1, which had small contractile effects, UK-14304 produced a biphasic concentration-response curve; 10(-7) M rauwolscine inhibited the responses to low concentrations of UK-14304 and 10(-7) M prazosin blocked the responses to high concentrations of UK-14304. In the presence of 10(-8) M Bay K 8644, UK-14304 elicited a monophasic concentration-dependent contraction that was antagonized by 10(-7) M prazosin, not by 10(-7) M rauwolscine. In the mesenteric vein, UK-14304 elicited concentration-dependent contractions, producing 63% of the KCl maximal response. The lower part of the biphasic concentration-response curve was inhibited by 10(-7) M rauwolscine and the upper part of the curve was antagonized by 10(-7) M prazosin. The presence in the medium of 20 mM KCl, 10(-11) M endothelin-1 or 10(-9) M Bay K 8644, which increased resting tension less than 10% of the KCl maximal response, markedly enhanced the responses to UK-14304 primarily at concentrations lower than 10(-6) M. The enhancement of responses were prazosin (10(-7) M)-resistant and rauwolscine (10(-7) M)-sensitive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Maintained reduction in extracellular K+ concentrations [( K]e) of isolated canine mesenteric arteries produced two contractions separated by a period of several hours. The mechanisms for respective early and late contractions were investigated. First, early responses to reduced [K]e were examined quantitatively over a period of 2 hr. Critical [K]e for initiating the contraction was 0.14 mM. Early contractions induced by K-free solution were abolished by phentolamine (10(-6) M) or reserpine pretreatment (0.5 mg/kg) but were not inhibited by cocaine (3 X 10(-6) M) or bretylium (2 X 10(-5) M). Treatment with ouabain at a low concentration of 2 X 10(-7) M potentiated markedly the phentolamine-sensitive contractile response to reduced [K]e. In contrast, contractile responses to norepinephrine, tyramine and transmural electrical stimulation were not potentiated by ouabain. Second, the late contraction, that occurred 4 to 5 hr after K-free substitution, also occurred in arteries pretreated with phentolamine or reserpine. The phentolamine-resistant late contraction was not inhibited by atropine, chlorpheniramine, cimetidine, saralasin, aspirin or methysergide. Ouabain potentiated the late contractile response to reduced [K]e in the presence of phentolamine. Thus, in canine mesenteric arteries, reduction in [K]e causes an early contraction due to norepinephrine release from adrenergic nerves and a late contraction that appears to be of myogenic origin. Ouabain may enhance both neurogenic and myogenic derived contractions in response to reduced [K]e by exaggerating the inhibition of the Na+,K+ exchange pump in the membranes of adrenergic nerves and vascular smooth muscle.  相似文献   

12.
In rat aortic strips, muscle contraction was recorded simultaneously with cytosolic Ca++ level, which was indicated by the 500 nm fluorescence of Ca++ indicator, fura 2, due to excitation at either 340 nm (F340) or 380 nm (F380) and the ratio of F340 to F380 (R340/380). On the addition of 72.7 nM K+ or 1 microM norepinephrine, muscle contraction followed the increase in R340/380 (resulted from the increased F340 and the decreased F380). Cytosolic Ca++ concentrations of resting, 72.7 mM K+-stimulated and 1 microM norepinephrine-stimulated aortas were tentatively calculated as 228 +/- 25, 1784 +/- 154 and 1528 +/- 180 nM, respectively. Cumulative addition of K+ or norepinephrine induced concentration-dependent increase in both muscle tension and R340/380. However, norepinephrine induced greater contraction than K+ when both of these stimulants induced similar increase in R340/380. Addition of 10 mM tetraethylammonium and 1 microM Bay k8644 caused rhythmic contractions which followed the rhythmic changes in R340/380. EGTA decreased the muscle contraction and decreased R340/380. In Ca++-free solution, addition of 10 microM norepinephrine or 20 mM caffeine induced transient increase in both muscle tension and R340/380. Tension changes always were preceded by the fluorescent changes. Verapamil (10 microM) decreased both tension development and R340/380 in high K+- and norepinephrine-stimulated tissues. Sodium nitroprusside (1 microM) also decreased both tension and R340/380 in norepinephrine-stimulated tissues, whereas it decreased tension more strongly than R340/380 in high K+-stimulated tissues. These results indicate that vasoconstrictors and vasodilators may modulate smooth muscle contraction by changing the cytosolic Ca++ concentrations and also by changing the sensitivity of contractile elements to Ca++.  相似文献   

