首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspden K  van Dijk AA  Bingham J  Cox D  Passmore JA  Williamson AL 《Vaccine》2002,20(21-22):2693-2701
Rabies virus (RV) readily infects cattle and causes a fatal neurological disease. A stable vaccine, which does not require the maintenance of a cold chain and that is administered once to elicit lifelong immunity to rabies would be advantageous. The present study describes the construction of a live recombinant lumpy skin disease virus (LSDV) vaccine, expressing the glycoprotein of rabies virus (RG) and assessment of its ability to generate a humoral and cellular immune response against rabies virus in cattle. Cattle inoculated with the recombinant virus (rLSDV-RG) developed humoral immunity that was demonstrated in ELISA and neutralisation assays to RV. High titres of up to 1513IU/ml of RV neutralising antibodies were induced. In addition, peripheral blood mononuclear cells from rLSDV-RG-immunised animals demonstrated the ability to proliferate in response to stimulation with inactivated RV, whereas the animal vaccinated with wild type LSDV did not. This recombinant vaccine candidate thus has the potential to be used in ruminants as a cost-effective vaccine against both lumpy skin disease (LSD) and rabies.  相似文献   

2.
《Vaccine》2018,36(31):4708-4715
Lumpy skin disease virus (LSDV) is responsible for causing severe economic losses to cattle farmers throughout Africa, the Middle East, and more recently, South-Eastern Europe and Russia. It belongs to the Capripoxvirus genus of the Poxviridae family, with closely related sheeppox and goatpox viruses. Like other poxviruses, the viral genome codes for a number of genes with putative immunomodulatory capabilities. Current vaccines for protecting cattle against lumpy skin disease (LSD) based on live-attenuated strains of field isolates passaged by cell culture, resulting in random mutations. Although generally effective, these vaccines can have drawbacks, including injection site reactions and/or limited immunogenicity. A pilot study was conducted using a more targeted approach where two putative immunomodulatory genes were deleted separately from the genome of a virulent LSDV field isolate. These were open reading frame (ORF) 005 and ORF008, coding for homologues of an interleukin 10-like and interferon-gamma receptor-like gene, respectively. The resulting knockout constructs were evaluated in cattle for safety, immunogenicity and protection. Severe post-vaccinal reactions and febrile responses were observed for both constructs. Two calves inoculated with the ORF008 knockout construct developed multiple lesions and were euthanised. Following challenge, none of the animals inoculated with the knockout constructs showed any external clinical signs of LSD, compared to the negative controls. Improved cellular and humoral immune responses were recorded in both of these groups compared to the positive control. The results indicate that at the high inoculation doses used, the degree of attenuation achieved was insufficient for further use in cattle due to the adverse reactions observed.  相似文献   

3.
《Vaccine》2015,33(28):3256-3261
The safety, immunogenicity and efficacy of three commercially available vaccines against lumpy skin disease (LSD) in cattle have been evaluated using a combination of vaccine challenge experiments and the monitoring of immune responses in vaccinated animals in the field. The three vaccines evaluated in the study included two locally produced (Ethiopian) vaccines (lumpy skin disease virus (LSDV) Neethling and Kenyan sheep and goat pox (KSGP) O-180 strain vaccines) and a Gorgan goat pox (GTP) vaccine manufactured by Jordan Bio-Industries Centre (JOVAC). The latter vaccine was evaluated for the first time in cattle against LSDV. The Ethiopian Neethling and KSGPO-180 vaccines failed to provide protection in cattle against LSDV, whereas the Gorgan GTP vaccine protected all the vaccinated calves from clinical signs of LSD. There was no significant difference in protective efficacy detected between two dosage levels (P = 0.2, P = 0.25, and P = 0.1 for KSGP, Neethling and Gorgan vaccines, respectively). Additionally, the Gorgan GTP vaccinated cattle showed stronger levels of cellular immune responses measured using Delayed-Type Hypersensitivity (DTH) reactions at the vaccination site indicating higher levels of immunogenicity produced by the GTPV vaccine in cattle, as opposed to the other two vaccines. This study indicated, for the first time, that the Gorgan GTP vaccine can effectively protect cattle against LSDV and that the Neethling and KSGP O-180 vaccine were not protective. The results emphasise the need for molecular characterization of the Neethling and KSGP O-180 vaccine seed viruses used for vaccine production in Ethiopia. In addition, the potency and efficacy testing process of the Ethiopian LSD Neethling and KSGP O-180 vaccines should be re-evaluated.  相似文献   

