首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serious infections with salmonellae remain a threat in many human populations. Despite extensive study of salmonella infections in animals and clinical experience with killed cellular vaccines, there are no vaccines against serotypes other than Salmonella typhi licensed for human use. Serum antibodies to the O-specific polysaccharide (O-SP) of salmonellae protect mice against invasive infection. In order to render it immunogenic, we have conjugated the O-SP of Salmonella typhimurium to carrier proteins by various schemes. O-SP conjugated to tetanus toxoid (O-SP-TT) elicited antibodies in outbred mice after three subcutaneous injections without adjuvant. The O-SP alone elicited no detectable antibody. The antibody response to O-SP-TT was boosted by successive doses and consisted of immunoglobulin G (IgG) and IgM. Most mice only produced antibodies specific for the abequose (O:4 factor) region of the O-SP. Occasional animals also produced antibodies to the core oligosaccharide. Immunized mice were protected against intraperitoneal challenge with S. typhimurium, demonstrating a 160-fold increase in the 50% lethal dose. Passive immunization with conjugate-induced IgM or IgG also protected against challenge. These results indicate that an O-SP-TT conjugate, when given by a route and formulation acceptable for human use, protects mice against challenge with S. typhimurium.  相似文献   

2.
The probiotic lactic acid bacterium Lactobacillus rhamnosus (strain HN001) is known to stimulate enhanced innate and acquired immune responses in mice. following oral delivery. Here, the ability of HN001 to confer immune enhancement and protection against an oral challenge of Salmonella tYphimurium was investigated. HN001-fed and non-probiotic-fed control BALB/c mice were challenged with either a single dose of S. typhimurium (ATCC strain 1772), or with five repeated daily doses of the pathogen; post-challenge clinical, behavioural, bacteriological and immunological parameters were assessed. Mice began to show ostensible signs of infection 3-4 days following the initiation of Salmonella challenge, and the first mortalities were observed after 6 days. Following single-dose Salmonella challenge, HN001-fed mice maintained a higher mean pre-mortality general health score than control mice; retained significantly greater food and water intake and weight gain, produced higher titres of serum and intestinal tract anti-Salmonella antibodies, and showed greater overall survival of infection (27/30 mice surviving at 21 days post-challenge, compared to 2/29 in the control group). Following repeated-dose Salmonella challenge, HN001-fed mice had significantly lower mean pathogen burdens in visceral organs (spleen, liver) compared to controls, and additionally, blood and peritoneal leucocytes obtained from HN001-fed mice exhibited significantly higher ex vivo phagocytic capacity compared to control-mice. This study affirms that Lb. rhamnosus strain HN001 displays immuno-enhancing properties in S. typhimurium-infected mice, and demonstrates that oral delivery of this probiotic can promote increased protection against a highly virulent enteric bacterial pathogen.  相似文献   

3.
4.
5.
Oral inoculation of 5-day-old gnotobiotic pigs with Salmonella enterica serovar Typhimurium strain F98 resulted in severe enteritis and invasive disease. Preinoculation 24 h earlier with an avirulent mutant of Salmonella enterica serovar Infantis (1326/28) completely prevented disease for up to 14 days (when the experiment was terminated). S. enterica serovar Infantis colonized the alimentary tract well, with high bacterial counts in the intestinal lumen but with almost no invasion into the tissues. Unprotected pigs had high S. enterica serovar Typhimurium counts in the intestines, blood, and major nonintestinal organs. Recovery of this strain from the blood and major organs in S. enterica serovar Infantis-protected pigs was substantially reduced despite the fact that intestinal counts were also very high. Protection against disease thus did not involve a colonization exclusion phenomenon. Significant (P < 0.05) infiltration of monocytes/macrophages was observed in the submucosal regions of the intestines of both S. enterica serovar Infantis-protected S. enterica serovar Typhimurium-challenged pigs and unprotected S. enterica serovar Typhimurium-challenged pigs. However, only polymorphonuclear neutrophils (PMNs) were observed throughout the villus, where significant (P < 0.05) numbers infiltrated the lamina propria and the subnuclear and supranuclear regions of the epithelia, indicating that PMN induction and positioning following S. enterica serovar Infantis inoculation was consistent with rapid protection against the challenge strain. Similarly, in vitro experiments using a human fetal intestinal epithelial cell line (INT 407) demonstrated that, although significantly (P < 0.05) fewer S. enterica serovar Infantis than S. enterica serovar Typhimurium organisms invaded the monolayers, S. enterica serovar Infantis induced an NF-kappaB response and significantly (P < 0.05) raised interleukin 8 levels and transmigration of porcine PMN. The results of this study suggest that attenuated Salmonella strains can protect the immature intestine against clinical salmonellosis by PMN induction. They also demonstrate that PMN induction is not necessarily associated with clinical symptoms and/or intestinal pathology.  相似文献   