13.
Drug-induced triggered arrhythmias in heart muscle involve oscillations of membrane potential known as delayed or early afterdepolarizations (DADs or EADs). We examined the mechanism of DADs and EADs in ferret ventricular muscle. Membrane potential, tension and aequorin luminescence were measured during exposure to elevated [Ca2+]0, strophanthidin and/or isoproterenol (to induce DADs), or cesium chloride (to induce EADs). Ryanodine (10(-9)-10(-6) M), an inhibitor of Ca2+ release from the sarcoplasmic reticulum, rapidly suppressed DADs and triggered arrhythmias. When cytoplasmic Ca2+-buffering capacity was enhanced by loading cells with the Ca2+ chelators BAPTA or quin2, DADs were similarly inhibited, as were contractile force and aequorin luminescence. In contrast to DADs, EADs induced by Cs were not suppressed by ryanodine or by loading with intracellular Ca2+ chelators. The possibility that transsarcolemmal Ca2+ entry might produce EADs was evaluated with highly specific dihydropyridine Ca channel agonists and antagonists. Bay K8644 (100-300 nM) potentiated EADs, whereas nitrendipine (3-20 microM) abolished EADs. We conclude that DADs and DAD-related triggered arrhythmias are activated by an increase in intracellular free Ca2+ concentration, whereas EADs do not require elevated [Ca2+]i but rather arise as a direct consequence of Ca2+ entry through sarcolemmal slow Ca channels.  相似文献   

14.
BACKGROUND: The dihydropyridine-induced vasorelaxation is partly dependent on the endothelium, which does not express L-type calcium channels. Because nitric oxide (NO) is one of the most important endothelium-derived vasorelaxing factors, we investigated how the calcium antagonist nifedipine and the calcium agonist Bay K 8644 modulate intracellular calcium and NO formation in porcine endothelial cells. METHODS AND RESULTS: NO formation of porcine aortic endothelial cell cultures and of native endothelium of intact porcine coronary arteries was measured with an electrochemical electrode, and the intracellular concentration of Ca(2+) [Ca(2+)](i) was evaluated using the Fura-2 technique. Nifedipine induced a concentration-dependent [0,01-1 μmol/L] increase in [Ca(2+)](i) and NO formation in cultured porcine aortic endothelial cells, and moreover a dose-dependent NO formation in native endothelial cells from intact porcine coronary arteires, which was higher than in cultured cells. This effect was inhibited by N-nitro-l-arginine, a specific NO synthase inhibitor. Bay K 8644 caused a [Ca(2+)](i) increase and NO release in cultured cells, too, although to a lesser extent. Nifedipine-induced and Bay K 8644-induced [Ca(2+)](i) rise could be blocked by removal of extracellular calcium, indicating that a calcium influx may be involved. CONCLUSIONS: The calcium antagonist nifedipine as well as the calcium agonist Bay K 8644 cause an increase of [Ca(2+)](i) and NO in porcine endothelium. Therefore, these effects seem to be related to the dihydropyridines as a substance class, which may explain the endothelial component in dihydropyridine-induced vasorelaxation.  相似文献   

15.
Phosphatidylinositol 3-kinase (PI3K) can activate endothelial nitric oxide synthase (eNOS), leading to production of the vasodilator NO. In contrast, vascular smooth muscle (VSM) PI3K may partially mediate vascular contraction, particularly during hypertension. We tested whether endothelial and VSM PI3K may have opposing functional roles in regulating vascular contraction. Secondly, we tested whether the procontractile protein rho-kinase can suppress endothelial PI3K/eNOS activity in intact arteries, thus contributing to vasoconstriction by G protein-coupled receptor (GPCR) agonists. We studied contractile responses to the GPCR agonist phenylephrine, and the receptor-independent vasoconstrictor KCl, in aortic rings from Sprague-Dawley rats. In endothelium-intact rings, the PI3K inhibitor wortmannin (0.1 microM) markedly augmented responses to phenylephrine (P < 0.05) by approximately 50% but not to KCl. However, in endothelium-denuded or N(G)-nitro-L-arginine methyl ester (L-NAME) (100 microM)-treated rings, wortmannin reduced responses to phenylephrine and KCl (P < 0.05). Furthermore, the rhokinase inhibitor Y-27632 (R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cycloheaxanecarboxamide; 1 microM) abolished responses to phenylephrine, and this effect was partially reversed by wortmannin or L-NAME. The ability of wortmannin to oppose the effect of rho-kinase inhibition on contractions to phenylephrine was L-NAME-sensitive. In aortas from angiotensin II-induced hypertensive rats, relaxation to acetylcholine (10 microM) was impaired (P < 0.05), and vasoconstriction by phenylephrine was markedly enhanced and not further augmented by wortmannin. These data suggest that endothelial PI3K-induced NO production can modulate GPCR agonist-induced vascular contraction and that this effect is impaired in hypertension in association with endothelial dysfunction. In addition, endothelial rho-kinase may act to suppress PI3K activity and, hence, attenuate NO-mediated relaxation and augment GPCR-dependent contraction.  相似文献   

