首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
背景:关节软骨修复的关键是软骨和软骨下骨的整体修复,然而目前尚缺乏理想的一体化支架。 目的:制备聚羟基丁酸-羟基辛酸-胶原一体化支架,并分析其基本生物学特性。 方法:以聚羟基丁酸-羟基辛酸、Ⅰ型胶原为材料,通过溶剂浇铸-颗粒沥滤法制备聚羟基丁酸-羟基辛酸-胶原一体化支架,观察支架超微结构,支架孔径及孔与孔的连通情况;液体置换法测定支架孔隙率。将乳兔骨髓间充质干细胞接种于聚羟基丁酸-羟基辛酸-胶原一体化支架上,扫描电镜观察细胞在支架上的黏附状态,MTT法测定细胞在支架上的生长曲线。 结果与结论:一体化支架呈疏松多孔结构,软骨层孔径80-100 μm,骨层孔径200-220 μm,孔隙率(80.0±2.3)%。骨髓间充质干细胞在支架上黏附状态良好,增殖迅速。说明聚羟基丁酸-羟基辛酸-胶原骨软骨一体化支架具备适宜的孔隙结构和良好的生物亲和性。  相似文献   

2.
目的探索以胶原、透明质酸钠和硫酸软骨素三种细胞外基质为原料,利用静电纺丝技术构建组织工程关节软骨支架的工艺。方法固定静电纺丝的参数,通过改变溶剂的种类,浓度和三种原料之间的比例,探索胶原-透明质酸钠-硫酸软骨素复合支架的纺丝条件。结果胶原-透明质酸钠-硫酸软骨素复合支架纺丝的最佳溶剂是3-氟乙醇和水的混合溶剂(v:v,1:1),最佳纺丝浓度范围为80~120mg/m L,三种原料支架的最佳比例范围为6~8:1:1~2。支架纤维的直径和孔隙率则由原料的浓度和比例共同决定;支架降解性能良好,降解速度主要由胶原含量决定。结论研究者成功的利用静电纺丝技术构建了胶原-透明质酸钠-硫酸软骨素复合组织工程软骨支架。这种支架在成分和形态上都可以较好的模拟关节软骨细胞外环境,是一种具有良好应用前景的组织工程关节软骨支架。  相似文献   

3.
背景:目前软骨支架材料的种类比较多,但还没有一种材料能完全符合软骨修复的要求。 目的:观察在混合材料胶原-壳聚糖支架中软骨细胞的生长情况。 方法:采用冷冻干燥法将质量分数为2%胶原与3%壳聚糖混合制备胶原-壳聚糖多孔支架。将分离培养的第2代兔软骨细胞接种到胶原-壳聚糖支架上,对照组将软骨细胞接种到无支架的培养板中。观察支架的孔隙率、吸水性及内部形态结构,MTT法检测软骨细胞在支架上的增殖情况,组织切片苏木精-伊红染色,扫描电镜观察细胞在支架的生长、贴附情况,RT-PCR检测细胞支架复合物蛋白聚糖和Ⅱ型胶原mRNA表达情况。 结果与结论:胶原-壳聚糖支架的吸水性为(80.0±0.55)%,孔隙率为(88.5±1.5)%,孔径为100~150 μm,复合细胞培养2周后,细胞增殖活力高,软骨细胞分泌的蛋白聚糖和Ⅱ型胶原mRNA表达明显高于对照组。说明质量分数为2%胶原与3%壳聚糖的混合支架适合软骨细胞生长和快速增殖,是一种良好的修复和重建软骨载体。  相似文献   

4.
背景:已有很多实验证明,单独高分子材料或生物性材料制备的组织工程支架无法满足组织工程研究。 目的:评价羟基丁酸-羟基辛酸聚合物/胶原组织工程支架的生物学特性及细胞亲和性。 方法:以羟基丁酸-羟基辛酸聚合物作为主体材料,按质量分数复合不同比例(2%,4%,6%,8%,10%)的胶原,采用溶剂浇铸-颗粒沥滤法制备组织工程支架。通过扫描电镜观察材料内部结构及孔径大小,液体位移法测定材料孔隙率。将羟基丁酸-羟基辛酸聚合物/胶原支架、羟基丁酸-羟基辛酸聚合物支架分别与兔软骨细胞复合培养,MTT法测定细胞的生长曲线,扫描电镜观察细胞在材料上的生长黏附情况。 结果与结论:羟基丁酸-羟基辛酸聚合物/胶原复合软骨组织工程支架孔径大小200 μm左右,孔隙率为(85±2)%,细胞亲水性随加入胶原比例的增加而升高。与羟基丁酸-羟基辛酸聚合物支架比较,不同比例的羟基丁酸-羟基辛酸聚合物/胶原支架可明显促进软骨细胞的黏附、增殖。证实羟基丁酸-羟基辛酸聚合物/胶原复合支架具备更好的细胞亲和性。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

