首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens, pheasants, and peafowl. It is caused by the alpha herpesvirus, infectious laryngotracheitis virus (ILTV). Glycoprotein D (gD) of ILTV is immunogenic and helps in its binding to the susceptible host cell receptor. In the present study, a recombinant gD protein was expressed in a prokaryotic system to develop a single serum dilution ELISA. In addition, two immunogenic peptides, corresponding to regions 77–89 and 317–328, were identified in gD protein. The peptides were synthesized using solid-phase peptide synthesis, purified using reversed-phase HPLC, and characterized using mass spectrometry. The peptides displayed a good titre and were found to be promising antigens to coat the ELISA plate to detect the ILTV antibodies in the serum sample. The developed ELISA showed 96.9% sensitivity, 87.5% specificity, and 95.3% accuracy as compared to OIE referenced standard indirect ILTV ELISA (whole viral coated). The assay may not differentiate vaccinated from infected birds when the flocks are administered with live attenuated vaccines. However, the assay could be useful to detect the disease condition in birds vaccinated with recombinant vaccine expressing glycoproteins other than gD. The developed ILTV single serum dilution ELISA could be an alternative to the existing diagnostics for the detection of ILTV antibodies.  相似文献   

2.
Infectious laryngotracheitis (ILT) is an acute respiratory disease of chickens controlled through vaccination with live-modified attenuated vaccines, the chicken embryo origin (CEO) vaccines and the tissue-culture origin (TCO) vaccines. Recently, novel recombinant vaccines have been developed using herpesvirus of turkey (HVT) and fowl pox virus (FPV) as vectors to express ILTV immunogens for protection against ILT. The objective of this study was to assess the protection efficacy against ILT induced by recombinants, live-modified attenuated, and inactivated virus vaccines when administered alone or in combination. Commercial layer pullets were vaccinated with one or more vaccines and challenged at 35 (35 WCH) or 74 weeks of age (74 WCH). Protection was assessed by scoring clinical signs; and by determining the challenge viral load in the trachea at five days post-challenge. The FPV-LT vaccinated birds were not protected when challenged at 35 weeks; the HVT-LT and TCO vaccines in combination provided protection similar to that observed in chickens vaccinated with either HVT-LT or TCO vaccines when challenged at 35 weeks, whereas protection induced by vaccination with HVT-LT followed by TCO was superior in the 74 WCH group compared with the 35 WCH group. Birds given the inactivated ILT vaccine had fewer clinical signs and/or lower viral replication at 74 WCH when combined with TCO or HVT-LT, but not when given alone. Finally, the CEO-vaccinated birds had top protection as indicated by reduction of clinical signs and viral replication when challenged at 35 weeks (74 weeks not done). These results suggest that certain vaccine combinations may be successful to produce long-term protection up to 74 weeks of age against ILT.  相似文献   

3.
Infectious laryngotracheitis (ILT) is an acute respiratory disease of chickens and a cause of great economic loss in commercial layers. The aims of this study were to investigate the prevalence of ILT in the field outbreaks and to compare the characteristics of ILT-infected and free flocks of commercial layers. A total of 625 blood serum samples were collected from 25 different layer flocks. The presence of antibodies against infectious laryngotracheitis virus (ILTV) in each sample was determined by ELISA. Of the 625 serum samples, 266 (42.56%) were found to be positive for ILTV antibodies. A total of 16 (64%) flocks were detected ILT positive by ELISA method. The mortality of infected flocks was statistically higher (P < 0.05) than uninfected flocks. The egg production of positive flocks was lower than that of the free flocks, but this difference was not statistically significant. The average live weight of hens in infected flocks was lower (> 0.05) than hens in free flocks. In conclusion, the results of this study indicated a high prevalence of ILT infection in the commercial layer flocks in Konya region, Turkey. In outbreaks, ILT significantly increased the mortality rate and decreased the average live weight in layer hens.  相似文献   

