首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells   总被引:3,自引:0,他引:3  
Fulda S  Jeremias I  Debatin KM 《Oncogene》2004,23(46):7611-7620
We previously reported that the TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand)-induced death signal requires amplification by mitochondria in certain cell types, for example, in type II cells. Here, we provide for the first time evidence that the natural compound betulinic acid (BetA) cooperated with TRAIL to induce apoptosis in tumor cells. Through functional complementation, simultaneous stimulation of the death receptor pathway by TRAIL and the mitochondrial pathway by BetA resulted in complete activation of effector caspases, apoptosis and inhibition of clonogenic survival. BetA and TRAIL cooperated to trigger loss of mitochondrial membrane potential and release of cytochrome c and Smac from mitochondria. Also, combination treatment with BetA and TRAIL resulted in increased cleavage of caspase-8 and Bid indicating that activation of effector caspases may feed back in a positive amplification loop. Importantly, the combination treatment with BetA and TRAIL cooperated to induce apoptosis in different tumor cell lines and also in primary tumor cells, but not in normal human fibroblasts indicating some tumor specificity. Since most human cancers represent type II cells, triggering the mitochondrial pathway by BetA may be a novel approach to enhance the efficacy of TRAIL-based therapies, which warrants further investigation.  相似文献   

2.
3.
4.
Li Q  Li Y  Wang X  Fang X  He K  Guo X  Zhan Z  Sun C  Jin YH 《Molecular carcinogenesis》2011,50(10):760-769
We provide evidence for the first time, that two natural compounds ginsenoside Rh2 (G‐Rh2) and betulinic acid (Bet A) synergistically induce apoptosis in human cervical adenocarcinoma (HeLa), human lung cancer A549, and human hepatoma HepG2 cells. G‐Rh2 and Bet A cooperated to induce Bax traslocation to mitochondria and cytochrome c release. Co‐treatment of G‐Rh2 and Bet A resulted in enhanced cleavage of caspase‐8 and Bid. Moreover, specific inhibition of caspase‐8 by siRNA technology effectively reduced caspase‐9 processing, poly (ADP‐ribose) polymerase (PARP) cleavage, caspase‐3 activation, and apoptosis in co‐treated cells, which indicated that the caspase‐8 feedback amplification pathway may have been involved in the apoptosis process. A previous study has shown that G‐Rh2 induces cancer cell apoptosis via a Bcl‐2 and/or Bcl‐xL‐independent mechanism, and Bet A induces apoptosis mainly through a mitochondrial pathway with tumor specificity. Since the antiapoptotic Bcl‐2 and Bcl‐xL are frequently overexpressed in human cancer cells, combined treatment with G‐Rh2 and Bet A may be a novel strategy to enhance efficacy of anticancer therapy. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Caspase-8 plays an essential role in apoptosis triggered by death receptors. Through the cleavage of Bid, a proapoptotic Bcl-2 member, it further activates the mitochondrial cytochrome c/Apaf-1 pathway. Because caspase-8 can be processed also by anticancer drugs independently of death receptors, we investigated its exact role and order in the caspase cascade. We show that in Jurkat cells either deficient for caspase-8 or overexpressing its inhibitor c-FLIP apoptosis mediated by CD95, but not by anticancer drugs was inhibited. In the absence of active caspase-8, anticancer drugs still induced the processing of caspase-9, -3 and Bid, indicating that Bid cleavage does not require caspase-8. Overexpression of Bcl-x(L) prevented the processing of caspase-8 as well as caspase-9, -6 and Bid in response to drugs, but was less effective in CD95-induced apoptosis. Similar responses were observed by overexpression of a dominant-negative caspase-9 mutant. To further determine the order of caspase-8 activation, we employed MCF7 cells lacking caspase-3. In contrast to caspase-9 that was cleaved in these cells, anticancer drugs induced caspase-8 activation only in caspase-3 transfected MCF7 cells. Thus, our data indicate that, unlike its proximal role in receptor signaling, in the mitochondrial pathway caspase-8 rather functions as an amplifying executioner caspase.  相似文献   