4.
Li YG  Tian FL  Gao FS  Tang XS  Xia C 《Vaccine》2007,25(5):902-911
To exploit Lactobacillus acidophilus as a carrier in DNA immunization against foot-and-mouth disease virus (FMDV), a recombinant eukaryotic expression plasmid (pRc/CMV2-VP1-Rep. 8014) harboring pRc/CMV2 vector, the FMDV VP1 gene, and a replication origin from Lactobacillus plantarum ATCC 8014 strain was constructed. To detect the VP1 protein, pRc/CMV2-VP1-Rep. 8014 was expressed in PK 15 cells and transfected into a L. acidophilus SW1 strain (L. acidophilus SFMD-1). To evaluate the immunization effect of L. acidophilus SFMD-1, anti-FMDV VP1 antibody, T-cell proliferation, antigen-specific delayed-type hypersensitivity (DTH), and tissue distribution were investigated using intramuscular, intraperitoneal, intranasal, and oral administration delivery routes. The results showed that L. acidophilus SFMD-1 was able to elicit a detectable antibody level on day 21. The VP1 antibody levels induced by L. acidophilus SFMD-1 and commercial inactivated FMDV vaccine rose rapidly to 0.84 and 0.70, respectively, by day 42, then sustained a high level by day 49. The route of administration had an impact on the magnitude of the systemic antigen-specific IgG responses, with intramuscularly applied L. acidophilus SFMD-1 generating the greatest FMDV VP1 antibody response, followed by intraperitoneal, intranasal, and oral administration delivery routes. Using the T-cell proliferation assay, the stimulation index of a group immunized with L. acidophilus SFMD-1 reached 2.78 versus 5.08 in a group immunized with pRc/CMV2-VP1-Rep. 8014 plasmid. Mice immunized with L. acidophilus SFMD-1 were able to induce T-cell-mediated antigen-specific DTH. In addition, the VP1 gene was detected in the muscle, kidney, spleen, and heart, but not in the liver. The results demonstrate clearly that Lactobacillus as a carrier is a promising approach of DNA vaccination, and is a potentially guard against FMDV.  相似文献   

5.
Aedes aegypti female mosquitoes are capable of the mechanical transmission of lumpy skin disease virus (LSDV) from infected to susceptible cattle. Mosquitoes that had fed upon lesions of LSDV-infected cattle were able to transmit virus to susceptible cattle over a period of 2-6 days post-infective feeding. Virus was isolated from the recipient animals in 5 out of 7 cases. The clinical disease recorded in the animals exposed to infected mosquitoes was generally of a mild nature, with only one case being moderate. LSDV has long been suspected to be insect transmitted, but these findings are the first to demonstrate this unequivocally, and they suggest that mosquito species are competent vectors.  相似文献   

6.
《Vaccine》2015,33(2):374-381
A cell culture-based vaccine production system is preferred for the large-scale production of influenza vaccines and has advantages for generating vaccines against highly pathogenic influenza A viruses. Vero cells have been widely used in human vaccine manufacturing, and the safety of these cells has been well demonstrated. However, the most commonly used influenza-vaccine donor virus, A/Puerto Rico/8/1934 (PR8) virus, does not grow efficiently in Vero cells. Therefore, we adapted the PR8 virus to Vero cells by continuous passaging, and a high-growth strain was obtained after 20 passages. Sequence analysis and virological assays of the adapted strain revealed that mutations in four viral internal genes (NP, PB1, PA and NS1) were sufficient for adaptation. The recombinant virus harboring these mutations (PR8-4mut) displayed accelerated viral transport into the nucleus and increased RNP activity. Importantly, the PR8-4mut could serve as a backbone donor virus to support the growth of the H7N1, H9N2 and H5N1 avian viruses and the H1N1 and H3N2 human viruses in Vero cells without changing its pathogenicity in either chicken embryos or mice. Thus, our work describes the generation of a Vero-adapted, high-yield PR8-4mut virus that may serve as a promising candidate for an influenza-vaccine donor virus.  相似文献   

