首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.  相似文献   

2.
Rainbow trout embryos and larvae were exposed to 0, 0.1, and 1 microg/L total silver (as AgNO3) in water of three different hardnesses (soft water [2 mg/L as CaCO3], moderately hard water [150 mg/L], and hard water [400 mg/L]) in a flow-through system from fertilization to swim-up (64 d). The objective of the study was to investigate the effects of water hardness on chronic silver toxicity. In the absence of silver, elevating hardness had a positive effect on early life stage survival and development, significantly decreasing mortality and accelerating time to 50% swim-up. Following hatch, exposure to 1 microg/L Ag significantly increased mortality relative to exposure to 0 microg/L Ag. No significant effects of silver on time to 50% hatch were observed; however, time to 50% swim-up was delayed, and 50% swim-up was not achieved over the course of the experiment during some exposures to 1 microg/L Ag. These results suggest that the current Canadian Water Quality Guideline (http://www.ccme.ca/assets/pdf/e1_062.pdf) of 0.1 microg/L Ag is sufficient in preventing mortality and altered development in early life stages of rainbow trout. Increasing water hardness from 2 to 150 or 400 mg/L was modestly protective against the mortality and delays in time to 50% swim-up associated with exposure to 1 microg/L Ag. The 150- and 400-mg/L hardnesses were equally protective against mortality, but 150-mg/L was more protective than 400-mg/L hardness against the delays in time to 50% swim-up. Overall, the protective effects of hardness on chronic silver toxicity in early life stages of rainbow trout are modest but similar to the protection afforded to acute silver toxicity in juvenile and adult rainbow trout.  相似文献   

3.
Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334–668 mg/L; 96-h ALC50). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in a 30-day safety factor of 559 (e.g., 76/0.163). Assessment of the exposure and response data presented herein indicates that use of 2,4-D acid for invasive weed control in aquatic and terrestrial habitats poses no substantial risk to growth or survival of rainbow trout or other salmonids, including the threatened bull trout (Salvelinus confluentus).  相似文献   

4.
Toxicity of cadmium to early life stages of brown trout (Salmo trutta) was determined at multiple water hardnesses. Increasing water hardness decreased cadmium toxicity. Postswimup fry were much more sensitive than embryos and larvae. Chronic values from early life stage tests initiated with eyed embryos were 3.52, 6.36, and 13.6 microg Cd/L at water hardnesses of 30.6, 71.3, and 149 mg/L, respectively. In tests initiated with 30-d postswimup fry, chronic values were 1.02, 1.83, and 6.54 microg Cd/L at water hardnesses of 29.2, 67.6, and 151 mg/L, respectively. Higher chronic values from the early life stage tests compared to tests initiated with swimup fry likely are caused by acclimation during cadmium-tolerant embryo and larval stages. Growth was not affected by cadmium in the early life stage tests but was negatively affected in tests initiated with fry at water hardnesses of 29.2 and 67.6 mg/L. Concentrations of cadmium that reduced growth were higher than those that increased mortality. Median lethal concentrations for swimup fry after 96 h were 1.23, 3.90, and 10.1 microg Cd/L at water hardnesses of 29.2, 67.6, and 151 mg/L, respectively. Test results enable prediction of acute mortality of brown trout swimup fry based on cadmium concentration and water hardness.  相似文献   