5.
背景:组织工程中,种子细胞需依赖于细胞外基质的存在才能发挥功能。因此支架材料的选择具有重大意义。 目的:制备一种新型改性壳聚糖-胶原-羟基磷灰石复合支架,优化易于细胞黏附的组织工程支架材料工艺。 方法:壳聚糖与透明质酸进行交联,红外和差示扫描量热图谱检测其结构;改性壳聚糖与胶原按1∶2,1∶1和2∶1制备3种改性壳聚糖-胶原-羟基磷灰石复合支架,将复合支架与成骨细胞MC3T3-E1联合培养,CCK-8法检测增殖,绘制生长曲线。 结果与结论:透明质酸和壳聚糖以酰胺键形成交联的新化合物,孔径在50~250 μm之间,孔隙率随着胶原水平、弹性模量的增加而增加,而密度则减少;增加胶原的含量在细胞联合培养初期有利于细胞对支架的黏附和增殖,但从第10天开始,3种样品中细胞数量相差不大,均出现平台期;苏木精-伊红染色发现成骨细胞在培养初期沿着支架材料内部空隙贴壁生长,随着培养天数的增加,贴壁细胞呈集落样生长,可明显看到细胞间连接。说明透明质酸改性壳聚糖/胶原/纳米羟基磷灰石复合材料可以作为骨支架材料供成骨细胞黏附、增殖,其中胶原与壳聚糖的体积比为1∶1为较优配比。  相似文献   

6.
背景:很多研究表明丝素蛋白、壳聚糖为天然高分子材料,无毒无味,有良好的生物特性和理化性质。 目的:探讨符合软骨组织工程支架材料要求的丝素蛋白/壳聚糖三维支架材料制备方法。 方法:将丝素蛋白与壳聚糖按质量比分别为3∶1,1∶1,1∶3,0∶1的比例混合制备丝素蛋白-壳聚糖复合材料,通过孔径大小、孔隙率、吸水膨胀率及热水溶失率的测定,寻找丝素蛋白/壳聚糖最佳混合比例。 结果与结论:丝素蛋白/壳聚糖按质量1∶1的比例混合更符合要求:孔径90~280 μm,平均孔径为151.72 μm;孔隙率为(92.72±4.78)%;吸水膨胀率为(141.10±6.87)%;热水溶失率交联后较交联前降低,交联前后比较差异有显著性意义(P < 0.05)。说明丝素蛋白/壳聚糖按1∶1复合支架材料符合软骨组织工程支架材料理化性质的要求,该材料有望作为软骨组织工程研究较理想的支架材料。  相似文献   

7.
背景:以组织工程技术修复退变椎间盘,目前的研究多集中在如何修复摘除的髓核组织,然而髓核组织工程方法无法完整重建椎间盘的结构和功能,所以相应的纤维环组织工程被认为是组织工程椎间盘治疗策略的主要限制因素之一。 目的:制备天然猪脱细胞脱钙骨基质明胶,并验证其作为组织工程椎间盘纤维支架的可行性。 方法:取猪股骨近端松质骨,用环钻钻取直径10 mm、内径5 mm、厚3 mm的中空环状骨,高压水枪冲洗,进行脱脂、脱钙、脱细胞等相关处理,制成环状的支架材料。对材料进行大体、组织学、光镜、扫描电镜观察,并对支架的吸水率、孔隙率、生物力学参数等进行检测。分离培养犬骨髓间充质干细胞,采用MTT法分析支架浸提液毒性。 结果与结论:支架为乳白色,中空环状,质地柔软的多孔结构。苏木精-伊红染色示组织无细胞结构残留。光镜及扫描电镜示支架孔隙均匀,孔隙相通,平均孔径为(401.4±13.1) μm,孔隙率为(62.12±1.52)%,吸水率为(409.77±11.34)%。生物力学结果示支架的弹性模量为(47.75±6.32) kPa。MTT法显示不同浓度支架浸提液与对照 DMEM 培养液吸光度值比较,差异无显著性意义(P > 0.05),支架无细胞毒性。提示猪脱细胞脱钙骨基质明胶去细胞彻底,具有良好的孔径、孔隙率及生物力学强度,并且无毒,具备良好的生物相容性,可作为组织工程椎间盘纤维环支架材料。  相似文献   