7.
Genotype VII Newcastle disease virus (NDV) has been documented as the predominant epidemic genotype in China and some other Asian countries since 1990s. Recent work has demonstrated that NDV vaccines phylogenetically closer to epidemic viruses provide better protection than conventional vaccines in terms of reducing virus shedding and transmission. Since there is currently no available vaccine which possesses a close antigenic relationship to the prevalent virulent NDV, a new vaccine to protect against the infection of this genotype NDV is in urgent need. Here, we describe the generation of a pathogenicity-attenuated genotype VII NDV (NDV/ZJ1HN) from a velogenic NDV by mutating the velogenic amino acid motif at the F protein cleavage site using reverse genetics techniques. The attenuated-pathogenicity of NDV/ZJ1HN was confirmed by examination of mean death time (MDT) in embryonated eggs and intracerebral pathogenicity index (ICPI) in day-old chickens. Subsequently, 2 weeks old birds were immunized with live and inactivated NDV/ZJ1HN-based vaccines and challenged 3 or 4 weeks post-immunization with a lethal dose of a virulent genotype VII NDV strain. Results showed that NDV/ZJ1HN effectively protected the vaccinated birds from morbidity and mortality against genotype VII virus challenge and significantly reduced virus shedding from the vaccinated birds when compared with La Sota vaccinated animals, suggesting that NDV/ZJ1HN is a promising vaccine candidate for the control of current ND epidemic in China.  相似文献   

8.
Infectious bursal disease virus (IBDV) causes Gumboro disease, which is highly contagious and immunosuppressive in young chickens. A virulent form of IBDV reached South Africa in 1989 and to date there has been little molecular information available for this strain. In this study, the polyprotein coding region of the South African strain SA-KZN95 was sequenced and analysed along with 52 representative sequences of other serotype I and II strains. We explored the relative impact of recombination on phylogenetic reconstruction using a multidimensional scaling approach. Phylogenetic analyses consistently placed the South African isolate within the very virulent IBDV clade. Selection analyses were also conducted to identify evolutionarily relevant amino acid residues. Previously, 19 residues in the polyprotein were shown to be potentially diagnostic for the different IBDV pathotypes. This study identified an additional two unique residues in the polyprotein which may be used as genetic signatures in future viral identifications. Better strain identification would aid in the development and application of vaccines.  相似文献   

9.
The type of immune response induced by a vaccine is a critical factor that determines its effectiveness in preventing infection or disease. Inactivated and live rabies virus (RV) vaccine strains elicit an IgG1-biased and IgG1/IgG2a-balanced antibody response, respectively. However, IgG2a antibodies are potent inducers of anti-viral effector functions, and therefore, a viral vaccine vector that can elicit an IgG2a-biased antibody response may be more effective against RV infection. Here we describe the humoral immune response of a live replication-deficient phosphoprotein (P)-deleted RV vector (SPBN-DeltaP), or a recombinant P-deleted virus that expresses two copies of the RV glycoprotein (G) gene (SPBN-DeltaP-RVG), and compare it to a UV-inactivated RV. Mice inoculated with UV-inactivated RV induced predominantly an IgG1-specific antibody response, while live recombinant SPBN-DeltaP exhibited a mixed IgG1/IgG2a antibody response, which is consistent with the isotype profiles from the replication-competent parental viruses. Survivorship in mice after pathogenic RV challenge indicates a 10-fold higher efficiency of live SPBN-DeltaP compared to UV-inactivated SPBN-DeltaP. In addition, SPBN-DeltaP-RVG induced a more rapid and robust IgG2a response that protected mice more effectively than SPBN-DeltaP. Of note, 10(3)ffu of SPBN-DeltaP-RVG-induced anti-RV antibodies that were 100% protective in mice against pathogenic RV challenge. The increased immune response was directed not only against RV G but also against the ribonucleoprotein (RNP), indicating that the expression of two RV G genes from SPBN-DeltaP-RVG enhances the immune response to other RV antigens as well. In addition, Rag2 mice inoculated intramuscularly with 10(5)ffu/mouse of SPBN-DeltaP showed no clinical signs of rabies, and no viral RNA was detected in the spinal cord or brain of inoculated mice. Therefore, the safety of the P-deleted vectors along with the onset and magnitude of the IgG2a-induced immune response by SPBN-DeltaP-RVG indicate that this vector holds great promise as either a therapeutic or preventative vaccine against RV or other infectious diseases.  相似文献   

