首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has previously been suggested that in human brain tumours, endothelial cell proliferation during angiogenesis is regulated by a paracrine mechanism involving vascular endothelial growth factor (VEGF) and its receptors (VEGF receptor 1 and VEGF receptor 2). The mechanism of growth factor up-regulation is based on hypoxic activation of mRNA expression and mRNA stabilization and genetic events, leading to an increase of growth factor gene expression. The role of the other newly discovered VEGF family members with a high specificity for endothelial cells in the pathogenesis of glial neoplasms is unknown. To investigate which other members of the VEGF family are overexpressed in human brain tumours, the mRNA levels of placenta growth factor (PlGF), VEGF-A, and VEGF-B genes were determined by northern blot analysis in surgically obtained human meningiomas. In the 16 meningiomas examined, the mRNA for PlGF was highly expressed in four tumours and VEGF-A mRNA was highly abundant in three tumour samples. There was no close correlation between PlGF mRNA levels and VEGF-A expression levels. VEGF-B mRNA was abundantly expressed in all tumour samples at uniform levels. In a PlGF-positive tumour sample, immunoreactive VEGFR-1 and VEGFR-2 were detected in endothelial cells of the blood vessels. PlGF protein was detectable in most but not all capillaries of the tumour. PlGF is thus highly up-regulated in a subset of human meningiomas and may therefore have functions, in some tumour vessels, connected to endothelial cell maturation and tube formation. These findings suggest that PlGF, in addition to VEGF-A, may be another positive factor in tumour angiogenesis in human meningiomas. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
3.
BACKGROUND: Vascular endothelial growth factor (VEGF) mediates endothelial cell mitogenesis and enhances vascular permeability. The existence of single or multiple VEGF isoforms and receptors suggests that these proteins may have overlapping but distinct functions, which may be reflected in their cell expression and distribution. METHODS: The localisation of VEGFs A-C and their receptors (VEGFRs 1-3, respectively) in 30 fresh human atherosclerotic arteries, 15 normal uterine arteries, and 15 saphenous veins using immunohistochemistry and western blotting. RESULTS: Saphenous veins showed no staining for VEGF-B or VEGFR-2. Smooth muscle cells (SMCs) showed the strongest staining for VEGF-A, VEGF-B, VEGFR-1, and VEGFR-2 in all specimens. Conversely, VEGFR-3 and VEGF-C were predominantly localised to the endothelial vasa vasorum in normal arteries, whereas medial SMCs showed the strongest staining in atherosclerotic arteries. Western blotting showed variations in VEGF protein localisation, with lower amounts of VEGF-B and VEGF-C in saphenous veins, compared with arterial tissue. Amounts of VEGF-C were lower than those of VEGF-A and VEGF-B in all specimens. CONCLUSION: This study provides direct evidence of the presence of VEGF proteins and receptors in human physiology and pathology, with variations in both the amounts of VEGF proteins expressed and their cellular distribution in normal arteries compared with atherosclerotic arteries. The presence of VEGFs A-C and their receptors in normal arterial tissue implies that VEGF functions may extend beyond endothelial cell proliferation. Reduced VEGFR-2 staining in atherosclerotic arteries may have implications for the atherosclerosis process and the development of vascular disease and its complications.  相似文献   

4.
BACKGROUND: This study was conducted to evaluate the effects of graded concentrations (10(-8), 10(-7) and 10(-6) M) of progesterone receptor (PR) modulator CDB-2914 on the protein contents of PR, of vascular endothelial growth factor (VEGF), adrenomedullin (ADM) and their receptors in cultured human uterine leiomyoma and matching myometrial cells. METHODS: PR-A, PR-B, VEGF-A, VEGF-B, VEGF receptor (VEGFR)-1, VEGFR-2, ADM and ADM receptor (ADMR) contents were assessed by Western blot analysis. RESULTS: Treatment with 100 ng/ml progesterone increased VEGF-A, VEGF-B and ADM contents in cultured leiomyoma cells and normal myometrial cells. The concomitant treatment with 10(-6) M CDB-2914 significantly decreased the progesterone-induced VEGF-A, VEGF-B and ADM contents in cultured leiomyoma cells but not in normal myometrial cells. CDB-2914 treatment alone decreased VEGFR-1, VEGFR-2 and ADMR contents in cultured leiomyoma cells but not in normal myometrial cells. CDB-2914 treatment increased PR-A and decreased PR-B contents in cultured leiomyoma cells in a dose-dependent manner compared with untreated cultures, whereas no significant changes in PR isoform contents were observed in normal myometrial cells. CONCLUSIONS: These results suggest that CDB-2914 down-regulates VEGF, ADM and their receptor contents and modulates PR isoform contents in cultured leiomyoma cells in a cell-type-specific manner.  相似文献   

