首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited research has been conducted on dermal exposure and risk assessment, owing to the lack of reliable measurement techniques and data for quantitative risk assessment. We investigated the magnitude of dermal exposure to jet propulsion fuel 8 (JP-8), using naphthalene as a surrogate, on the US Air Force fuel-cell maintenance workers. Dermal exposure of 124 workers routinely working with JP-8 was measured using a non-invasive tape-strip technique coupled with gas chromatography-mass spectrometry analysis. The contribution of job-related factors to dermal exposure was determined using multiple linear regression analyses. Average whole body dermal exposure to naphthalene (as a marker for JP-8) was 7.61 +/- 2.27 ln(ng m(-2)). Significant difference (P < 0.0001) between the high-exposure group [8.34 +/- 2.23 ln(ng m(-2))] and medium- and low-exposure groups [6.18 +/- 1.35 ln(ng m(-2)) and 5.84 +/- 1.34 ln(ng m(-2)), respectively] was observed reflecting the actual exposure scenarios. Skin irritation, use of booties, working inside the fuel tank and the duration of JP-8 exposure were significant factors explaining the whole body dermal exposure. This study clearly demonstrates the efficiency and suitability of the tape-strip technique for the assessment of dermal exposure to JP-8 and that naphthalene can serve as a useful marker of exposure and uptake of JP-8 and its components. It also showed that the skin provides a significant route for JP-8 exposure and that actions to reduce exposure are required. Studies to investigate the relative contribution of dermal uptake of JP-8 on total body dose and the toxicokinetics of dermal exposure to JP-8 are underway.  相似文献   

2.
BACKGROUND: Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. OBJECTIVE: Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. METHODS: The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. RESULTS: The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). CONCLUSIONS: PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures.  相似文献   

3.
There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.  相似文献   

4.
BACKGROUND: Jet propulsion fuel-8 (JP-8) is one of the largest sources of chemical exposures among Air Force personnel. Urinary naphthols have been suggested as useful biomarkers of exposure to JP-8. METHODS: Multivariate linear regression models were applied to evaluate the effects of environmental and work-related factors upon production of urinary naphthols among 323 Air Force personnel. RESULTS: Naphthalene exposure, smoking status, and their interaction, plus self-reported skin irritation explained about two-thirds of the variation in naphthol levels. The exposure-smoking interaction was consistent with induction by smoking of one or more steps in the metabolism of naphthalene and naphthalene-1,2-oxide (NapO). A supralinear dose-response relationship was observed between urinary naphthols and naphthalene exposure. CONCLUSIONS: Urinary naphthols were associated with specific sources of exposure to JP-8, arising from both inhalation and dermal contact. Smokers and nonsmokers metabolized naphthalene at different rates, consistent with induction of at least two metabolic pathways by smoking.  相似文献   

5.
Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects.

Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8.

Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors.

Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body.

  相似文献   

6.
Benzene, naphthalene, and 1- and 2-naphthol were measured in urine samples obtained from 322 U.S. Air Force personnel categorized a priori as likely to have low, moderate, or high exposure to jet fuel [jet propulsion fuel-8 (JP-8)]. In postexposure samples, levels of these analytes in the high-exposure group were 3- to 29-fold greater than in the low-exposure group and 2- to 12-fold greater than in the moderate-exposure group. Heavy exposure to JP-8 contributed roughly the same amount of benzene and more than three times the amount of naphthalene compared with cigarette smoking. Strong correlations were observed among postexposure levels of naphthalene-based biomarkers in urine and naphthalene in air and breath. We conclude that urinary naphthalene and the naphthols can serve as biomarkers of exposure to jet fuel. Of these, the naphthols are probably more useful because of their greater abundance and slower elimination kinetics.  相似文献   