5.
Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.  相似文献   

6.
Studies were initiated to determine the acute toxicity of technical grade glyphosate (MON0573), the isopropylamine salt of glyphosate (MON0139), the formulated herbicide Roundup® (MON02139), and the Roundup® surfactant (MON0818) to four aquatic invertebrates and four fishes: daphnids (Daphnia magna), scuds (Gammarus pseudolimnaeus), midge larvae (Chironomous plumosus), mayfly nymphs (Ephemerella walkeri), Rainbow trout (Salmo gairdneri), fathead minnows (Pimephales promelas), channel catfish (Ictalurus punctatus), and bluegills (Lepomis macrochirus). Acute toxicities for Roundup ranged from 2.3 mg/L (96-h LC50, fathead minnow) to 43 mg/L (48-h EC50, mature scuds). Toxicities of the surfactant were similar to those of the Roundup formulation. Technical glyphosate was considerably less toxic than Roundup or the surfactant; for midge larvae, the 48-h EC50 was 55 mg/L and for rainbow trout, the 96-h LC50 was 140 mg/L. Roundup was more toxic to rainbow trout and bluegills at the higher test temperatures, and at pH 7.5 than at pH 6.5. Toxicity did not increase at pH 8.5 or 9.5. Eyed eggs were the least sensitive life stage, but toxicity increased markedly as the fish entered the sac fry and early swim-up stages. No changes in fecundity or gonadosomatic index were observed in adult rainbow trout treated with the isopropylamine salt or Roundup up to 2.0 mg/L. The aging of Roundup test solutions for seven days did not reduce toxicity to midge larvae, rainbow trout or bluegills. In avoidance studies, rainbow trout did not avoid concentrations of the isopropylamine salt up to 10.0 mg/L; mayfly nymphs avoided 10.0 mg/L of Roundup, but not 1.0 mg/L. In a simulated field application, midge larvae avoided 2.0 mg/L of Roundup. Application of Roundup, at recommended rates, along ditchbank areas of irrigation canals should not adversely affect resident populations of fish or invertebrates. However, spring applications in lentic situations, where dissolved oxygen levels are low or temperatures are elevated, could be hazardous to young-of-the-year-fishes.  相似文献   

7.
Under certain conditions, nitrite can be present in freshwater systems in quantities that are toxic to the fauna. I exposed wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and young tadpoles and larvae to elevated concentrations of nitrite in chronic toxicity tests: 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg/L NO2-N, exposing individuals as both embryos and larvae. Nitrite caused significant declines in wood frog hatching success (3.4 mg/L NO2-N, wood frog), and lower concentrations caused significant mortality during the early larval stages (4.6 mg/L NO2-N, salamander; 0.5 mg/L NO2-N, wood frog). Later tests exposing individuals to nitrite only after hatching showed that both wood frog and tiger salamander vulnerability to nitrite declined shortly after hatching. Hence, examining a single life-history stage, especially later in development, may miss critical toxic effects on organisms, causing the researcher potentially to underestimate seriously the ecological consequences of nitrite exposure.  相似文献   

8.
The acute toxicities of boron, molybdenum, and various forms of selenium, individually and in environmentally relevant mixtures, to swim-up and advanced fry of chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) were determined in site-specific fresh and brackish waters. Boron and molybdenum were relatively non-toxic (96-hr LC50s > 100 mg/L) to both life stages of both species. Selenite was significantly more toxic than selenate to both species. Swim-up fry tested in fresh water were significantly more sensitive than advanced fry in brackish water to selenate and selenite. No mortalities occurred in any concentrations tested of seleno-DL-methionine; however, in the highest concentration (21.6 mg Se/L), at least 50% of the fish showed pronounced surfacing behavior. Coho salmon were more sensitive than chinook salmon to both selenate and selenite at either life stage; only the swim-up fry of coho salmon were more sensitive than chinook salmon to boron. In additional tests with swim-up chinook salmon, differences in the characteristics of the dilution water did not significantly modify the relative toxicities of boron, selenate, and selenite. In binary mixture studies, the joint acute toxic action of selenate and selenite, combined in various ratios, was additive to both species. Based on a comparison of the individual acute values for chinook salmon to the expected environmental concentrations, the margin of safety for boron was only 56 in fresh and 46 in brackish water. The margins of safety for selenate and selenite exceeded 275 in both fresh and brackish waters. However, the margin of safety for both selenate and selenite in the mixture test was 145 in fresh water and 220 in brackish water.  相似文献   