5.
Human placental development combines elements of tumorigenesis and vasculogenesis. The organ's specialized epithelial cells, termed cytotrophoblasts, invade the uterus where they reside in the interstitial compartment. They also line uterine arteries and veins. During invasion, ectodermally derived cytotrophoblasts undergo pseudovasculogenesis, switching their adhesion molecule repertoire to mimic that of vascular cells. Failures in this transformation accompany the pregnancy complication preeclampsia. Here, we used a combination of in situ and in vitro analyses to characterize the cell's expression of vascular endothelial growth factor (VEGF) family ligands and receptors, key regulators of conventional vasculogenesis and angiogenesis. Cytotrophoblast differentiation and invasion during the first and second trimesters of pregnancy were associated with down-regulation of VEGF receptor (VEGFR)-2. Invasive cytotrophoblasts in early gestation expressed VEGF-A, VEGF-C, placental growth factor (PlGF), VEGFR-1, and VEGFR-3 and, at term, VEGF-A, PlGF, and VEGFR-1. In vitro the cells incorporated VEGF-A into the surrounding extracellular matrix; PlGF was secreted. We also found that cytotrophoblasts responded to the VEGF ligands they produced. Blocking ligand binding significantly decreased their expression of integrin alpha1, an adhesion molecule highly expressed by endovascular cytotrophoblasts, and increased apoptosis. In severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome, immunolocalization on tissue sections showed that cytotrophoblast VEGF-A and VEGFR-1 staining decreased; staining for PlGF was unaffected. Cytotrophoblast secretion of the soluble form of VEGFR-1 in vitro also increased. Together, the results of this study showed that VEGF family members regulate cytotrophoblast survival and that expression of a subset of family members is dysregulated in severe forms of preeclampsia.  相似文献   

6.
Signaling pathways induced by vascular endothelial growth factor (review)   总被引:7,自引:0,他引:7  
Vasculogenesis and angiogenesis are the mechanisms responsible for the development of the blood vessels. Angiogenesis refers to the formation of capillaries from pre-existing vessels in the embryo and adult organism, while vasculogenesis is the development of new blood vessels from the differentiation of endothelial precursors (angioblasts) in situ. Vascular endothelial growth factor (VEGF) family members are major mediators of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to promote endothelial cell viability, mitogenesis, chemotaxis, and vascular permeability. It mediates its activity mainly via two tyrosine kinase receptors, VEGFR-1 (flt-1) and VEGFR-2 (flk-1/KDR), although other receptors, such as neuropilin-1 and -2, can also bind VEGF. Another tyrosine kinase receptor, VEGFR-3 (flt-4) binds VEGF-C and VEGF-D and is more important in the development of lymphatic vessels. While the functional effects of VEGF on endothelial cells has been well studied, not as much is known about VEGF signaling. This review summarizes the different pathways known to be involved in VEGF signal transduction and the biological responses triggered by the VEGF signaling cascade.  相似文献   

7.
The known responses of vascular endothelial growth factor (VEGF) are mediated through VEGF receptor-2 (VEGFR-2/KDR) in endothelial cells. However, it is unknown whether VEGFR-1 (Flt-1) is an inert decoy or a signaling receptor for VEGF during physiological or pathological angiogenesis. Here we report that VEGF-stimulated nitric oxide (NO) release is inhibited by blockade of VEGFR-1 and that VEGFR-1 via NO negatively regulates of VEGFR-2-mediated proliferation and promotes formation of capillary networks in human umbilical vein endothelial cells (HUVECs). Inhibition of VEGFR-1 in a murine Matrigel angiogenesis assay induced large aneurysm-like structures. VEGF-induced capillary growth over 14 days was inhibited by anti-VEGFR-2-blocking antibody as determined by reduced tube length between capillary connections (P < 0.0001) in an in vitro angiogenesis assay. In contrast, loss of VEGFR-1 activity with a neutralizing anti-VEGFR-1 antibody resulted in an increase in the accumulation of endothelial cells (P < 0.0001) and a dramatic decrease in the number of capillary connections that were restored by the addition of NO donor. Porcine aortic endothelial (PAE) cells expressing human VEGFR-1 but not VEGFR-2 plated on growth factor-reduced Matrigel rearranged into tube-like structures that were prevented by anti-VEGFR-1 antibody or a cGMP inhibitor. VEGF stimulated NO release from VEGFR-1- but not VEGFR-2-transfected endothelial cells and placenta growth factor-1 stimulated NO release in HUVECs. Blockade of VEGFR-1 increased VEGF-mediated HUVEC proliferation that was inhibited by NO donors, and potentiated by NO synthase inhibitors. These data indicate that VEGFR-1 is a signaling receptor that promotes endothelial cell differentiation into vascular tubes, in part by limiting VEGFR-2-mediated endothelial cell proliferation via NO, which seems to be a molecular switch for endothelial cell differentiation.  相似文献   