6.
Novel mechanisms of apoptosis induced by histone deacetylase inhibitors   总被引:12,自引:0,他引:12  
Histone deacetylase inhibitors (HDACIs) are a new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest; however, the molecular mechanisms underpinning their anticancer effects are poorly understood. Herein, we assessed the apoptotic pathways activated by three HDACIs, suberoylanilide hydroxamic acid, oxamflatin, and depsipeptide. We determined that all three drugs induced the accumulation of cells with a 4n DNA content and apoptosis mediated by the intrinsic apoptotic pathway. HDACI-induced mitochondrial membrane damage and apoptosis were inhibited by overexpression of Bcl-2, but not by the polycaspase inhibitor N-tert-butoxy-carbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Moreover, induction of a G(1)-S checkpoint through overexpression of p16(INK4A) or suppression of de novo protein synthesis also inhibited HDACI-induced cell death. Proteolytic cleavage of caspase-2, which is poorly inhibited by zVAD-fmk, was concomitant with HDACI-induced death; however, full processing of caspase-2 to the p19 active form was blocked by Bcl-2. Whereas all three drugs induce the activation of the proapoptotic Bcl-2 protein Bid upstream of mitochondrial membrane disruption, Bid cleavage in response to depsipeptide was significantly attenuated by zVAD-fmk. Suberoylanilide hydroxamic acid and oxamflatin could kill both P-glycoprotein (P-gp)(+) MDR cells and their P-gp(-) counterparts, whereas depsipeptide was shown to be a substrate for P-gp and was less effective in killing P-gp(+) cells. These data provide insight into the functional profile of three HDACIs and are important for the development of more rational approaches to chemotherapy, where information regarding the genetic profile of the tumor is matched with the functional profile of a given chemotherapeutic drug to promote favorable clinical responses.  相似文献   

7.
Betulinic acid (BetA), a pentacyclic triterpene, is a selective apoptosis-inducing agent that works directly in mitochondria. Recent study has revealed that BetA inhibits in vitro enzymatic activity of aminopeptidase N (APN, EC 3.4.11.2), which is known to play an important role in angiogenesis, but the anti-angiogenic activity of BetA has not been reported yet. Data presented here show that BetA potently inhibited basic fibroblast growth factor (bFGF)-induced invasion and tube formation of bovine aortic endothelial cells (BAECs) at a concentration which had no effect on the cell viability. To access whether the anti-angiogenic nature of BetA originates from its inhibitory action against aminopeptidase N (APN) activity, the effect of BetA on APN was investigated. Surprisingly, BetA did not inhibit in vivo APN activity in endothelial cells or APN-positive tumor cells. On the other hand, BetA significantly decreased the mitochondrial reducing potential, and treatment with mitochondrial permeability transition (MPT) inhibitors attenuated BetA-induced inhibition of endothelial cell invasion. These results imply that anti-angiogenic activity of BetA occurs through a modulation of mitochondrial function rather than APN activity in endothelial cells.  相似文献   

8.
Betulinic acid (BetA), a pentacyclic triterpene, is a selective apoptosis-inducing agent that works directly in mitochondria. Recent study has revealed that BetA inhibits in vitro enzymatic activity of aminopeptidase N (APN, EC 3.4.11.2), which is known to play an important role in angiogenesis, but the anti-angiogenic activity of BetA has not been reported yet. Data presented here show that BetA potently inhibited basic fibroblast growth factor (bFGF)-induced invasion and tube formation of bovine aortic endothelial cells (BAECs) at a concentration which had no effect on the cell viability. To access whether the anti-angiogenic nature of BetA originates from its inhibitory action against aminopeptidase N (APN) activity, the effect of BetA on APN was investigated. Surprisingly, BetA did not inhibit in vivo APN activity in endothelial cells or APN-positive tumor cells. On the other hand, BetA significantly decreased the mitochondrial reducing potential, and treatment with mitochondrial permeability transition (MPT) inhibitors attenuated BetA-induced inhibition of endothelial cell invasion. These results imply that anti-angiogenic activity of BetA occurs through a modulation of mitochondrial function rather than APN activity in endothelial cells.  相似文献   

9.
Apoptosis can be induced by various stimuli including DNA-damaging anticancer drugs and the protein kinase inhibitor staurosporine. It is generally believed that the molecular events during execution of apoptosis are shared, as both anticancer drugs and staurosporine derivatives induce mitochondrial damage, cytochrome c release and the activation of the caspase-9 proteolytic cascade. In the present study we show that overexpression of a dominant-negative caspase-9 mutant abolished the activation of endogenous caspase-9, caspase-3 and the cleavage of the caspase substrate Bid in response to anticancer drug treatment. Surprisingly, however, only marginal effects were observed during staurosporine-induced apoptosis. Furthermore, we describe a Jurkat T-cell clone that is completely resistant towards different anticancer drugs, but remains sensitive towards staurosporine-induced apoptosis. In these cells only staurosporine, but neither anti-CD95 nor anticancer drugs were able to trigger caspase activity and the cleavage of caspase substrates. Our results therefore suggest that the mechanism of staurosporine-induced apoptosis is more complex and at least partially differs from anticancer drug-induced caspase activation. These distinct features of staurosporine may allow to bypass chemoresistance of tumor cells and may encourage further clinical trials for the use of staurosporine derivatives in antitumor therapy.  相似文献   