9.
Diesel is a complex mixture containing polycyclic aromatic hydrocarbons, which persist after a spill, pass readily from water into tissues, and are toxic to early life stages of fish. The bioavailability and chronic toxicity of hydrocarbons dissolved into water from floating diesel (water-accommodated fraction) and chemically dispersed diesel (chemically enhanced water-accommodated fraction) were measured by the extent of ethoxyresorufin-O-deethylase (EROD) induction in juvenile rainbow trout (Oncorhynchus mykiss) and by the severity of blue sac disease in embryos. The water-accommodated fraction of floating diesel was virtually nontoxic to embryos at nominal concentrations up to 1,000 mg/L, causing only small weight changes. Liver EROD induction in juvenile trout was only observed at the highest nominal water-accommodated fraction concentration (10,000 mg/L). Chemical dispersion increased the bioavailability and toxicity of diesel to trout by 100-fold. Diesel chemically enhanced water-accommodated fraction induced EROD activity, caused blue sac disease, and impaired development and growth of embryonic trout at nominal concentrations as low as 10 mg/L; 88% mortality occurred at 100 mg/L. However, when total hydrocarbon concentrations were measured, differences between dispersed and undispersed diesel disappeared, with a median lethal concentration of 8 mg/L of total hydrocarbons and sublethal median effective concentrations ranging from 1.3 to 6.1 mg/L. Dispersion of diesel by high-energy mechanical mixing was recently reported to cause acute lethality to juvenile trout between 40 and 200 mg/L. Therefore, dispersion of oil by any means increases the bioavailability and apparent toxicity of diesel to fish embryos without changing the toxicity of its components. Nevertheless, in an actual spill, dispersion of diesel increases the effects of oil on fish populations.  相似文献   

10.
Continuous-flow toxicity tests were conducted to determine acute toxic effects of butoxy-ethanol ester (BOEE) and propylene glycol butyl ether ester (PGBEE) formulations of 2,4-D on juvenile chinook salmon (Oncorhynchus tshawytscha) and steelhead-rainbow trout (Salmo gairdneri). A chronic toxicity test with chinook salmon egg-to-fry was conducted to determine effects of BOEE on survival and growth. The hydrolysis in water of 2,4-D esters to 2,4-D acid was influenced by the presence of fish. Median lethal concentrations (96-hr LC50 values) indicated that PGBEE (170 to 355 g/L) was slightly more toxic (37 to 57%) than BOEE (303 to 525 g/L). The LC50 values also indicated that chinook salmon were generally more sensitive than steelhead-rainbow trout and that fry and smolts were equally sensitive to the 2,4-D esters. Static tests substantially underestimated BOEE toxicity when compared to dynamic tests. Based on reduced survival and growth of chinook salmon alevins and fry, the estimated maximum safe chronic exposure concentration under these test conditions is 40 g/L BOEE.  相似文献   

11.
The authors conducted 150 tests of the acute toxicity of resident fish and invertebrates to Cd, Pb, and Zn, separately and in mixtures, in waters from the South Fork Coeur d'Alene River watershed, Idaho, USA. Field-collected shorthead sculpin (Cottus confusus), westslope cutthroat trout (Oncorhynchus clarkii lewisi), two mayflies (Baetis tricaudatus and Rhithrogena sp.), a stonefly (Sweltsa sp.), a caddisfly (Arctopsyche sp.), a snail (Gyraulus sp.), and hatchery rainbow trout (Oncorhynchus mykiss), were tested with all three metals. With Pb, the mayflies (Drunella sp., Epeorus sp., and Leptophlebiidae), a Simuliidae black fly, a Chironomidae midge, a Tipula sp. crane fly, a Dytiscidae beetle, and another snail (Physa sp.), were also tested. Adult westslope cutthroat trout were captured to establish a broodstock to provide fry of known ages for testing. With Cd, the range of 96-h median effect concentrations (EC50s) was 0.4 to >5,329 μg/L, and the relative resistances of taxa were westslope cutthroat trout ≈ rainbow trout ≈ sculpin < other taxa; with Pb, EC50s ranged from 47 to 3,323 μg/L, with westslope cutthroat trout < rainbow trout < other taxa; and with Zn, EC50s ranged from 21 to 3,704 μg/L, with rainbow trout < westslope cutthroat trout ≈ sculpin < other taxa. With swim-up trout fry, a pattern of decreasing resistance with increasing fish size was observed. In metal mixtures, the toxicities of the three metals were less than additive on a concentration-addition basis.  相似文献   