6.
7.
Immunization with avirulent Salmonella typhimurium strain SL3235, a smooth, aroA- derivative, was shown to induce high levels of resistance to challenge with virulent S. typhimurium in innately hypersusceptible C3H/HeJ mice and inherently resistant C3H/HeNCrlBR mice. Strain SL3235 is one of a class of avirulent aroA- derivatives made from various strains and species of Salmonella that are being considered as vaccine candidates for cattle and humans. This paper supports their efficacy and potential utility in this regard. In C3H/HeJ mice, immunity against over 1,000 50% lethal doses of virulent S. typhimurium was evident as early as 3 days after immunization and persisted for at least 7 months. Further, the vaccine was effective over a broad spectrum of doses, ranging from 10(4) to 10(6) organisms. Infection with SL3235 led to marked splenomegaly in both mouse strains. The relationship of splenomegaly to the growth kinetics and colonization by SL3235 in the spleens of infected C3H/HeJ and C3H/HeNCrlBR mice was followed. SL3235 initially multiplied slowly in the spleens of both mouse strains and then was rapidly cleared. Less multiplication was seen in the resistant C3H/HeNCrlBR mice than in C3H/HeJ mice. Maximum splenomegaly occurred after clearance of the organism had begun. Protection against virulent S. typhimurium persisted after virtually all of the SL3235 vaccine strain had been cleared from the spleen. Cross-protection against Listeria monocytogenes was evident, but had a later onset, waned by 21 days, and was not detectable by 1 month after vaccination. Demonstration of this cross-protection is consistent with the interpretation that SL3235 induces cellular immunity. One-week immune spleen cells adoptively transferred anti-S. typhimurium and anti-L. monocytogenes immunity. T cell-enriched fractions were ineffective in adoptive transfer, as were spleen cells taken 2 weeks or later after immunization. Protective capacity was in the adherent cell fraction and seemed to be associated with macrophages. Evidence for induction of a population of sensitized T cells was obtained by using a peritoneal exudate T-lymphocyte proliferation assay on peritoneal T lymphocytes collected 1 to 3 months after SL3235 infection.  相似文献   

8.
Immune response to infection with Salmonella typhimurium in mice   总被引:4,自引:0,他引:4  
Infection of mice with Salmonella typhimurium results in systemic infection and a disease similar to that seen in humans after infection with S. typhi. The innate immune system can restrict replication of S. typhimurium to a certain degree, but for effective control and eradication of bacteria, acquired immunity is essential. Salmonella infection induces the generation of specific CD4+ and CD8+ T cells, and both T cell populations are important for protection during primary and secondary responses, although the mechanisms underlying T cell-mediated protection are not yet completely understood. Infection with S. typhimurium also results in a strong antibody response to Salmonella antigens and, in contrast to most other intracellular bacteria, this antibody response participates in protection. In summary, the response to S. typhimurium involves both T and B cell-mediated immunity, and mechanisms mediated by both lymphocyte populations are important for control of primary infection and protection against secondary infection.  相似文献   