10.
AIMS: We evaluated the usefulness of skin test prepared by inactivation of vaccinia vaccine in predicting immunity to vaccinia. Skin test was injected to 77 healthy adults. Twenty had a recent smallpox vaccination (group 1). Thirty-seven were long term vacinees (group 2), while 20 subjects had never been vaccinated for smallpox (group 3). RESULTS: Mean size of induration was 7.9, 5.3 and 0.4 mm for subjects from groups 1, 2 and 3, respectively (P<0.03 for difference between groups). Induration >or=5 mm correlated with neutralizing antibody titer >1:32 (r=0.73, P<0.0001). CONCLUSIONS: The skin test is a potentially useful tool for the assessment of immunity to vaccinia.  相似文献   

11.
《Vaccine》2005,23(3):321-324
Aims:We evaluated the usefulness of skin test prepared by inactivation of vaccinia vaccine in predicting immunity to vaccinia. Skin test was injected to 77 healthy adults. Twenty had a recent smallpox vaccination (group 1). Thirty-seven were long term vacinees (group 2), while 20 subjects had never been vaccinated for smallpox (group 3).Results:Mean size of induration was 7.9, 5.3 and 0.4 mm for subjects from groups 1, 2 and 3, respectively (P < 0.03 for difference between groups). Induration ≥5 mm correlated with neutralizing antibody titer >1:32 (r = 0.73, P < 0.0001).Conclusions:The skin test is a potentially useful tool for the assessment of immunity to vaccinia.  相似文献   

12.
Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes severe respiratory disease in poultry. Glycoprotein G (gG) is a virulence factor in ILTV. Recent studies have shown that gG-deficient ILTV is an effective attenuated vaccine however the function of ILTV gG is unknown. This study examined the function and in vivo relevance of ILTV gG. The results showed that ILTV gG binds to chemokines with high affinity and inhibits leukocyte chemotaxis. Specific-pathogen-free (SPF) chickens infected with gG-deficient virus had altered tracheal leukocyte populations and lower serum antibody levels compared with those infected with the parent virus. The findings suggest that the absence of chemokine-binding activity during infection with gG-deficient ILTV results in altered host immune responses.  相似文献   

13.
Hsieh SM  Chen SY  Sheu GC  Hung MN  Chou WH  Chang SC  Hsu KH 《Vaccine》2006,24(4):510-515
The potential to increase the supply of vaccine by diluting the vaccinia virus of Lister strain to face possible bioterrorism with smallpox was evaluated. Vaccinia-na?ve subjects (n=97) were randomized to receive either undiluted or diluted (1:5, 1:10) vaccine, and previously vaccinated subjects (n=122) were randomized to receive either undiluted or diluted (1:10, 1:30) vaccine. Except two subjects who received 1:30 diluted vaccine, the vaccination of all subjects was successful clinically. All subjects had significant vaccinia-specific T cell and antibody responses. The diluted vaccine was not associated with decreased local or systemic reactions, lower T cell responses, or higher antibody titers when compared with undiluted vaccine. Here we show the diluted vaccine of Lister strain can be used in vaccinia-na?ve subjects and previously vaccinated subjects if viral titer > or =10(8) and 10(7.5) pfu/mL after dilution, respectively. The reactogenicity of vaccinia virus may not be a dose-dependent response.  相似文献   

14.
《Vaccine》2020,38(7):1690-1699
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.  相似文献   

15.
16.
17.
Equine influenza virus infection remains one of the most important infectious diseases of the horse, yet current vaccines offer only limited protection. The equine immune response to natural influenza virus infection results in long-term protective immunity, and is characterized by mucosal IgA and serum IgGa and IgGb antibody responses. DNA vaccination offers a radical alternative to conventional vaccines, with the potential to generate the same protective immune responses seen following viral infection. Antigen-specific antibody isotype responses in serum and mucosal secretions were studied in ponies following particle-mediated delivery of hemagglutinin (HA)-DNA vaccination on three occasions at approximately 63-day intervals. One group of four ponies were vaccinated at skin and mucosal sites and the another group were vaccinated at skin sites only. All ponies were subjected to a challenge infection 30 days after the third vaccination. Skin and mucosal vaccination provided complete protection from clinical signs of infection, while skin vaccination provided partial protection; DNA vaccination provided partial protection from viral shedding. DNA vaccination generated only IgGa and IgGb antibody responses, which occurred with a higher frequency in the skin and mucosa vaccinated ponies. No mucosal IgA response was generated prior to challenge infection and IgA responses were only detected in those ponies which shed virus postchallenge. These results demonstrate that HA-DNA vaccination induces IgG(a) and IgG(b) antibody responses which are associated with protection in the absence of mucosal IgA responses. In addition, additional DNA vaccinations of mucosal sites increased protection and the frequency of seroconversion in ponies.  相似文献   