12.
The effects of ammonium nitrate, ammonium chloride, ammonium sulfate, and sodium nitrate on survival and growth of Pacific treefrog (Pseudacris regilla) and African clawed frog (Xenopus laevis) embryos were determined in static-renewal tests. The 10-day LC50s for the three ammonium compounds for P. regilla ranged from 25.0–32.4 mg/L NH4 -N. The 10-day sodium nitrate LC50 for P. regilla was 578.0 mg/L NO3-N. LC50s for X. laevis exposed for 4 or 5 days to the three ammonium compounds ranged from 27.5–60.2 mg/L NH4-N. The sodium nitrate LC50 for X. laevis ranged from 438.4–871.6 mg/L NO3-N. The lowest LOAEL based on length or weight was 6.1 mg/L NH4-N for the two species. The lowest LOAELs for NO3-N were 111.1 mg/L for P. regilla and 56.7 mg/L for X. laevis. Calculated unionized NH3 comprised 0.5–1.8% of measured NH4-N concentrations. Potential harm to amphibian populations could occur if NH4-N and NO3-N in agricultural runoff or drainage impacts sensitive life stages for a sufficiently long period. Received: 9 April 1998/Accepted: 16 August 1998  相似文献   

13.
The acute and chronic toxicity of zinc to wild mottled sculpin (Cottus bairdi) was measured with 13-d and 30-d flow-through toxicity tests, respectively. Exposure water hardness was 48.6 mg/L as CaCO3 and 46.3 mg/L as CaCO3 in the acute and chronic tests, respectively; pH was slightly above neutral; and temperature near 12 degrees C. The median lethal concentration (LC50) after 96 h was 156 microg Zn/L, but decreased with exposure duration to a median incipient lethal level (ILL50) of 38 microg Zn/L after 9 d, the lowest zinc LC50 reported for any fish species. The 30-d chronic no-effect and lowest-effect concentrations were 16 microg Zn/L (no mortality) and 27 microg Zn/L (32% mortality), respectively. The ILL50 was 32 microg Zn/L. No sublethal growth differences were observed during the chronic test. Analysis of the results from these tests suggested that mottled sculpin may experience acute and chronic toxicity at zinc concentrations lower than any other fish species tested to date. Protection of aquatic communities in stream reaches contaminated by metals seem to require determination of zinc toxicity to lotic species other than trout and other species amenable to aquaculture.  相似文献   

14.
This study evaluated acute and chronic nickel (Ni) toxicity to Ceriodaphnia dubia and Hyalella azteca with the objective of generating information for the development of a biotic ligand model for Ni. Testing with C. dubia was used to evaluate the effect of ambient hardness on Ni toxicity, whereas the larger H. azteca was used to derive lethal body burden information for Ni toxicity. As was expected, acute C. dubia median lethal concentrations (LC50s) for Ni increased with increasing water hardness. The 48-h LC50s were 81, 148, 261, and 400 microg/L at hardnesses of 50, 113, 161, and 253 mg/L (as CaCO3), respectively. Ceriodaphnia dubia was found to be significantly more sensitive in chronic exposures than other species tested (including other daphnids such as Daphnia magna); chronic toxicity was less dependent on hardness than was acute toxicity. Chronic 20% effective concentrations (EC20s) were estimated at <3.8, 4.7, 4.0, and 6.9 microg/L at hardnesses of 50, 113, 161, and 253 mg/L, respectively. Testing with H. azteca resulted in a 96-h LC50 of 3,045 microg/L and a 14-d EC20 of 61 microg/L at a hardness of 98 mg/L (as CaCO3). Survival was more sensitive than was growth in the chronic study with H. azteca. The 20% lethal accumulation effect level based on measured Ni body burdens was 247 nmol/g wet weight.  相似文献   