8.
背景:骨组织工程支架材料由最初的自体骨,软骨材料到生物活性陶瓷,乃至后来的有机材料胶原蛋白等细胞外基质材料,其生物相容性及性能越来越优越,越来越接近体内的真实情况。但是这些材料在抗压性及强度方面还有待进一步提高。目的:应用胶原与壳聚糖制备生物支架并对其检测其生物学性质,为骨、软骨缺损提供移植替代物。方法:将不同比例壳聚糖-胶原蛋白溶解,经冷冻冻干后紫外线交联后冷冻干燥,二次冻干制备好支架。检测不同比例支架的孔隙率,降解率,溶胀率。扫描电镜观察孔径的大小及形态。结果与结论:制备的支架外观呈海绵多孔状。支架的孔径大小随着胶原比例增加而减小。胶原比例的增加对支架孔隙率的影响较轻微。支架的溶胀率可达到80%左右,支架的溶胀程度随胶原比例增加而减少。胶原含量越大支架柔韧度增加明显。支架的降解率随着胶原比例增加而增加,而壳聚糖含量越高,降解速度越慢。结果提示,通过调整壳聚糖-胶原蛋白比例使支架具有作为骨、软骨缺损移植材料的替代物可能。  相似文献   

9.
背景:磷酸钙骨水泥存在脆性大、抗水溶性(血溶性)差、力学性能不足、降解缓慢等缺点,其临床应用受到一定限制,故需要对其进行改性研究。 目的:制备一种具有一定强度、孔隙率、适合骨生长的多孔磷酸钙骨水泥生物支架材料。 方法:以磷酸钙骨水泥为基本体系,液相采用壳聚糖的弱酸溶液,以提高磷酸钙骨水泥的可塑性和黏弹性,使骨水泥具有可注射性,显著提升骨水泥的应用范围及应用舒适度。固相为双相磷酸钙(磷酸四钙+磷酸氢钙)粉体,并在固相中添加一定量的甘露醇及聚乳酸-乙醇酸共聚物作为造孔剂,制备磷酸钙支架材料。 结果与结论:此材料孔径可达到10~300 μm。添加60%致孔剂时,磷酸钙骨水泥固化体孔隙率可达到(68.3±1.5)%。磷酸钙骨水泥孔隙率的增加使材料的力学性能下降,其抗压强度从最初不含致孔剂时的(53.0±1.4) MPa下降到含60%致孔剂的(2.5±0.2) MPa。实验制备的此种多孔磷酸钙骨水泥材料,是具有一定抗压强度、较好的孔隙率,并能体内降解的可注射生物支架材料。  相似文献   

10.
背景:如何在体外将支架材料和种子细胞高效地复合以构建组织工程牙周组织是目前牙周病治疗及牙周缺损修复研究的重要方向。 目的:比较传统沉淀接种法和胶原包裹接种法的细胞黏附状况,优化细胞接种方式。 方法:将一定浓度的犬牙龈成纤维细胞,分别采用传统沉淀接种法和胶原包裹接种法接种到聚乳酸-壳聚糖-明胶梯度孔径和均匀孔径支架上,通过细胞计数测定支架上贴附的细胞数量,计算其接种率,并进行对比分析。 结果与结论:采用胶原凝胶包裹接种法将细胞接种至均匀孔径支架和梯度孔径支架上,其接种率均明显高于传统的沉淀接种法(P < 0.01)。用胶原凝胶包裹种子细胞行细胞接种可以有效提高种子细胞的接种率,增加支架上的细胞初始浓度,可以选用胶原凝胶包裹细胞接种方式用于牙龈工程组织构建。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