7.
A simple, non-invasive dermal sampling technique was developed and tested on 22 human volunteers under laboratory conditions to estimate acute dermal exposure to jet fuel (JP-8). Two sites on the ventral surface of each forearm were exposed to 25 micro l of JP-8 and the non-viable epidermis (stratum corneum) was sequentially tape-stripped using an adhesive tape. Samples were extracted with acetone and analyzed by gas chromatography/mass spectrometry. Analysis of the first tape strips indicated that JP-8 was rapidly removed from the stratum corneum over the 20 min study period. On average, after 5 min of exposure the first two tape strips removed 69.8% of the applied dose. The amount recovered with two tape strips decreased over time to a recovery of 0.9% 20 min after exposure. By fitting a mixed-effects linear regression model to the tape strip data, we were able to estimate accurately the amount of JP-8 initially applied. This study indicates that naphthalene has a short retention time in the human stratum corneum and that the tape stripping method, if used within 20 min of the initial exposure, can be used to measure reliably the amount of naphthalene initially in the stratum corneum due to a single exposure to jet fuel. We are currently investigating the applicability of the developed mixed-effects linear regression model to estimate acute JP-8 exposure levels based upon naphthalene measurements from tape strips collected from occupationally exposed workers.  相似文献   

8.
We recently reported associations between urinary 1-naphthol (1N) levels and several intermediate measures of male reproductive health, namely sperm motility, serum testosterone levels, and sperm DNA damage. However, because 1N is a major urinary metabolite of both naphthalene and the insecticide carbaryl, exposure misclassification stemming from differences in exposure source was probable and interpretation of the results was limited. As naphthalene, but not carbaryl, is also metabolized to 2-naphthol (2N), the relationship of urinary 1N to 2N within an individual may give information about source of 1N. Utilizing data from two previous studies that measured both 1N and 2N in urine of men exposed to either carbaryl or naphthalene, the present study employed several methods to differentiate urinary 1N arising from exposures to carbaryl and naphthalene among men in the reproductive health study. When re-evaluating the reproductive health data, techniques for identifying 1N source involved exploring interaction terms, stratifying the data set based on 1N/2N ratios, and performing an exposure calibration using a linear 1N to 2N relationship from a study of workers exposed to naphthalene in jet fuel. Despite some inconsistencies between the methods used to distinguish 1N source, we found that 1N from carbaryl exposure is likely responsible for the previously observed association between 1N and sperm motility, whereas 1N from naphthalene exposure is likely accountable for the association between 1N and sperm DNA damage. We demonstrate that studies of health effects associated with carbaryl should utilize a 1N/2N ratio to identify subgroups in which carbaryl is the primary source of 1N. Conversely, studies of naphthalene-related outcomes may utilize 2N levels to estimate exposure.  相似文献   

9.
Objective This study was undertaken to estimate the absorbed doses of carbaryl and the associated health risks in a group of horticultural greenhouse workers in the Province of Quebec, Canada, using a toxicokinetic modeling approach. Methods A mathematical model was developed to relate the absorbed dose of carbaryl, the evolution of its body burden and that of its metabolites and the urinary excretion rate of biomarkers. The free parameters of this model were determined using published time course data in volunteers exposed to carbaryl under controlled conditions. The model was used to determine cumulative urinary amounts of 1-naphthol that would be excreted by a typical worker exposed to a pre-established no-observed-adverse-effect level (NOAEL) dose; this biomarker amount was then taken as a biological reference value below which the risks of health effects were considered negligible. As a measure of the applicability of this approach to practical situations, the model was used to estimate the dose of carbaryl absorbed by each greenhouse worker, starting from his/her cumulative urinary excretion time courses of 1-naphthol over a 24-h period following the onset of a work exposure. Their cumulative 1-naphthol levels were then compared to the biological reference value obtained from the model and the NOAEL dose. Results Following the onset of a work exposure to carbaryl, a clear increase in the urinary excretion rate of 1-naphthol was observed in most workers. The reconstructed absorbed doses were found to vary between 3.3 and 143 nmol/kg of body weight (bw) depending on the working conditions. Simulations of the observed cumulative urinary excretion time course of each worker also showed that exposure appeared to occur mainly (a) through inhalation for the applicators and individuals without direct contact with treated plants and (b) through the dermal route for individuals manipulating treated plants. Although the workers under study clearly appeared to have been exposed to carbaryl in the greenhouses, 24-h cumulative 1-naphthol levels ranged from 4.8 to 65.1% of the proposed biological reference value of 32 nmol/kg bw in 24-h urine collections following the onset of a work exposure. Conclusion This suggests that the workers under study probably did not incur a serious health risk under the normal exposure conditions prevailing during the study period.  相似文献   