9.
We have investigated the effect of the in vivo administration of recombinant transforming growth factor beta (rTGF-beta) on the pathogenic mechanisms involved in Salmonella typhimurium experimental infection in mice. The protective response elicited by macrophages was induced by rTGF-beta1 by 2 days after experimental infection, as demonstrated by an increased NO production, while the humoral protective effect began with cytokine mRNA expression 2 days after the challenge and continued after 5 days with cytokine release and lymphocyte activation. We demonstrated that all mice who received rTGF-beta1 survived 7 days after infection. The number of bacteria recovered in the spleens and in the livers of rTGF-beta1-treated mice 2 and 5 days after infection was significantly smaller than that found in the same organs after phosphate-buffered saline (PBS) inoculation. Furthermore, 2 and 5 days after infection, splenic macrophages from rTGF-beta1-treated mice showed a greater NO production than did those from PBS-treated mice. The effect of rTGF-beta1 on S. typhimurium infection in mice was correlated with the expression of cell costimulatory CD28 molecules. Five days after S. typhimurium infection, the percentage of CD28(+)-expressing T cells in splenic lymphocytes from rTGF-beta1-treated mice increased with respect to that from control mice. Gamma interferon (IFN-gamma) mRNA was present in a greater amount in spleen cells from rTGF-beta1-treated mice after 2 days, although the intensity of the band decreased 5 days after the challenge. A similar pattern was obtained with the mRNAs for interleukin-1alpha (IL-1alpha), IL-6, TGF-beta, and inducible nitric oxide synthase, which showed greater expression in cells obtained from rTGF-beta1-treated and S. typhimurium-infected mice 2 days after challenge. The treatment with rTGF-beta1 induced an increase in IL-1alpha and IFN-gamma release in the supernatant of splenocyte cultures 5 days after the experimental infection with S. typhimurium. Moreover, we demonstrated that 5 days after infection, the IFN-gamma titer was significantly greater in the sera of rTGF-beta-treated mice than in those of PBS-treated mice. Also, hsp60 showed greater expression 2 days after the challenge in splenocytes from rTGF-beta1-treated mice. The role played by proinflammatory and immunoregulatory cytokines and by CD28 is discussed.  相似文献   

10.
BALB/c mice given a live vaccine of an aroA mutant of Salmonella choleraesuis by intraperitoneal (i.p.) injection were not protected against i.p. challenge with its virulent parental strain but were protected against i.p. challenge with either of two virulent strains of Salmonella typhimurium (O [1], 4, [5], 12). Vaccination with a live vaccine of S. typhimurium aroA protected against challenge with S. typhimurium but not with S. choleraesuis. Intraperitoneal administration of either aroA strain evoked high levels of serum antibody against the homologous lipopolysacharide (LPS) as determined by an enzyme immunoassay. Sera from vaccinated mice also reacted with heterologous LPS but at dilutions at least seven-fold lower than homologous endpoint titres. The vaccination schedule employed with either live-vaccine strain conferred an equal degree of resistance to challenge with Listeria monocytogenes. After mixed infection of mice with equal numbers of virulent S. typhimurium and S. choleraesuis by the i.p. route, the former was isolated in numbers at least 50,000 times greater than the latter from the liver and spleen between days 1 and 5. When mice were vaccinated i.p. with S. choleraesuis aroA, L. monocytogenes or P. multocida before mixed infection, neither serotype showed more than a slight predominance in the liver and spleen during the same period. Thus, in relative terms, vaccination with S. choleraesuis aroA or inoculation with unrelated bacteria suppressed the growth of virulent S. typhimurium in mice but allowed virulent S. choleraesuis to multiply. These results clearly show that S. choleraesuis 38(1) can multiply to kill immunised BALB/c mice.  相似文献   

11.
Partially delipidated Salmonella typhimurium (O-1,4,5,12) lipopolysaccharide was incorporated into small multilamellar liposomes composed of either naturally occurring or synthetic phospholipids. Vaccination of mice with the liposome-lipopolysaccharide complexes induced a cellular response specific for O-1,4,5,12 determinants, as determined by the development of a delayed-type hypersensitivity reaction. The liposome-lipopolysaccharide vaccines were significantly more effective, compared with other nonviable vaccines tested, in protecting mice against a lethal intravenous challenge infection with virulent S. typhimurium. Protection afforded by the liposome-lipopolysaccharide vaccines was comparable to that conferred by a live S. typhimurium vaccine. Results suggest that liposome-induced modulation of the host immune response in favor of cell-mediated immunity may be more efficacious in preventing diseases in which cell-mediated immunity is of prime importance.  相似文献   

12.
13.
Mice pretreated intraperitoneally with trehalose-6,6'-dimycolate (cord factor) were protected against an intraperitoneal challenge with Salmonella typhi strain Ty2 or Salmonella typhimurium strain SR 11. The nonspecific resistance to S. typhi and S. typhimurium was still detectable 7 and 14 days, respectively, after administration of cord factor. The effect of cord factor was local. Synthetic analogues of cord factor--trehalose-6,6'-dipalmitate and trehalose monopalmitate--also induced nonspecific resistance to the above virulent bacteria. The results are discussed.  相似文献   