4.
Infectious laryngotracheitis (ILT) is an economically important disease of chickens caused by a type I gallid herpesvirus, infectious laryngotracheitis virus (ILTV). The vaccines currently available are modified live viruses, which are effective in preventing disease outbreaks. However, they have often been associated with a variety of adverse effects including spread of vaccine virus to non-vaccinates, inadequate attenuation, production of latently infected carriers, and increased virulence as a result of in vivo passage. In this study, a recombinant fowlpox virus expressing glycoprotein B (gB) of ILTV (rFPV-ILTVgB) was constructed. Protection of specific pathogen free (SPF) and commercial chickens from ILT with the rFPV-ILTVgB and commercial ILTV vaccine (Nobilis ILT) were compared after challenge with a lethal dose of virulent ILTV.Both the rFPV-ILTVgB- and the Nobilis ILT-vaccinated SPF chickens were completely protected from death, while 90% of the unvaccinated chickens died after challenge. The immunized commercial chickens were also 100% protected with rFPV-ILTVgB, compared with 85% protected with Nobilis ILT. The protective efficacy was also measured by the antibody response to ILTV gB, isolation of challenge virus and polymerase chain reaction amplification of the ILTV thymidine kinase gene after challenge. The results showed that rFPV-ILTVgB could be a potential safe vaccine to replace current modified live vaccines for preventing ILT.  相似文献   

5.
Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease.  相似文献   

6.
7.
8.
This review examines the virology, immunology and molecular biology of infectious laryngotracheitis virus (ILTV) and its interactions with the chicken, in the context of assessing the feasibility of eradication. Establishment of the latent phase during infection of the host, its central role in biological survival of ILTV and the host-viral events that are associated with reactivation of infection, are considered. In counterpoint there are several features of the biology of ILTV in its natural mode of infection which can be exploited in eradicating this pathogen from intensive poultry production sites. These include the high degree of host-specificity of ILTV, dependence on contact for spread, the short-lived infectivity outside the chicken and the stability of the genome and lack of significant antigenic variation. Further, ILTV cannot replicate productively in its main target organ, the trachea, in the face of local specific cell-mediated immunity. Genetically-engineered vaccines that are capable of generating immunity, but without the ILTV latent infections induced by conventional modified-live ILT vaccine strains, are now well into development. This paper postulates that, used in conjunction with specific site quarantine and hygiene measures, such vaccines can provide the technological tools required to eradicate ILTV from production sites, and then regionally, in developed poultry industries from around the year 2000.  相似文献   

9.
Live attenuated vaccines have been extensively used to control infectious laryngotracheitis (ILT). Most vaccines are registered/recommended for use via eye-drop although vaccination via drinking-water is commonly used in the field. Drinking-water vaccination has been associated with non-uniform protection. Bird-to-bird passage of chick-embryo-origin (CEO) ILT vaccines has been shown to result in reversion to virulence. The purpose of the present study was to examine the replication and transmission of a commercial CEO infectious laryngotracheitis virus (ILTV) vaccine strain following drinking-water or eye-drop inoculation. Two groups of 10 specific-pathogen-free chickens were each vaccinated with Serva ILTV vaccine strain either via eye-drop or drinking-water. Groups of four or five unvaccinated birds were placed in contact with vaccinated birds at regular intervals. Tracheal swabs were collected every 4 days from vaccinated and in-contact birds to assess viral replication and transmission using quantitative polymerase chain reaction. Compared with eye-drop-vaccinated birds, drinking-water-vaccinated birds showed delayed viral replication but had detectable viral DNA for a longer period of time. Transmission to chickens exposed by contact on day 0 of the experiments was similar in both groups. Birds exposed to ILTV by contact with eye-drop vaccinated birds on days 4, 8, 12 and 16 of the experiment had detectable ILTV for up to 8 days post exposure. ILTV was not detected in chickens that were exposed by contact with drinking-water vaccinated birds on day 12 of the experiment or later. Results from this study provide valuable practical information for the use of ILT vaccine.  相似文献   