11.
目的 探讨采用3D打印技术制备的β-磷酸三钙(β-TCP)仿生骨支架的形态结构特点及其相关生物性能,并观察其修复新西兰兔股骨髁部骨缺损的效果。方法 选取5~6月龄新西兰大白兔20只,随机分为支架组和空白组,每组10只;两组大白兔按造模术后采集标本的时间不同又分为两个亚组,每组5只。两组大白兔均于左侧股骨用环钻钻取直径约5 mm、长约10 mm的圆柱形松质骨块,建立股骨髁骨缺损模型。空白组截取的10个松质骨标本,使用微计算机断层扫描技术进行扫描,获得骨缺损标本的结构影像学数据,通过3D生物打印系统设计出相应的仿生骨支架模型,再以β-TCP作为打印材料,打印出20枚仿生骨支架。取10枚β-TCP支架测量高度、直径,电子显微镜下观察β-TCP支架孔道形态结构特点,测量大孔的直径和孔隙率,使用电子力学测试机测定β-TCP支架的弹性模量与抗压强度。空白组10只大白兔造模后不植入任何材料。支架组10只大白兔在造模后,将制备的10枚β-TCP支架植入骨缺损处。分别于术后第6、12周使用耳缘静脉推注空气方法处死空白组和支架组的各亚组大白兔,于骨缺损部位或植骨部位上下离断、截取长约10 mm骨段,制备切片,HE染色,观察骨组织生长情况;采用Lane-Sandhu组织学评分标准对骨组织修复情况进行评价。结果 使用3D生物打印技术制备的20枚圆柱体β-TCP支架,与松质骨标本结构形态相似。支架高度(9.97±0.08)mm、直径(5.09±0.07)mm,松质骨标本高度(9.96±0.39)mm、直径(5.01±0.22)mm,支架与松质骨标本比较差异均无统计学意义(P值均>0.05)。扫描电镜观察到支架表面及内部呈均匀多孔状,孔径相互连通,大小相仿,孔隙分布较均匀,在大孔侧壁布满了微孔,外形多为近似圆形;其中大孔直径为(223.02±18.20)μm,孔隙率为74.02%±1.38%。松质骨标本大孔直径(227.02±31.20)μm,孔隙率为76.02%±3.29%,支架与松质骨标本比较差异均无统计学意义(P值均>0.05)。使用电子力学测试机测定支架的抗压强度为(2.93±0.65)MPa,弹性模量为95~190 MPa。骨组织切片HE染色:术后第6周,支架组植骨处可见较成熟的骨组织,骨小梁和骨髓组织增多,新生骨正在逐渐覆盖植骨材料,周围可见少量成骨细胞,出现少量新生骨并向材料内长入;空白组的骨缺损处周围有少量类骨组织形成,大量成纤维细胞和脂肪组织生长,未见明显成骨细胞及骨小梁结构。术后12周,支架组植骨处出现成熟的骨小梁和骨髓组织,有编织骨形成,新生骨量较多,部分材料已被吸收降解,材料存留较少;空白组的骨缺损处见少量骨组织从缺损边缘向内长入,大部分被成纤维细胞和脂肪组织填充。Lane-Sandhu组织学评分,术后6周、12周支架组分别为(5.2±0.3)、(8.1±1.2)分,空白组分别为(1.3±0.5)、(4.5±0.6)分,支架组评分均大于空白组,差异有统计学意义(t=7.341、12.672, P值均<0.05)。结论 3D生物打印技术制备的β-TCP仿生骨支架,与松质骨标本的骨组织解剖结构形态相似,且具有良好的生物力学性能,可以提供个体化的仿生骨支架,修复新西兰兔股骨髁部骨缺损的效果良好。  相似文献   

12.
背景:单层支架难以满足关节软骨损伤修复的要求,现提出骨软骨共同修复的一体化支架,以弥补了单一支架的部分缺陷。 目的:以羟基丁酸与羟基辛酸共聚物为基础材料,羟基磷灰石等为复合材料研制一体化骨软骨组织工程支架,测试该支架的物理特性和细胞黏附性。 方法:采用溶剂浇铸/颗粒沥滤法,以支架孔径、孔隙率、力学强度和细胞黏附生长率为检测指标,以羟基丁酸与羟基辛酸共聚物为连续相,通过改变致孔剂NaCl粒径和羟基磷灰石材料配比制备不同形态结构、力学强度和生物学功能的三层一体化骨软骨组织工程支架。 结果与结论:致孔剂与支架材料的最佳质量配比分别为软骨层4.5/1,过渡层2.5/1,硬骨层3.5/1。扫描电镜观察显示支架的三层结构明显不同且紧密结合,其软骨层、过渡层、硬骨层的孔径分别为150~250 μm,≤60 μm,150~450 μm;孔隙率检测结果依次为84%,60%,75%;力学强度测定依次为2.93,6.43,4.30 MPa;支架对骨髓间充质干细胞无毒性,细胞黏附与生长状态良好。结果表明该一体化骨软骨组织工程支架具有仿生学特性,符合骨软骨组织工程支架的基本条件。关键词:羟基丁酸;羟基辛酸;共聚物;一体化支架;关节软骨缺损;骨软骨组织工程 缩略语注释:PHBHO:poly(hydroxybutyrate-co-hydroxyoctanoate),羟基丁酸与羟基辛酸共聚体;HA:hydroxyapatite,羟基磷灰石 doi:10.3969/j.issn.1673-8225.2012.16.004  相似文献   