14.
The presence of Helicobacter pylori in the gastroduodenal mucosae is associated with chronic active gastritis, peptic ulcers and gastric cancers such as adenocarcinoma and low-grade gastric B-cell lymphoma. In response to the presence of antibiotic-resistant strains, the use of vaccines to combat this infection has become an attractive alternative. The present study used a murine model of infection by a mouse-adapted H. pylori strain to determine whether infection in BALB/c mice can be successfully eradicated by intragastric vaccination with H. pylori heparan sulphate-binding proteins (HSBP) covalently coupled to the beta-subunit of cholera toxin (CTB). It was shown that vaccination confers protection against exposure of BALB/c mice to the pathogen, as revealed by microbiological, histopathological and molecular methods.  相似文献   

15.
Mice immunized with a killed vaccine of phase I Bordetella bronchiseptica were challenged with various numbers of virulent B. bronchiseptica by intraperitoneal, intracerebral, or intranasal routes. The course of infection was compared among these routes, and the protective effect of vaccination was quantitatively analyzed. In ddN mice infected intraperitoneally with 1.8 X 10(8) cells (ca. 80 times the 50% lethal dose [LD50]) the organisms rapidly increased in the intraperitoneal fluid, spleen, and liver within few days and caused splenic atrophy, septicemia, and death. However, immunizations with 5 X 10(9) cells gave the mice a high agglutinin titer and suppressed the increase in the number of organisms. With four immunizations, the lungs and livers were clear within 3 days, and with one or two immunizations, they were clear within 7 days. These immunizations effectively protected the mice from death but did not protect them from splenic atrophy. In the intracerebral infection with 1.4 X 10(6) cells (ca. 1.2 X 10(5) LD50), the number of organisms rapidly increased in the brain and caused encephalitis, splenic atrophy, and death. However, four or five immunizations completely suppressed the increase in the brain and protected the mice from death and splenic atrophy. After intranasal infection with 4 X 10(6) cells (ca. 25 LD50), the organisms rapidly increased in the nasal cavity and lungs and caused pneumonia and death. Immunization with 5 X 10(9) cells was effective in clearing the organisms from the lungs and in protecting against death and splenic atrophy. However, the organisms were not cleared from the nasal cavity for 60 to 150 days after the challenge with as little as 10(2) cells, even in the mice with an agglutinin titer as high as 1:10,000.  相似文献   

16.
Three groups of six calves each, 5 to 7 weeks old, were orally vaccinated with the live aromatic-dependent delta aroA Salmonella dublin (O9,12) hybrid strain SL7103 with the O4,12-specifying rfb gene cluster from Salmonella typhimurium. SL7103 was given in three weekly doses, increasing from 2 x 10(9) to 1 x 10(11) bacteria per ml, was well tolerated, and caused mild, short-term temperature increases which diminished with each immunization. The strain was shed for up to 1 week. Strain SL7103 elicited significant (P < 0.001) and equal anti-S. dublin and -S. typhimurium lipopolysaccharide serum antibody responses and skin delayed-type hypersensitivity immune responses. Six vaccinated calves orally challenged with 10(10) CFU (equivalent to 1,000 50% lethal doses) of the virulent parent strain S. dublin SVA47 were protected and experienced only transient fever and mild mucoid diarrhea. However, six vaccinated calves orally challenged with 3 x 10(9) CFU and another six challenged with 3 x 10(8) CFU (equivalent to 1,000 50% lethal doses) of the virulent S. typhimurium SVA44 became bacteremic with a profuse hemorrhagic diarrhea and had to be sacrificed within 2 to 7 days. The results suggest that the S. typhimurium antilipopolysaccharide immunity was insufficient to provide a solid protective efficacy against oral S. typhimurium infection. The immunohistopathological examination revealed that S. typhimurium SVA44 could be found in all layers of the intestinal mucosa and the lymphatic tissues of the Peyer's patches. In contrast, S. dublin SVA47 was found predominantly in the columnar enterocytes of the jejunum and ileum and the follicle-associated epithelium over the Peyer's patches. In addition, SVA47 was found in the glandular tissues of the duodenal and tonsillar areas and in the lungs. This suggests that the S. typhimurium and S. dublin strains have different virulence traits determining their tissue localization and dissemination.  相似文献   