10.
Chemical contaminants or their metabolites may bind to and react with keratin proteins in the stratum corneum of the skin. Here, we present a tape-stripping method for the removal and quantification of keratin from the stratum corneum for normalization of extracted concentrations of naphthalene (as a marker for jet fuel exposure) from 12 human volunteers before and after exposure to jet fuel (JP-8). Due to the potential for removal of variable amounts of squamous tissue from each tape-strip sample, keratin was extracted and quantified using a modified Bradford method. Confirmation of the extraction of keratin was verified by western blotting using a monoclonal mouse anti-human cytokeratin antibody. Naphthalene was quantified in the sequential tape strips collected from the skin between 10 and 25 min after a single dose of JP-8 was initially applied. The penetration of jet fuel into the stratum corneum was demonstrated by the fact that the average mass of naphthalene recovered by a tape strip decreased with increased exposure time and subsequent tape strips and that the evaporation of naphthalene was observed to be negligible. There were no significant differences in the amount of keratin or naphthalene removed by tape strips between males and females, between age groups, races or degrees of skin pigmentation. We conclude that (i) the amount of keratin removed with tape strips was not affected by up to a 25 min exposure to JP-8 and (ii) there was a substantial decrease in the amount of keratin removed with consecutive tape strips from the same site, thus, adjusting the amount of naphthalene by the amount of keratin measured in a tape-strip sample should improve the interpretation of the amount of this analyte using this sampling approach. Although we found that normalization of the naphthalene to the amount of keratin in the tape-strip samples did not affect the ability of this method to quantify the dermal exposure to JP-8 under these laboratory conditions, the actual concentration of naphthalene (as a marker for JP-8 exposure) per unit of keratin in a tape-strip sample can be determined using this method and may prove to be required when measuring occupational exposures under field conditions.  相似文献   

11.
OBJECTIVES: Using urinary 1-hydroxypyrene (1-OHP) as a measure of total absorbed dose, the primary objective of this study was to evaluate the total effect of inhalation and dermal PAH exposures while considering other factors such as age, body mass index and smoking that may also have a significant effect on urinary 1-OHP. METHODS: The study population included two groups of highway construction workers: 20 paving workers and 6 milling workers. During multiple consecutive workshifts, personal air and dermal samples were collected from each worker and analyzed for pyrene. During the same work week, urine samples were collected pre-shift, post-shift and at bedtime each day and analyzed for 1-OHP. Distributed lag models were used to evaluate the independent effect of inhalation and dermal exposures that occurred at each of several preceding exposure periods and were used to identify the relevant period of influence for each pathway. RESULTS: The paving workers had inhalation (mean 0.3 micro g/m(3)) and dermal (5.7 ng/cm(2)) exposures to pyrene that were significantly higher than the milling workers. At pre-shift on Monday morning, following a weekend away from work, the pavers and millers had the same mean baseline urinary 1-OHP level of 0.4 micro g/g creatinine. The mean urinary 1-OHP levels among pavers increased significantly from pre-shift to post-shift during each work day, while the mean urinary 1-OHP levels among millers varied little and remained near the baseline level throughout the study period. Among pavers there was a clear increase in the pre-shift data during the work week, such that the average pre-shift level on day 4 (1.4 micro g/g creatinine) was 3.5 times higher than the average pre-shift results on day 1 (0.4 micro g/g creatinine). The results of the distributed lag model indicated that the impact of dermal exposure was approximately eight times the impact of inhalation exposure. Furthermore, dermal exposure that occurred during the preceding 32 h had a statistically significant effect on urinary 1-OHP, while the effect of inhalation exposure was not significant. CONCLUSIONS: We found that distributed lag models are a valuable tool for analyzing longitudinal biomarker data and our results indicate that dermal contact is the primary route of exposure to PAHs among asphalt paving workers. An exposure assessment of PAHs that does not consider dermal exposure may considerably underestimate cumulative exposure and control strategies aimed at reducing occupational exposure to asphalt-related PAHs should include an effort to reduce dermal exposure.  相似文献   

12.
Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.  相似文献   

13.
JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective equipment that optimize risk reduction without undue impact on a mission.  相似文献   

14.