15.
Lake whitefish (Coregonus clupeaformis) were fed rainbow smelt (Osmerus mordax) in four laboratory tanks over a 133-d experiment. At the start of the experiment, 10 to 14 of the fish in each tank were sacrificed, and the concentrations of 40 polychlorinated biphenyl (PCB) congeners within these fish were determined. Polychlorinated biphenyl congener concentrations were also determined in the 15 lake whitefish remaining in each of the four tanks at the end of the experiment as well as in the rainbow smelt fed to the lake whitefish. Each lake whitefish was weighed at the start and the end of the experiment, and the amount of food eaten by the lake whitefish during the experiment was tracked. Using these measurements, net trophic transfer efficiency (gamma) from the rainbow smelt to the lake whitefish in each of the four tanks was calculated for each of the 40 PCB congeners. Results showed that gamma decreased exponentially as log K(OW) for the congeners increased from 6 to 8. Further, gamma averaged 0.70 for the tetrachloro congeners but averaged only 0.45 for the higher chlorinated congeners.  相似文献   

16.
The chronic (early life stage) toxicity of silver to rainbow trout (Oncorhynchus mykiss) was determined in flow-through exposures. Rainbow trout embryos were exposed to silver (as AgNO3) from 48 h or less postfertilization to 30 d postswimup in soft water in the presence and absence of 49 mg/L of NaCl (30 mg/L of Cl). The studies determined effect levels for rainbow trout exposed throughout an extended development period and assessed possible protective effects of sodium chloride. Lowest-observed-effect concentrations were greater than 1.25 microg/L of dissolved silver for survival, mean day to hatch, mean day to swimup, and whole-body sodium content in both studies. Whole-body silver concentrations increased significantly at 0.13 microg/L of dissolved silver in unmodified water and at 1.09 microg/L of dissolved silver in amended water. The maximum-acceptable toxicant concentration for growth was greater than 1.25 microg/L of dissolved silver in unmodified water and 0.32 microg/L of dissolved silver in amended water. Whole-body silver concentrations were more sensitive than survival and growth end points in unmodified water. Interpretation of sodium chloride effects on chronic silver toxicity to rainbow trout was complicated by differences in measured effect levels that were potentially the result of strain differences between test organisms in the two studies.  相似文献   

17.
Lake whitefish (Coregonus clupeaformis) were collected in 1996 from the St. Lawrence River, Quebec, Canada. Histologic examination was performed on major organs of 497 specimens and on the liver of 48 additional individuals. Preneoplastic and neoplastic hepatic changes consisted of vacuolated cell (n = 65), clear cell (n = 17), and acidophilic (n = 16) foci of altered hepatocyte, hepatocellular carcinoma (n = 12), cholangioma (n = 5), and cholangiocarcinoma (n = 28). Six fish were intersexes (1.2%), and 11.7% of the ovaries (26/223) had ducts containing spermatogonia or more differentiated cells of the male germ cell line. Asynchronous nodular maturation of the testes was present in 8.2% of the male fish (22/267). The mean hepatic concentrations of various contaminants, including polychlorinated biphenyls (PCBs), chlorobenzenes, pesticides, and trace metals, were 6 to 8 times higher in lake whitefish than in three other fish species (Ictalurus punctatus, Catostomus commersoni, and Stizostedion vitreum) collected at the same site. Condition factor of lake whitefish from this study was lower than that previously reported 40 to 50 years ago at this site and from contemporary pristine sites in the Great Lakes, USA. The presence of liver neoplasms, gonadal lesions, and a decreased condition factor in lake whitefish from the St. Lawrence River may be etiologically related to elevated tissue concentrations of toxic chemical contaminants.  相似文献   