16.
In vivo and in vitro studies were carried out to examine the putative hypotensive actions of S-petasin, a sesquiterpene extracted from the medicinal plant Petasites formosanus. Intravenous S-petasin (0.1-1.5 mg/kg) in anesthetized rats produced a dose-dependent hypotensive effect. In isolated aortic ring, isometric contraction elicited by KCl or the L-type Ca2+ channel agonist Bay K 8644 was reduced by S-petasin (0.1-100 microM), an action not affected by the cyclooxygenase inhibitor indomethacin, nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine, guanylyl cyclase inhibitor methylene blue, or removal of vascular endothelium. Pretreatment with S-petasin for 10 min shifted the concentration-response curve for KCl (15-90 mM)-induced contraction to the right and reduced the maximal response. In Ca2+-depleted and high K+-depolarized aortic rings preincubation with S-petasin attenuated the Ca2+-induced contraction in a concentration-dependent manner, suggesting that S-petasin reduced Ca2+ influx into vascular smooth muscle cells (VSMCs). Moreover, in cultured VSMCs, whole-cell patch-clamp recording indicated that S-petasin (1-50 microM) inhibited the L-type voltage-dependent Ca2+ channel (VDCC) activities. Intracellular Ca2+ concentration ([Ca2+[(i)) estimation using the fluorescent probe 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid pentaacetoxymethyl ester indicated that S-petasin (10, 100 microM) suppressed the KCl-stimulated increase in ([Ca2+[(i)). Taken together, the results suggested that a direct Ca2+ antagonism of L-type VDCC in vascular smooth muscle may account, at least in part, for the hypotensive action of S-petasin.  相似文献   

17.
In this study, we aimed to elucidate whether the daily hypertensive dose of long-term N(G)-nitro-l-arginine methyl ester (l-NAME) treatment, could make a difference between endothelial and smooth muscle functions in rat thoracic aorta. We test the hypothesis that high-dose, long-term l-NAME treatment has a depressive effect on vascular smooth muscle contractile activity which is not related with nitric oxide (NO) synthesis inhibition. After 14 days of treatment, isometric tension and (45)Ca(2+) influx were measured in aortic tissues isolated from l-NAME(10) and l-NAME(100) hypertensive (10 and 100 mg/kg/day, systolic blood pressures 167 +/- 7 and 172 +/- 10 mmHg, respectively) and control normotensive rats (132 +/- 7 mmHg). In l-NAME(10)- and l-NAME(100)-treated rats, acetylcholine-induced relaxation in aortic rings was suppressed with no significant difference between the treatments. l-NAME(100) (but not l-NAME(10)) treatment, significantly inhibited contractile responses to phenylephrine, angiotensin II, and K(+) (80 mm) in endothelium-intact tissues. The effect of l-NAME(100) on phenylephrine-induced contractile responses was not observed after 3 days of treatment. In endothelium-denuded aortic tissues of l-NAME(100) (but not l-NAME(10))-treated rats, phenylephrine (1 x 10(-6) m)- and K(+) (80 mm)-induced contractions and (45)Ca(2+) influxes were significantly reduced. In Ca(2+)-free medium (0.1 mm EDTA), on the contrary, the transient contractions obtained by either phenylephrine (1 x 10(-6) m) or caffeine (1 x 10(-2) m), or the sustained contractions induced by 12-o-tetradecanoylphorbol-13-acetate (1 x 10(-6) m; a protein kinase C activator) in endothelium-denuded aortic rings, were not modified by both l-NAME treatments. These results indicate that in aortic rings from l-NAME hypertensive rats, low and high doses, long-term l-NAME administration may be associated with equivalent inhibition in NO-dependent vasodilator tone (corresponding to equivalent hypertension values); whereas only high-dose, long-term l-NAME administration produces an endothelium-independent decrease in vasocontrictor activity, at least partly explained by a reduction in extracellular Ca(2+) influx.  相似文献   