Introduction

A physiologically based toxicokinetic (PBTK) model can predict blood and urine concentrations, given a certain exposure scenario of inhalation, dermal and/or oral exposure. The recently developed PBTK-model IndusChemFate is a unified model that mimics the uptake, distribution, metabolism and elimination of a chemical in a reference human of 70?kg. Prediction of the uptake by inhalation is governed by pulmonary exchange to blood. Oral uptake is simulated as a bolus dose that is taken up at a first-order rate. Dermal uptake is estimated by the use of a novel dermal physiologically based module that considers dermal deposition rate and duration of deposition. Moreover, evaporation during skin contact is fully accounted for and related to the volatility of the substance. Partitioning of the chemical and metabolite(s) over blood and tissues is estimated by a Quantitative Structure–Property Relationship (QSPR) algorithm. The aim of this study was to test the generic PBTK-model by comparing measured urinary levels of 1-hydroxypyrene in various inhalation and dermal exposure scenarios with the result of model simulations.

Experimental

In the last three decades, numerous biomonitoring studies of PAH-exposed humans were published that used the bioindicator 1-hydroxypyrene (1-OH-pyrene) in urine. Longitudinal studies that encompass both dosimetry and biomonitoring with repeated sampling in time were selected to test the accuracy of the PBTK-model by comparing the reported concentrations of 1-OHP in urine with the model-predicted values. Two controlled human volunteer studies and three field studies of workers exposed to polycyclic aromatic hydrocarbons (PAH) were included.

Results

The urinary pyrene-metabolite levels of a controlled human inhalation study, a transdermal uptake study of bitumen fume, efficacy of respirator use in electrode paste workers, cokery workers in shale oil industry and a longitudinal study of five coke liquefaction workers were compared to the PBTK-predicted values. The simulations showed that the model-predicted concentrations of urinary pyrene and metabolites over time, as well as peak-concentrations and total excreted amount in different exposure scenarios of inhalation and transdermal exposure were in all comparisons within an order of magnitude. The model predicts that only a very small fraction is excreted in urine as parent pyrene and as free 1-OH-pyrene. The predominant urinary metabolite is 1-OH-pyrene-glucuronide. Enterohepatic circulation of 1-OH-pyrene-glucuronide seems the reason of the delayed release from the body.

Conclusions

It appeared that urinary excretion of pyrene and pyrene-metabolites in humans is predictable with the PBTK-model. The model outcomes have a satisfying accuracy for early testing, in so-called 1st tier simulations and in range finding. This newly developed generic PBTK-model IndusChemFate is a tool that can be used to do early explorations of the significance of uptake of pyrene in the human body following industrial or environmental exposure scenarios. And it can be used to optimize the sampling time and urine sampling frequency of a biomonitoring program.  相似文献   

15.
In exposure or risk assessments, both environmental and biological measurements are often used. Environmental measurements are an excellent means for evaluating regulatory compliance, but the models used to estimate body burden from these measurements are complex. Unless all possible routes of exposure (i.e., inhalation, dermal absorption, ingestion) are evaluated, exposure to a toxicant can be underestimated. To circumvent this problem, measurements of the internal dose of a toxicant in blood, serum, urine, or tissues can be used singularly or in combination with environmental data for exposure assessment. In three separate laboratories, carbaryl or its primary metabolite, 1-naphthol, was measured in personal air, dermal samples, blood serum, and urine from farmer applicators and their families. The usefulness of both environmental and biological data has been demonstrated. For the farmer applicator, the environmental levels of carbaryl would have been sufficient to determine that an exposure had occurred. However, biological measurements were necessary to determine the absorbed dose of each member of the applicator's family. In addition, a correlation between serum and urinary 1-naphthol measurements has been shown; therefore, either matrix can be used to accurately evaluate occupational carbaryl exposure.  相似文献   