10.
In a recent study (Oldoni & García, 2007), some field strains of infectious laryngotracheitis viruses (ILTV) were characterized as genotypically different (group VI) from ILT vaccine strains. The objective of this study was to evaluate the protection elicited by one chicken embryo origin (CEO) and one tissue culture origin (TCO) vaccine against a field isolate from group VI after direct and indirect exposure to ILTV live attenuated vaccines. In phase 1 of the experiment, non-vaccinated chickens were placed into contact with the eye drop vaccinates for a period of four weeks after vaccination. Transmission of the vaccine virus to these in-contact birds was demonstrated by real time PCR and antibody production, although the in-contact birds did not become protected against disease when subsequently challenged in phase 2 of the experiment. This emphasized the importance of uniform vaccination to obtain adequate protection, both to avoid the occurrence of susceptible chickens, and to minimize the potential for reversion to virulence of live-attenuated vaccines. In phase 2, protection against challenge with a group VI field virus was assessed four weeks after vaccination by scoring clinical signs and mortality, and quantifying weight gain. Sentinel birds were added to the groups one day after challenge to assess shedding of challenge virus, using real time PCR and virus isolation, during the period 2 to 12 days post challenge. The results showed that the CEO and TCO eye drop-vaccinated chickens were protected against challenge with the group VI virus, even though it was genetically different from the vaccine strains, and that challenge virus was not transmitted from these protected birds to the sentinels.  相似文献   

11.
A novel technique, the reverse restriction fragment length polymorphism (RRFLP) assay, was developed as a means of detecting specific informative polymorphic sites in the infectious laryngotracheitis virus (ILTV) genome. During the RRFLP procedure, DNA is digested with restriction enzymes targeting an informative polymorphic site and then used as template in a real-time polymerase chain reaction (PCR) with primers flanking the informative region. The analysis of the ΔCt values obtained from digested and undigested template DNA provides the genotype of the DNA. In this study, the RRFLP assay was applied as a method to differentiate between the two types of infectious laryngotracheitis virus attenuated live vaccines. Sequence analysis of ILTV vaccines revealed an informative polymorphic site in the 5′-non-coding region of the infected cell protein (ICP4) gene. Unique AvaI and AlwI restriction enzyme sites were identified in the tissue culture origin and chicken embryo origin attenuated vaccines, respectively. These two informative polymorphic sites were used in a RRFLP assay to genotype rapidly and reproducibly ILTV attenuated live vaccines.  相似文献   

12.
ABSTRACT

Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes acute respiratory disease primarily infecting the upper respiratory tract and conjunctiva. Administration of live attenuated ILTV vaccines via eye drop, drinking water, or by coarse spray elicits protective mucosal immunity in the head-associated lymphoid tissues (HALT), of which conjunctiva-associated lymphoid tissue (CALT) and the Harderian gland (HG) are important tissue components. The trachea, a non-lymphoid tissue, also receives significant influx of inflammatory cells that dictate the outcome of ILTV infection. The objective of this study was to evaluate leukocyte cellular and phenotypic changes in the CALT, HG and trachea following ocular infection with a virulent ILTV strain. At 1, 3, 5, 7 and 9 days post-infection, CALT, HG, and trachea of 6-week-old specific pathogen free (SPF) chickens ocularly-exposed to vehicle or virulent ILTV strain 63140 were dissociated, the cells enumerated and then phenotyped using flow cytometry. The CALT had the highest viral genomic load, which peaked on day 3. In ILTV-infected birds, the CALT had a decreased percentage of leukocytes. This was reflected by decreased numbers of MHCI+MHCII, MHCI+MHCIIlow+, and CD4+ cells, while IgM+ and MHCI+MHCIIHigh+ expressing cell populations increased. In the HG, the most notable change in cells from ILTV-infected birds was a decrease in IgM expressing cells and histologically, an increase in Mott cells. In summary, an acute, ocular exposure to ILTV strain 63140 in young birds shifts subsets of lymphocyte populations in the CALT and HG with minimal impact on the trachea.  相似文献   

13.
Over the past 80 years, biosecurity measures and vaccines have been used to prevent the occurrence of outbreaks of infectious laryngotracheitis (ILT). Despite these control strategies, ILT continues to have an impact on intensive poultry industries. Attenuated vaccines, particularly those derived by passage in chicken embryos, have been associated with a number of side effects, including residual virulence, transmission to naïve birds, establishment of latent infections with subsequent reactivation and shedding of virus, and reversion to virulence after in vivo passage. Most recently, recombination between attenuated ILT vaccines in the field has been shown to be responsible for the emergence of new virulent viruses that have caused widespread disease. To address some of these issues, new-generation virally vectored recombinant vaccines have been developed and recently released in some countries. In addition, recombinant deletion mutants of ILT virus have been proposed as vaccine candidates. In this review, recent advances in the understanding of the epidemiology of traditionally attenuated ILT vaccines as well as in the development and use of new generation vaccines are examined. Next-generation vaccines, along with more appropriate immunological screening strategies, are identified as particularly promising options to enhance ILT control in the future.  相似文献   