18.
Because of their global distribution, persistence, and tendency to bioaccumulate, concerns about perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are growing. We determined the toxicity of PFOS and PFOA in several freshwater organisms, including two cladocerans, Daphnia magna and Moina macrocopa, and the teleost Oryzias latipes. In general, PFOS is approximately 10 times more toxic than PFOA in these organisms. In M. macrocopa, the median lethal concentration (LC50) was 17.95 mg/L for PFOS and 199.51 mg/L for PFOA. Moina macrocopa exhibited greater sensitivity than D. magna to both perfluorinated compounds in both acute and chronic exposures. In the 48-h acute toxicity test, M. macrocopa was approximately two times more sensitive than D. magna. In the 7-d chronic toxicity test, M. macrocopa showed significant reproductive changes at 0.31 mg/L for PFOS, which was approximately seven times lower than the effect concentrations observed over the 21-d exposure in D. magna. Two-generation fish toxicity tests showed that parental exposure to both compounds affected the performance of offspring. Unexposed progeny-generation (F1) fish exhibited elevated mortality and histopathological changes that were correlated with exposure in the parental generation (F0). Continuous exposure from F0 through F1 generations increased the extent of adverse effects. Considering the persistent nature of PFOS and PFOA, more research is required to determine potential consequences of long-term exposure to these compounds in aquatic ecosystems.  相似文献   

19.
Clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) is a pyridine herbicide frequently used to control invasive, noxious weeds in the northwestern United States. Clopyralid exhibits low acute toxicity to fish, including the rainbow trout (Oncorhynchus mykiss) and the threatened bull trout (Salvelinus confluentus). However, there are no published chronic toxicity data for clopyralid and fish that can be used in ecological risk assessments. We conducted 30-day chronic toxicity studies with juvenile rainbow trout exposed to the acid form of clopyralid. The 30-day maximum acceptable toxicant concentration (MATC) for growth, calculated as the geometric mean of the no observable effect concentration (68 mg/L) and the lowest observable effect concentration (136 mg/L), was 96 mg/L. No mortality was measured at the highest chronic concentration tested (273 mg/L). The acute:chronic ratio, calculated by dividing the previously published 96-h acutely lethal concentration (96-h ALC50; 700 mg/L) by the MATC was 7.3. Toxicity values were compared to a four-tiered exposure assessment profile assuming an application rate of 1.12 kg/ha. The Tier 1 exposure estimation, based on direct overspray of a 2-m deep pond, was 0.055 mg/L. The Tier 2 maximum exposure estimate, based on the Generic Exposure Estimate Concentration model (GEENEC), was 0.057 mg/L. The Tier 3 maximum exposure estimate, based on previously published results of the Groundwater Loading Effects of Agricultural Management Systems model (GLEAMS), was 0.073 mg/L. The Tier 4 exposure estimate, based on published edge-of-field monitoring data, was estimated at 0.008 mg/L. Comparison of toxicity data to estimated environmental concentrations of clopyralid indicates that the safety factor for rainbow trout exposed to clopyralid at labeled use rates exceeds 1000. Therefore, the herbicide presents little to no risk to rainbow trout or other salmonids such as the threatened bull trout.  相似文献   

20.
We conducted acute and chronic toxicity studies of the effects of picloram acid on the threatened bull trout (Salvelinus confluentus) and the standard coldwater surrogate rainbow trout (Oncorhynchus mykiss). Juvenile fish were chronically exposed for 30 days in a proportional flow-through diluter to measured concentrations of 0, 0.30, 0.60, 1.18, 2.37, and 4.75 mg/L picloram. No mortality of either species was observed at the highest concentration. Bull trout were twofold more sensitive to picloram (30-day maximum acceptable toxic concentration of 0.80 mg/L) compared to rainbow trout (30-day maximum acceptable toxic concentration of 1.67 mg/L) based on the endpoint of growth. Picloram was acutely toxic to rainbow trout at 36 mg/L (96-h ALC50). The acute:chronic ratio for rainbow trout exposed to picloram was 22. The chronic toxicity of picloram was compared to modeled and measured environmental exposure concentrations (EECs) using a four-tiered system. The Tier 1, worst-case exposure estimate, based on a direct application of the current maximum use rate (1.1 kg/ha picloram) to a standardized aquatic ecosystem (water body of 1-ha area and 1-m depth), resulted in an EEC of 0.73 mg/L picloram and chronic risk quotients of 0.91 and 0.44 for bull trout and rainbow trout, respectively. Higher-tiered exposure estimates reduced chronic risk quotients 10-fold. Results of this study indicate that picloram, if properly applied according to the manufacturer’s label, poses little risk to the threatened bull trout or rainbow trout in northwestern rangeland environments on either an acute or a chronic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号