16.
Concern for the health risk associated with occupational exposure to jet fuel has emerged in the Department of Defense. Jet propulsion fuel-8 (JP-8) is the fuel used in most US and North Atlantic Treaty Organization (NATO) jet aircraft, and will be the predominant fuel both for military land vehicles and aircraft into the twenty-first century. JP-8 exhibits reduced volatility and lower benzene content as compared to JP-4, the predominant military aircraft fuel before 1992, possibly suggesting greater occupational exposure safety. However, the higher rates of occupational exposure through fueling and maintenance of increasingly larger numbers of aircraft/vehicles raise concerns with respect to toxicity. Clinical studies of workers experiencing long-term exposure to certain jet fuels demonstrated deficits in CNS function, including fatigue, neurobehavioral changes, psychiatric disorders, and abnormal electroencephalogram (EEG). In the present study, cDNA nylon arrays (Atlas Rat 1.2 Array, Clontech Laboratories, Palo Alto, CA) were utilized to measure changes in gene expression in whole brain tissue of rats exposed repeatedly to JP-8, under conditions that simulated possible real-world occupational exposure (6 h/day for 91 days) to JP-8 vapor at 1,000 mg/m3. Gene expression analysis of the exposure group compared to the control group revealed a modulation of several genes, including glutathione S-transferase Yb2 subunit (GST Yb2); cytochrome P450 IIIAl (CYP3A1); glucose-dependent insulinotropic peptide (GIP); alpha1-proteinase inhibitor (alpha1-AT); polyubiquitin; GABA transporter 3 (GAT-3); and plasma membrane Ca2+-transporting ATPase (brain isoform 2) (PMCA2). The implications of these vapor-induced changes in gene expression are discussed.  相似文献   

17.
Occupational exposure to polycyclic aromatic hydrocarbons (PAHs) has been demonstrated in many industrial sectors. However, up to date there are few studies in the literature on PAH exposure in thermoelectric power plants. The study was aimed at the evaluation of personal exposure to PAHs in workers of a power plant fueled with heavy oil. Exposure to polycyclic aromatic hydrocarbons (PAHs) and to benzene, toluene and xylenes (BTX) was evaluated on power plant workers exposed to heavy fuel oil; the control group consisted of office workers of the same power plant. Altogether 39 subjects were studied, for a total of 84 days of monitoring. Personal environmental exposure, cutaneous exposure and urinary concentrations of 1-hydroxypyrene (1-OHP), trans,trans-muconic acid (TTMA) and nicotine were measured. Personal environmental exposure to PAHs was very low; only maintenance workers showed exposure to total carcinogenic PAHs significantly higher than controls (median levels 3.05 and 0.88 ng/m3 respectively). All workers showed very low levels of dermal exposure to PAHs (less than 1 ng). The median 1-OHP urinary concentrations were 0.16, 0.11 and 0.08 mumol/mol creatinine in the groups of exposed workers and 0.08 mumol/mol creatinine in the control group. Neither the exposed workers nor the controls showed a significant increase in 1-OHP urinary concentrations across the shift. The regression analysis showed a significant effect of cigarette smoking on urinary 1-OHP, while no association was observed between occupational exposure and diet. Personal environmental exposure levels to BTX were very low. TTMA urinary concentrations of the exposed subjects were similar to those of the controls. No significant increase in the TTMA urinary concentrations was observed across the shift and, as expected, smokers showed higher values than non-smokers. The study did not show a measurable intake of PAHs and BTX in power plant workers that could be ascribed to occupational exposure, thus confirming the efficacy of the protective measures in force.  相似文献   