13.
背景:研究表明新西兰兔软骨组织可作为组织工程支架材料,其中关节软骨及耳软骨的脱细胞基质的研究较多,但采用肋软骨作为组织工程软骨支架的研究较少。 目的:制备新西兰兔肋软骨脱细胞基质,探讨天然软骨支架作为组织工程支架的可行性。 方法:用联合去垢剂-酶法获得软骨支架,根据脱细胞过程中Triton X-100第2次处理时间0,24,48,96 h分为4组。脱细胞完毕后各组支架固定行扫描电镜采集图像观察计算支架孔隙率、孔径长度,并对支架进行苏木精-伊红染色、甲苯胺蓝及Ⅱ型胶原免疫组织化学染色,并将脱细胞支架植入异体新西兰兔皮下观察其相容性。 结果与结论:兔肋软骨脱细胞基质呈乳白色,大小均一,染色示支架结构完整,仍保存大量酸性黏多糖及Ⅱ型胶原成分,扫描电镜观察经一定时间的脱细胞处理后可得到结构完整,孔隙均匀的天然软骨支架,其孔隙率为(61.31±8.45) %;孔径长度为(32.80±5.15) μm,符合正态性分布,各组脱细胞支架植入异体新西兰兔皮下7 d后生物相容性良好,周围软组织无明显充血、化脓等炎症排斥反应出现。结果显示,兔肋软骨脱细胞支架具有良好的基质组成,有较完整、均匀的孔隙结构及孔径分布,可作为组织工程支架材料。  相似文献   

14.
背景:异种骨来源丰富,价格低廉,处理相对简单容易,处理后骨支架保留原有骨的微结构,具有良好的促成骨、骨传导及骨诱导活性。 目的:检测自制生物衍生骨支架材料的理化性质及体外细胞相容性。 方法:通过脱蛋白、脱脂、脱钙,深低温冻存制备猪源性松质骨支架材料。组织学检测松质骨处理前后的变化,扫描电镜观察材料结构及计算孔隙直径,采用液体置换法检测支架材料的孔隙率,体外降解速度,能谱分析及体外复合兔骨髓间充质干细胞的细胞相容性。 结果与结论:处理后的松质骨支架材料具有三维多孔结构,孔隙直径150.8-306.7 μm,孔隙率84.5%-89.7%。材料在前6周降解速度稍慢,6周后材料降解率曲线基本呈线性且降解速度明显加快,10周时材料接近完全降解,降解率达92.8%。松质骨支架材料孔隙大小适合骨髓间充质干细胞的黏附和增殖。表明生物衍生骨支架材料性能良好,细胞相容性良好,适用于构建组织工程骨。  相似文献   

15.
背景:组织工程的研究重点是利用少量的细胞经体外培养、扩增后, 在一定环境下附着在三维多孔支架上并良好生长为后期的组织器官重建修复做好基础。 目的:对不同浓度兔骨髓间充质干细胞复合至壳聚糖支架用于组织工程再生修复进行评价。 方法:取5×105脱乙酰度为95%的壳聚糖粉末通过冷冻干燥法制备壳聚糖支架,取1×106,1×107,1×108,1×109 L-1细胞体积各100 μL复合至壳聚糖支架后1,3,5,7,9 d以光镜,扫描电镜,MTT法观察骨髓间充质干细胞的生长与分裂增殖情况。 结果与结论:壳聚糖海绵状多孔支架为5 mm×5 mm×3 mm,孔径190~380 μm,平均孔径290 μm,孔相通性较好,空隙率为(84.00±4.62)%。细胞/支架共培养72 h后各浓度细胞组均可渗入壳聚糖支架多孔结构内黏附生长。1×107,1×108,1× 109 L-1浓度细胞组在支架上成蔟生长,部分细胞与支架融合。结果提示,1×107,1×108L-1组细胞更利于骨髓间充质干细胞在壳聚糖支架的黏附生长,用于组织再生修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号