8.
Ueda N  Wise LM  Stacker SA  Fleming SB  Mercer AA 《Virology》2003,310(2):298-309
We have identified a gene encoding a homolog of vascular endothelial growth factor (VEGF) in the Pseudocowpox virus (PCPV) genome. The predicted protein shows 27% amino acid identity to human VEGF-A. It also shows 41 and 61% amino acid identity to VEGFs encoded by orf virus (ORFV) strains NZ2 and NZ7, respectively. Assays of the expressed VEGF-like protein of PCPV (PCPV(VR634)VEGF) demonstrated that PCPV(VR634)VEGF is mitogenic for endothelial cells and is capable of inducing vascular permeability. PCPV(VR634)VEGF bound VEGF receptor-2 (VEGFR-2) but did not bind VEGFR-1 or VEGFR-3. These results indicate that PCPV(VR634)VEGF is a biologically active member of the VEGF family which shares with the ORFV-encoded VEGFs a receptor binding profile that differs from those of all cellular members of the VEGF family. It seems likely that the biological activities of PCPV(VR634)VEGF contribute to the proliferative and highly vascularized nature of PCPV lesions.  相似文献   

9.
BACKGROUND: An extracellular matrix tenascin-X (TNX) is highly expressed in muscular tissues, especially heart and skeletal muscle, and is also prominent around blood vessels. The precise in vivo role of TNX remains to be elucidated. To identify proteins that interact with TNX in the extracellular environment, we searched for TNX-binding proteins using a yeast two-hybrid system. RESULTS: We used mouse TNX-specific fibronectin type III repeats (mTNX/FNIII13-25) as a bait for the screening. We found that vascular endothelial growth factor B (VEGF-B) binds to mTNX/FNIII13-25. This interaction was confirmed by pull-down assays and co-immunoprecipitation assays. The full-length mTNX, as well as mTNX/FNIII13-25, interacted with both alternative splice isoforms VEGF-B186 and VEGF-B167. Furthermore, the full-length mTNX also bound to VEGF-A. The minimal region of TNX that interacts with VEGF-B was mapped to the FNIII repeats (FNIII13-25) but not to the other characteristic domains of TNX. The TNX-binding site of VEGF-B was located in the N-terminal 115-amino acid region. mTNX/FNIII13-25 did not prevent the interaction of VEGF-B with VEGFR-1 (VEGF receptor 1), and VEGF-B could simultaneously bind to both mTNX/FNIII13-25 and VEGFR-1. A conditioned medium from transfected 293T cells coexpressing full-length TNX and VEGF-B could promote DNA synthesis in bovine endothelial cells in which VEGFR-1 were expressed. VEGFR-1 phosphorylation triggered by VEGF-B186 were increased in cells plated with mTNX/FNIII13-25 or full-length mTNX, compared with cells plated with VEGF-B186 alone. CONCLUSION: TNX interacts with VEGF-B and enhances the ability of VEGF-B to stimulate cell proliferation. This enhanced mitogenecity is caused by increased signals mediated by the VEGFR-1 receptor. This finding suggests a role for TNX in the regulation of the development of blood vessels such as vasculogenesis and angiogenesis.  相似文献   