17.
We used enzyme-linked immunosorbent assay (ELISA), competitive inhibition ELISA, flow cytometry and western immunoblots to study the antigenic specificity of two monoclonal antibodies (mAbs) raised against the cell surface antigens of Salmonella typhimurium. These mAbs (SH6.11 and WB60.4) protect CAF1 (Ity(r)) mice against endotoxemia and mouse typhoid. We found that SH6.11 and WB60.4 recognize Salmonella serogroup B-specific lipopolysaccharide O4 and O5 factors, respectively. These mAbs did not bind to Salmonella serotypes that belong to serogroup A, D1, E4, G2, or R and did not cross-react with other enteric and nonenteric bacterial species.  相似文献   

18.
The gene encoding the Leishmania major (L. major) promastigote surface glycoprotein, gp63, was introduced into the Salmonella typhimurium (S. typhimurium) aroA- aroD- live oral vaccine strain BRD509 and expressed under the control of a constitutive tac promoter in plasmid pKK233-2. This construct (GID101) expressed gp63 in vitro and was used to immunize highly susceptible BALB/c mice by the oral route. The plasmid was relatively stably inherited by bacteria growing or persisting in the mesenteric lymph nodes of immunized mice. Mice immunized with GID101 developed significant resistance against a challenge infection with L. major compared to controls immunized with BRD509 alone. Spleen and lymph node cells from immunized mice developed a strong in vitro proliferative T-cell response to killed or live L. major. The activated T cells secreted interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) which was abrogated by treatment with anti-CD4 but not with anti-CD8 antibody. The cells did not produce detectable levels of interleukin-4 (IL-4). The immunized mice also produced significant amounts of leishmanial specific IgG2a antibody but did not develop delayed-type hypersensitivity (DTH) to live parasites. No IgG1 antibody was detected. These data therefore demonstrate that gp63 gene delivered orally by a vaccine strain of S. typhimurium can preferentially induce the development of Th-1 subset of CD4+ T cells and protective immunity in the highly susceptible BALB/c mice.  相似文献   

19.
Infection with the blood stage of the malaria parasite Plasmodium vinckei is uniformly lethal in mice. We found that immunization of BALB/c mice with a combination of killed P. vinckei antigens and an attenuated (aroA) Salmonella typhimurium strain induces high levels of protection against challenge with live P. vinckei. This is especially significant because, in our previous studies, immunization of mice with killed P. vinckei antigens and adjuvants such as Bordetella pertussis, complete Freund adjuvant, and saponin failed to induce protective immunity. Immunization with attenuated S. typhimurium alone did not provide any nonspecific immunity. In vivo depletion of CD4+ T cells in the mice immunized with attenuated S. typhimurium and P. vinckei antigens caused the loss of their immunity. Expression of this immunity required the presence of a spleen. These results support our previous hypothesis that a blood stage malaria vaccine may need both induction of CD4+ T cells specific for the parasite and modification of the spleen with a vaccine vehicle. Therefore, attenuated Salmonella strains such as the one used in this study, when expressing recombinant malarial antigens, might fulfill this requirement.  相似文献   

20.
Hybridomas producing monoclonal immunoglobulin A (IgA) antibodies against Salmonella typhimurium were generated by mucosal immunization of BALB/c mice with attenuated strains of S. typhimurium and subsequent fusion of Peyer's patch lymphoblasts with myeloma cells. To test the role of secretory IgA (sIgA) in protection against Salmonella sp., we analyzed in detail the protective capacity of a monoclonal IgA, Sal4, produced in polymeric as well as monomeric forms, that is directed against a carbohydrate epitope exposed on the surface of S. typhimurium. BALB/c mice bearing subcutaneous Sal4 hybridoma tumors and secreting monoclonal sIgA into their gastrointestinal tracts were protected against oral challenge with S. typhimurium. This protection was directly dependent on specific recognition by the monoclonal IgA, since mice secreting Sal4 IgA from hybridoma tumors were not protected against a fully virulent mutant that lacks the Sal4 epitope. Although monoclonal Sal4 IgA was present in the bloodstreams and tissues of tumor-bearing mice, it did not protect against intraperitoneal challenge and did not possess complement-fixing or bacteriocidal activity in vitro. Taken together, these results indicate that secretion of sIgA alone can prevent infection by an invasive enteric pathogen, presumably by immune exclusion at the mucosal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号