18.
Urinary 1-hydroxypyrene and 2-naphthol concentrations in male Koreans   总被引:3,自引:0,他引:3  
OBJECTIVE: Urinary 1-hydroxypyrene (1-OHP) has been used as a biological marker of exposure to polycyclic aromatic hydrocarbons (PAHs), and urinary 2-naphthol is suggested as a new marker for route-specific exposure to airborne PAHs. We analyzed urinary 1-OHP and 2-naphthol concentrations in 292 male Koreans (129 university students and 163 shipyard workers) to define the distribution pattern in Koreans with no or low occupational exposure to PAHs. METHOD: Histories of cigarette smoking and the eating of PAH-containing foods were obtained by a self-administered structured questionnaire. Urine samples were collected and urinary 1-OHP and 2-naphthol concentrations were measured using high-performance liquid chromatography (HPLC). RESULTS: The arithmetic (geometric) means of urinary 1-OHP and 2-naphthol concentrations for all students, expressed as micromoles per mole of creatinine, were 0.04 (0.04) and 3.12 (2.22), for non-smokers 0.03 (0.03) and 1.78 (1.30) and for smokers 0.05 (0.03) and 4.36 (3.62), respectively. Among shipyard workers, the arithmetic (geometric) means of urinary 1-OHP and 2-naphthol concentrations were 0.69 (0.31) and 4.37 (2.62) for all, 0.27 (0.18) and 2.46 (1.16) for nonsmokers, and 0.97 (0.44) and 5.60 (4.44) for smokers, respectively. Mean urinary 1-OHP and 2-naphthol concentrations differed significantly between nonsmokers and smokers both in students and in shipyard workers. In smokers, some variables related to smoking habit were positively correlated with urinary 1-OHP and with 2-naphthol concentrations. The latter showed better correlations with the variables related to smoking amount than the former. None of the food-related factors was significantly correlated with urinary 1-OHP or 2-naphthol concentration. CONCLUSION: These results suggest that urinary 2-naphthol concentration is more sensitively affected by smoking status than urinary 1-OHP concentration and that urinary 2-naphthol is a sensitive marker for low-level inhalation of PAHs.  相似文献   

19.
Because of troubling reports of high urinary metabolite levels and adverse reproductive health effects in workers exposed to di(2-ethylhexyl)phthalate (DEHP) in occupational settings, concern about exposure to DEHP in occupational settings is increasing. However, the contributions of different routes of exposure to DEHP are unclear. We used personal air sampling and biomonitoring to determine the contribution of inhalation exposure to the body burden of DEHP in the workplace. Eighty-nine workers (high-exposure group: 66 raw-materials workers; low-exposure group: 23 administrative workers) were recruited from three polyvinyl chloride (PVC) factories. Urinary levels of mono(2-ethylhexyl) phthalate (MEHP), (mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were measured in pre-shift and post-shift samples. The geometric means of airborne concentrations of DEHP were 5.3 μg/m3 (low-exposure group) and 32.7 μg/m3 (high-exposure group) (P < 0.01). Correlation analysis showed a consistently significant association between airborne DEHP concentration and urinary DEHP metabolite levels in the high-exposure group. Calculating daily DEHP intake based on total urinary metabolite levels showed that the geometric means of total daily urinary metabolite levels of DEHP were 9.2 μg/kg/day (low-exposure group) and 15.5 μg/kg/day (high-exposure group) (P < 0.01). A quartile analysis of all workers showed a significant trend toward an association between the individual contribution of inhalation exposure to DEHP and urinary DEHP metabolite levels, for which the mean inhalation contribution was 46.7% in the highest quartile. We conclude that inhalation-absorbed airborne DEHP significantly increased the total body burden of DEHP in these occupationally exposed workers.  相似文献   

20.
The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has demonstrated that JP-8 exposure is immunosuppressive. In the present study, the potential mechanisms for the effects of JP-8 exposure on the immune system were investigated. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). JP-8 exposure rapidly induced a persistently high level of serum IL-10 and PGE2 at an exposure concentration of 1000 mg/m3. IL-10 levels peaked at 2 h post-JP-8 exposure and then stabilized at significantly elevated serum levels, while PGE2 levels peaked after 2-3 days of exposure and then stabilized. Elevated IL-10 and PGE2 levels may at least partially explain the effects of JP-8 exposure on immune function. Elevated IL-10 and PGE2 levels, however, cannot explain all of the effects due to JP-8 exposure (e.g., decreased organ weights and decreased viable immune cells), as treatment with a PGE2 inhibitor did not completely reverse the immunosuppressive effects of jet fuel exposure. Thus, low concentration JP-8 jet fuel exposures have significant effects on the immune system, which can be partially explained by the secretion of immunosuppressive modulators, which are cumulative over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号