10.
Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.  相似文献   

11.
12.
Multiple growth factors regulate coronary embryonic vasculogenesis.   总被引:2,自引:0,他引:2  
Mechanisms regulating coronary vascularization are not well understood. To test hypotheses regarding the influence of key growth factors and their interactions, we studied vascular tube formation (vasculogenesis) in collagen gels onto which quail embryonic ventricles were placed and incubated in the presence of growth factors or inhibitors. Vasculogenesis in this model is dependent on tyrosine kinase receptors, since tube formation was totally blocked by genestein. Tube formation was attenuated when anti-bFGF or anti-VEGF neutralizing antibodies were added to the medium and nearly completely inhibited when the both were added. The attenuation associated with anti-VEGF was due primarily to a decrease in assembly of endothelial cells, while that associated with bFGF was primarily due to a reduction in endothelial cells. Soluble tie-2, the receptor for angiopoietins, also had an inhibitory effect and, when added with either anti-bFGF or anti-VEGF, markedly attenuated tube formation. At optimal doses, tube formation was enhanced 6.5-fold by bFGF and 2.5-fold by VEGF over the controls. Each of these growth factors was dependent upon the other for optimal induction of tube formation, since neutralizing antibodies to one markedly reduced the potency of the other. VEGF potency was also markedly reduced when soluble tie-2 was added to the medium. Tube formation was virtually totally blocked by exogenous TGF-beta at doses > 1 ng/ml, while neutralizing TGF-beta antibodies enhanced tube formation 2-fold in the 30 ng-30 microg range. These data provide the first documentation of multiple growth factor regulation of coronary tube formation.  相似文献   

13.
VEGF, its receptors and the tie receptors in recurrent miscarriage   总被引:15,自引:0,他引:15  
The aetiology of recurrent miscarriage (at least three consecutive miscarriages) usually remains unsolved. The vascular endothelial growth factor (VEGF) family of proteins, together with their receptors and the Tie (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains) receptors, are crucial for embryonic development. Therefore, we used immunohistochemistry to analyse the expression of VEGF, the VEGF receptors (VEGFR)-1, -2, and -3, and the Tie-1 and Tie-2 receptors in placental and decidual tissue of women with a history of recurrent miscarriage and missed abortion (MA; n = 12) or blighted ovum (BO; n = 6), and from normal early terminated pregnancies (n = 12). Compared with controls, the MA and BO groups showed: (i) diminished placental trophoblastic VEGF immunoreactivity; (ii) weaker VEGFR-1 and -2 immunoreactivity in decidual vascular endothelium; (iii) reduced placental trophoblastic Tie-1 receptor immunoreactivity; and (iv) reduced decidual vascular endothelial Tie-1 and -2 receptor immunoreactivity. The absence of VEGFR-3 immunoreactivity in decidual vascular endothelium was also noted in all study groups. Interestingly, placental villi from the BO group presented blood vessel-like structures negative for von Willebrand factor, but positive for VEGF, VEGFR-1, -2, -3, Tie-1 and Tie-2 receptor. We conclude that the expression of these antigens may be altered in recurrent miscarriages.  相似文献   

14.
Angiogenesis is essential for tumour growth and metastasis. It is regulated by numerous angiogenic factors, one of the most important being vascular endothelial growth factor (VEGF). Recently VEGF-B, a new VEGF family member that binds to the tyrosine kinase receptor flt-1, has been identified. Although the importance of VEGF has been shown in many human tumour types, the contribution of VEGF-B to tumour neovascularization is unknown in any tumour type. This study therefore measured the mRNA level of VEGF-B and its receptor flt-1 by ribonuclease protection assay and the pattern of VEGF-B expression by immunohistochemistry in 13 normal breast samples and 68 invasive breast cancers. Flt-1 expression was significantly higher in tumours than in normal breast (p=0.02) but no significant difference was seen in VEGF-B between normal and neoplastic breast (p=0.3). There was a significant association between VEGF-B and node status (p=0.02) and the number of involved nodes (p=0.01), but not with age (p=0.7), size (p=0.6), oestrogen receptor (ER) (p=0.2), grade (p=0.5) or vascular invasion (p=0.16). No significant relationship was present between VEGF-B and flt-1 (p=0.2) or tumour vascularity (p=0.4). VEGF-B was expressed mostly in the cytoplasm of tumour cells, although occasional stromal components including fibroblasts and endothelial cells were also positive. No difference in VEGF-B expression was observed adjacent to regions of necrosis, in keeping with this VEGF family member not being hypoxically regulated. These findings suggest that VEGF-B may contribute to tumour progression by a non-angiogenic mechanism, possibly by increasing plasminogen activators and hence metastasis, as has been described in vitro. Measurement of VEGF-B together with other angiogenic factors may identify a poor prognostic patient group, which may benefit from anti-VEGF receptor therapy targeted to flt-1 (VEGFR1) as well as kdr (VEGFR2).  相似文献   

15.
Growth factors are a class of signaling proteins that direct cell fate through interaction with cell-surface receptors. Although a myriad of possible cell fates stems from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature.  相似文献   