14.
Infectious laryngotracheitis virus (ILTV) continues to cause respiratory disease in Egypt in spite of vaccination. The currently available modified live ILTV vaccines provide good protection but may also induce latent infections and even clinical disease if they spread extensively from bird-to-bird in the field. Four field ILTV isolates, designated ILT-Behera2007, ILT-Giza2007, ILT-Behera2009, and ILT-Behera2010 were isolated from cross-bred broiler chickens. The pathogenicity based on intratracheal pathogenicity index, tracheal lesion score, and mortality index for chicken embryos revealed that ILT-Behera2007, ILT-Behera2009 and ILT-Behera2010 isolates were highly pathogenic whereas ILT-Giza2007 was non-pathogenic. To study the molecular epidemiology of these field isolates, the infected cell protein 4 gene was amplified and sequenced. Phylogenetic analysis revealed that ILT-Behera2007, ILT-Behera2009, and ILT-Behera2010 are chicken embryo origin (CEO) vaccine-related isolates while ILT-Giza2007 is a tissue culture origin vaccine-related isolate. These results suggest that CEO laryngotracheitis vaccine viruses could increase in virulence after bird-to-bird passages causing severe outbreaks in susceptible birds.  相似文献   

15.
Infectious laryngotracheitis (ILT) is an acute respiratory disease in poultry that is commonly controlled by vaccination with conventionally attenuated virus strains. Despite the use of these vaccines, ILT remains a threat to the intensive poultry industry. Our laboratory has developed a novel candidate vaccine strain of infectious laryngotracheitis virus (ILTV) lacking glycoprotein G (ΔgG-ILTV). The aim of the present study was to directly compare this candidate vaccine with three currently available commercial vaccines in vivo. Five groups of specific-pathogen-free chickens were eye-drop inoculated with one of the three commercial vaccine strains (SA2-ILTV, A20-ILTV or Serva-ILTV), or ΔgG-ILTV, or sterile medium. Vaccine safety was assessed by examining clinical signs, weight gain and persistence of virus in the trachea. Vaccine efficacy was assessed by scoring clinical signs and conducting post-mortem analyses following challenge with virulent virus. Following vaccination, birds that received ΔgG-ILTV had the highest weight gain among the vaccinated groups and had clinical scores that were significantly lower than birds vaccinated with SA2-ILTV or A20-ILTV, but not significantly different from those of birds vaccinated with Serva-ILTV. Analysis of clinical scores, weight gain, tracheal pathology and virus replication after challenge revealed a comparable level of efficacy for all vaccines. Findings from this study further demonstrate the suitability of ΔgG-ILTV as a vaccine to control ILT.  相似文献   

16.
Infectious laryngotracheitis virus (ILTV) has a high proclivity to replicate in the larynx and trachea of chickens causing severe lesions. There is a lack of knowledge on the ability of ILTV to replicate in other respiratory associated tissues apart from in the trachea. The objective of this study was to investigate how tissues that first encounter the virus dictate further sites of viral replication during the lytic stage of infection. Replication patterns of the pathogenic strain 63140 and the chicken embryo origin (CEO) vaccine in the conjunctiva, the Harderian gland, nasal cavity and trachea were evaluated after ocular, oral, intranasal or intratracheal inoculation of specific pathogen-free chickens. Viral replication was assessed by detection of microscopic cytolytic lesions, detection of viral antigen and viral genome load. The route of viral entry greatly influenced virus replication of both strain 63140 and CEO vaccine in the conjunctiva and trachea, while replication in the nasal cavity was not affected. In the Harderian gland, independently of the route of viral entry, microscopic lesions characteristic of lytic replication were absent, whereas viral antigen and viral genomes for either virus were detected, suggesting that the Harderian gland may be a key site of antigen uptake. Findings from this study suggest that interactions of the virus with the epithelial-lymphoid tissues of the nasal cavity, conjunctiva and the Harderian gland dictate patterns of ILTV lytic replication.  相似文献   