18.
《Vaccine》2022,40(6):886-896
Live and killed vaccines impart a significant role in preventing of Newcastle disease (ND) in China. Vaccine efficacy could be ameliorated by improving vaccine-induced cellular immunity and antibody persistency. Previous studies substantiated the potency of silicon dioxide (SiO2) in the control-release of drugs and as a vaccine adjuvant, and polyethylenimine (PEI) merits as a mucosal adjuvanticity with electro-positivity. The present study employed SiO2 and PEI to prepare biomimetic silicon mineralized nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M vaccines of G7M, a candidate for live attenuated vaccine of genotype VII Newcastle disease virus (NDV). The zeta potential experiment confirmed the significant increase in the average zeta potential of the nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M relative to G7M before mineralization. The results of RT-qPCR revealed more than 99% mineralization efficiency of the G7M@SiO2-PEI and (SiO2 + PEI)@G7M. The morphology detected by transmission electron microscopy reported that the diameters of G7M@SiO2-PEI were similar to those of G7M, while for (SiO2 + PEI)@G7M, it was about five times larger than that of G7M. Silicon was detected on the surface of both mineralization particles, except for G7M, as observed from the elemental distribution detected by elemental mapping and energy dispersive X-ray spectrogram. Indirect immunofluorescence assays validated that mineralization virus have replicated ability in BHK-21F cells. In vivo experiments revealed higher than 5.50 log2 of antibody in nanoparticles G7M@SiO2-PEI group until 10-week post-vaccination, and significant proliferation of antigen-specific CD3+CD4+ in nanoparticles G7M@SiO2-PEI immunized group corroborated improved cellular immune responses. Vaccines provided full protection to the immunized chickens, whereas all the chickens receiving mock immunizations succumbed to the disease. Overall, our study concluded the efficacy of biomimetic mineralization of live attenuated vaccine in nanoparticles to improve humoral and cellular immune responses.  相似文献   

19.
Development of a safe and immunogenic tetravalent dengue virus (DV) vaccine has been designated as a priority by the World Health Organization. We characterized the T cell response to DV induced by a candidate live attenuated tetravalent DV vaccine as part of a phase I study. Proliferation and cytotoxic T lymphocyte (CTL) responses to multiple DV serotypes were detected in six of six and four of four subjects studied, respectively. Proliferation responses were higher to DV serotypes 1 and 3 than to serotypes 2 and 4. CTL responses were higher to DV serotypes 2 and 3 than to serotype 1, and included serotype cross-reactive responses. Production of interferon-γ, but not IL-4, was observed in response to DV stimulation. This candidate vaccine is immunogenic for both CD4+ and CD8+ T lymphocytes. However, T cell responses to the four DV serotypes were not equivalent, suggesting that the vaccine could be further optimized.  相似文献   

20.
《Vaccine》2015,33(5):596-603
Marek's disease virus (MDV) GX0101, which is a field strain with a naturally occurring insertion of the reticuloendotheliosis virus (REV) long terminal repeat (LTR) fragment, shows distinct biological activities. Deletion of the meq gene in GX0101 contributes to its complete loss of pathogenicity and oncogenicity in SPF chickens, but this virus has a kanamycin resistance gene (kanr) residual at the site of meq gene. In the present study, the kanr was knocked out and a meq-null virus with a good replicative ability termed SC9-1 was selected. In vivo studies showed that SC9-1 had no pathogenicity or tumorigenicity to chickens. There were no obvious impacts on chicken weight, immune organ index or antibody levels induced by avian influenza virus (AIV)/newcastle disease virus (NDV) inactivated vaccines compared with the control group. The SC9-1 virus provided superior protection than CVI988/Rispens vaccine in both SPF chickens and Hy-line brown chickens when challenged with a very virulent MDV (rMd5 strain). There was no obvious change in SC9-1 protection against MDV rMd5 in SPF chickens after 20 passages in chicken embryonic fibroblast cells (CEFs). In conclusion, SC9-1 is a safe and effective vaccine candidate for the prevention of Marek's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号