16.
Parapoxvirus of red deer in New Zealand (PVNZ), a species of the Parapoxvirus genus, causes scabby lesions on the skin and the velvet of red deer. The three other species of the genus have each been shown to encode homologs of vascular endothelial growth factor (VEGF). We report here that PVNZ strain RD86 also encodes a VEGF and that the predicted PVNZ protein shows only 37-54% amino acid identity to VEGFs encoded by the other species of the genus. Despite this extensive sequence divergence, assays of purified PVNZ VEGF (PVNZ(RD86)VEGF) demonstrated that it shares the unique VEGF receptor (VEGFR) binding profile of the other parapoxvirus VEGFs, in that it binds VEGFR-2 and induces VEGFR-2-mediated proliferation of Ba/F3-derived cells, but does not bind VEGFR-1 or VEGFR-3. In contrast to some other viral VEGFs, it does not bind neuropilin-1. Our results indicate that PVNZ(RD86)VEGF is a biologically active member of the VEGF family and is likely to contribute to the proliferative and highly vascularized nature of PVNZ lesions. Our data also reveal that all members of the genus encode a VEGF and that an extraordinary degree of inter-species sequence variation is a general feature of the parapoxvirus VEGFs.  相似文献   

17.
The bursa of Fabricius is a lymphoid organ of the chick which plays an important role in the development of the immune system. The role of angiogenic factors in the development of the vascular system of this organ has been poorly investigated. Vascular endothelial growth factor (VEGF) is a major regulator of endothelial cell proliferation, angiogenesis and vascular permeability, and its activities are mediated by two receptors, VEGFR-1 and VEGFR-2. In this study we have investigated by immunohistochemistry the VEGF and VEGFR-2 immunoreactivity in developing bursa of Fabricius. Starting from day 10 of incubation, the endodermal epithelium reacts with VEGF and gives rise to the lymphoid follicles, while the vascular endothelium reacts with VEGFR-2. These data support the view that VEGF acts as a paracrine stimulator of angiogenesis in the avian embryo and confirm the requirement of the endodermal layer for the normal formation of blood vessels by mesodermal cells.  相似文献   

18.
We performed a morphological study of placentas from women with type 1 diabetes mellitus receiving insulin therapy (insulin pump). Expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1, VEGFR-2, VEGFR-3) was demonstrated by immunohistochemical methods. Processes of branched angiogenesis predominated in the placentas from women with type 1 diabetes mellitus. Immunohistochemical study revealed more intensive reaction of VEGF and its receptors in syncytiotrophoblast and capillary endothelium of terminal villi.  相似文献   

19.
Vascular endothelial growth factor (VEGF) receptors are present on nonendothelial cells suggesting that VEGF may mediate nonendothelial effects during organogenesis and tumorigenesis. Here we show that VEGF receptor-1 (VEGFR-1) negatively regulates VEGFR-2-mediated proliferation via nitric oxide (NO) in an epithelial cancer cell line ECV304. Cell proliferation was assessed by [(3)H]thymidine incorporation, fluorescent-activated cell-sorting analysis, and cell number using a Coulter Counter. Total NO generated by the action of nitric oxide synthase was measured by Seivers NOA 280 Nitric Oxide Chemiluminescence Analyser. VEGF (1 ng/ml) stimulated DNA synthesis and increased ECV304 cell number in a manner that was inhibited by a neutralizing anti-VEGFR-2 antibody. In contrast, VEGF (50 ng/ml) stimulated NO release in a manner that was inhibited by functionally neutralizing anti-VEGFR-1 antibody. Blockage of the VEGFR-1 receptor signal with anti-VEGFR-1 stimulated DNA synthesis and increased cell number. Cell-cycle analysis showed that inhibition of VEGFR-1 increased the transition from G(1) to S phase whereas inhibition of VEGFR-2 blocked the VEGF-mediated transition from G(1) to S phase. Finally, the addition of NO donors suppressed both VEGF-mediated proliferation and the increase in growth after blockade of VEGFR-1. Conversely, inhibition of VEGF mediated NO release by nitric oxide synthase inhibitor, L-monomethyl-L-arginine, restored the mitogenic effect of VEGF. These findings identify a dose-dependent reciprocal regulatory mechanism for VEGF via its two receptors. It shows that VEGFR-1 induces cell cytostasis via NO and as such is a suitable target for molecular strategies suppressing tumorigenesis.  相似文献   

20.
Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号