17.
A simple polymerase chain reaction (PCR)-based procedure was developed for the detection of avian infectious laryngotracheitis virus (ILTV) in chicken trachea, chorio-allantoic membrane (CAM), infected hepatoma cells and infectious cell culture supernatant. Samples were prepared by dilution in distilled water. After boiling and low speed centrifugation, samples were used for PCR analysis with two primers without special labeling. The PCR analysis for ILT virus could be completed in less than 8 h. Standard agarose gel electrophoretic analysis of the PCR products revealed a prominent band of 300 base-pairs in samples from ILTV-infected specimens, but not from specimens containing Newcastle disease virus, infectious bronchitis virus, avian adenovirus, fowlpox virus, Pachecoz or Marek's disease virus. One single ILTV infected cell or 10 plaque forming units of ILTV could be detected with this procedure. The procedure can be used for the identification of ILTV and the differentiation of ILTV from other avian respiratory tract infectants.  相似文献   

18.
ABSTRACT

Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an in vitro reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi). Swabs (conjunctiva, palatine cleft, trachea) and trigeminal ganglia (TG) were examined for ILTV DNA using PCR. Half of the TG, trachea and PBMC were co-cultivated with cell monolayers to assess in vitro reactivation of ILTV infection. ILTV DNA was detected in the trachea of approximately 50% of ILTV‐inoculated birds at both timepoints. At 21?dpi, ILTV was detected in the TG only in 29% and 17% of CL9- and SA2-infected birds, respectively. At 35?dpi, ILTV was detected in the TG only in 30% and 10% of CL9- and SA2-infected birds, respectively. Tracheal organ co-cultures from 30% and 70% of CL9- and SA2-infected birds, respectively, were negative for ILTV DNA at cull but yielded quantifiable DNA within 6 days post-explant (dpe). TG co-cultivation from 30% and 40% of CL9-and SA2-infected birds, respectively, had detectable ILTV DNA within 6 dpe. Latency characteristics did not substantially vary based on the strain of virus inoculated or between sampling timepoints. These results advance our understanding of ILTV latency and reactivation.

RESEARCH HIGHLIGHTS
  • Following inoculation, latent ILTV infection was detected in a large proportion of chickens, irrespective of whether a field or vaccine strain was inoculated.

  • In vitro reactivation of latent ILTV was readily detected in tracheal and trigeminal ganglia co-cultures using PCR.

  • ILTV latency observed in SPF chickens at 21 days post-infection was not substantially different to 35 days post-infection.

  相似文献   

19.
Live attenuated vaccines are extensively used worldwide to control the outbreak of infectious laryngotracheitis. Virulent field strains showing close genetic relationship with the infectious laryngotracheitis virus (ILTV) vaccines of chicken embryo origin have been detected in the poultry industry. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, a reliable molecular epidemiological method, of multiple genomic regions was performed. The PCR-RFLP is a time-consuming method that requires considerable amount of intact viral genomic DNA to amplify genomic regions greater than 4?kb. In this study, six variable genomic regions were selected and amplified for sequencing. The multi-allelic PCR-sequence genotyping showed better discrimination power than that of previous PCR-sequencing schemes using single or two target regions. The allelic variation patterns yielded 16 strains of ILTV classified into 14 different genotypes. Three Korean field strains, 550/05/Ko, 0010/05/Ko and 40032/08/Ko, were found to have the same genotype as the commercial vaccine strain, Laryngo Vac (Zoetis, Florham Park, NJ, USA). Three other Korean field strains, 40798/10/Ko, 12/07/Ko, and 30678/14/Ko, showed recombined allelic patterns. The multi-allelic PCR-sequencing method was proved to be an efficient and practical procedure to classify the different strains of ILTV. The method could serve as an alternate diagnostic and differentiating tool for the classification of ILTV, and contribute to understanding of the epidemiology of the disease at a global level.  相似文献   

20.
In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5′ conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2 × 108 to 2 × 102 copies/μl. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5′ conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号