18.
Recent studies of rat mesenteric arteries using a wire myograph detected decreased Ca2+ and acetylcholine-induced relaxation responses. Preliminary experiments indicated the reduced responses were associated with the tungsten wire used in the myograph system. Compared with earlier observations, arteries mounted on aged 28-microm tungsten wire showed decreased maximal Ca2+-induced relaxation responses of arteries precontracted with phenylephrine (91.9 +/- 1.5 versus 54.8 +/- 4.5%, p < 0.001) and reduced sensitivity to Ca2+ (ED50 = 1.65 +/- 0.07 versus 4.58 +/- 0.16 mM, p < 0.001). Similar shifts were seen for acetylcholine. When the surface of the wire was cleaned by abrasion with fine sandpaper, both the ED50 for Ca2+ and maximal relaxation significantly improved. An enhanced sensitivity to Ca2+ was also seen when arteries were mounted on newly purchased 14-microm tungsten or 14-microm 24K gold wire with the rank order: 14-microm gold > 14-microm tungsten > 28-microm aged tungsten wire. Laser Raman spectral analysis of the aged 28-microm tungsten wire showed that the surface was in an oxidized state that shared spectral characteristics with the paratungstate [W12O42](-12) anion. The effect of the paratungstate anion on arterial relaxation was therefore tested. Paratungstate, but not the structurally dissimilar tungstate and metatungstate anions, significantly reduced the sensitivity and magnitude of relaxation induced by Ca2+ and to a lesser extent, relaxation induced by acetylcholine. To learn whether paratungstate inhibits relaxation through the generation of oxygen radicals, the effect of the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (1 mM) was assessed and found to have no effect. Since Ca2+-induced relaxation is inhibited by iberiotoxin, the effect of paratungstate on K+ channel activity was assessed. Paratungstate had no effect on currents through large conductance, Ca2+-activated K+ channels in whole-cell recordings from vascular smooth muscle cells, ruling out an action at the BK(Ca) channel. We conclude that: 1) surface oxidation of tungsten wire commonly used in wire myography significantly and adversely affects vascular responses to vasodilator compounds, 2) the effect is likely mediated by the paratungstate anion, and 3) the effects of the anion are not associated with free radical generation or K+ channel inhibition.  相似文献   

19.
The pharmacological effects of YC-170, a new dihydropyridine derivative, were studied in the rabbit aortic strips and guinea pig cardiac preparations and compared with those of Bay K 8644. In the rabbit aortic strips, YC-170 produced contraction in normal physiological saline solution ([K+]0 = 5.9 mM) in a concentration-dependent manner. Increasing the [K+]0 of the medium to 15 mM enhanced the contractile response. The maximum contraction produced by YC-170 at [K+]0 of 15 mM was comparable to that by Bay K 8644. However, YC-170 induced relaxation when the strip was contracted by 60 mM K+. In guinea pig left atrium, YC-170 produced a positive inotropic effect in a concentration-dependent manner, but its extent was far less than that of Bay K 8644. Like Bay K 8644, however, YC-170 increased the time to peak tension and relaxation time of the isometric tension, and prolonged the action potential duration. YC-170 failed to produce a positive inotropic action in the papillary muscle in which Bay K 8644 was a potent positive inotropic agent. In spontaneously beating right atria, YC-170 caused a negative chronotropic effect, whereas Bay K 8644 a positive one. The positive inotropic and vasoconstrictor effects of YC-170 were antagonized competitively by a Ca++ antagonist nicardipine. When the left atria were depolarized with high-K+ medium, the positive inotropic effect of YC-170 was attenuated progressively with increasing [K+]0 and at 13.2 mM K+ a negative inotropic effect was induced by YC-170.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The present study was undertaken to examine the cellular interaction between a Na+/K(+)-ATPase inhibitor, ouabain, and arginine vasopressin (AVP) in rat vascular smooth muscle cells (VSMC) in culture. Preincubation with 10(-5) M ouabain for 60 min increased basal cytosolic free Ca2+ [( Ca2+]i) concentration and intracellular 45Ca2+ uptake. Ouabain, however, did not affect basal 45Ca2+ efflux or AVP-stimulated 45Ca2+ efflux. As assessed by cell shape change, preincubation with 10(-5) M ouabain for 60 min also enhanced the sustained cellular contractile effect of a submaximal (10(-8) M AVP, 21.5% vs. 30.5%, P less than 0.01) but not maximal dose of 10(-6) M AVP. Preincubation with 10(-5) M ouabain for 60 min did not change AVP-induced V1-specific surface receptor binding or AVP-induced inositol phosphate production but did however potentiate the mobilization of [Ca2+]i induced by a submaximal (10(-8) M AVP, 301 vs. 385 nM, P less than 0.01) but not a maximal dose of AVP. These effects of ouabain on the mobilization of [Ca2+]i were abolished by incubation in Ca2(+)-free buffer or 5 X 10(-5) M verapamil. Ouabain (10(-5) M) also enhanced the sustained cellular contractile effect of a direct protein kinase C activator, phorbol 12-myristate 13-acetate. The present results therefore indicate that the inhibition of Na+/K(+)-ATPase may enhance the vascular action of AVP, and perhaps other vasoconstrictors, by increasing the AVP-induced mobilization of [Ca2+]i and by potentiating the activity of protein kinase C stimulated by AVP through enhancing basal and AVP-stimulated cellular Ca2+ uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号