10.
Kim R 《Cancer》2005,103(8):1551-1560
Over the past two decades, the role of apoptosis in the cytotoxicity of anticancer drugs has become clear. Apoptosis may occur via a death receptor-dependent (extrinsic) or independent (intrinsic or mitochondrial) pathway. Mitochondria play a central role in cell death in response to DNA damage, and mediate the interaction(s) of various cytoplasmic organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. The mitochondrial pathway of cell death is mediated by Bcl-2 family proteins, a group of antiapoptotic and proapoptotic proteins that regulate the passage of small molecules, such as cytochrome c, Smac/Diablo, and apoptosis-inducing factor, which activates caspase cascades, through the mitochondrial transition pore. In addition, apoptosis can induce autophagic cell death via crosstalk between the two pathways upon treatment with anticancer drugs. The current review focused on recent advances surrounding the mechanism(s) of cell death induced by anticancer agents and discussed potential molecular targets for enhancing the chemotherapeutic effect(s) of anticancer agents.  相似文献   

11.
Purpose: Osteosarcoma is a common malignant tumor. The first choice of treatment plan for osteosarcoma is chemotherapy. In particular, preoperative chemotherapy is most important in clinical treatment in orthopedics. In these chemotherapies, multiple anticancer drugs such as Adriamycin (ADM), CDDP, cyclophosphamide (CPM), methotrexate (MTX) and vincristine (VCR) are commonly used in combination. Recently, anticancer drugs have been shown to trigger apoptosis in various cancer cells. However, many studies on this topic have been examined using leukemia cell lines, and many kinds of cancer cells established from solid tumor are resistant to the induction of apoptosis by anticancer drugs. So in this study, we examined the effects of the anticancer drugs ADM, CDDP, CPM, MTX and VCR on osteosarcoma cells in vitro. We also examined the signaling pathways of each anticancer drug by studying the induction of apoptosis and activation of caspases in the osteosarcoma cells. Methods: We examined the effects of the anticancer drugs ADM, CDDP, CPM, MTX and VCR, which are used clinically for the treatment of osteosarcoma, on cells of the human osteosarcoma (HOS) cell line. The cytotoxic effects of the anticancer drugs were evaluated using the MTT assay. We used both flow cytometry and activation of caspases to confirm the induction of apoptosis in the HOS cells. To dissect the pathway of the caspase cascade in apoptosis in HOS cells, we used the tetrapeptides YVAD-CHO, DMQD-CHO, VEID-CHO and IETD-CHO, which selectively inhibit caspase-1, -3, -6 and -8, respectively. Results: ADM, CDDP, CPM and VCR, but not MTX, induced death of HOS cells in a dose-dependent manner. CDDP at 10 μM, CPM at 7.5 μM, ADM at 20 μM and VCR at 150 μM caused 80% cell death of HOS cells after 12 h. However, the percentages of apoptotic cells were 5.6% (medium alone), 75.9% (CDDP), 20.0% (CPM), 22.2% (ADM), 20.5% (VCR) and 13.1% (MTX). In addition, direct measurement of caspase-3 activity revealed that CDDP but not the other drugs activated caspase-3 in HOS cells. These analyses revealed that only CDDP induced apoptosis of HOS cells via activation of caspases. Furthermore, DMQD-CHO, VEID-CHO and IETD-CHO inhibited CDDP-induced apoptosis of HOS cells, suggesting that caspase-3, -6 and -8 are involved in the signaling pathway of CDDP-induced apoptosis. In contrast, none of the caspase inhibitors inhibited cell death induced by the other anticancer drugs. Conclusions: This study demonstrates that CDDP specifically induces apoptosis via activation of caspases and the other anticancer drugs induce death of HOS cells via different signaling pathways. It also demonstrates that caspase-8 is a key molecule in the earliest stage of the signaling pathway of CDDP-induced apoptosis of HOS cells, and caspase-3 works downstream of caspase-8. Received: 29 March 1999 / Accepted: 20 July 1999  相似文献   

12.
Cyclooxygenase-2 (COX-2) is involved in diverse processes such as inflammation, carcinogenesis and apoptosis. As COX-2 inhibitors interfere with these processes, inhibition of COX-2 has been suggested as a promising anticancer treatment. However, the role of COX-2 in modulation of apoptosis as well as the death pathways affected by COX-2 inhibitors are poorly characterized. Here we demonstrate that the selective COX-2 inhibitors NS-398 and nimesulide increased TNF sensitivity of TNF-resistant HeLa H21 and TNF-sensitive HeLa D98 cells, although this cytokine induced significant COX-2 activity, as judged by prostaglandin E(2) (PGE(2)) production, only in H21 cells. TNF did also not induce PGE(2) production in MCF-7/casp-3 cells stably expressing COX-2; however, nimesulide strongly enhanced TNF-induced apoptosis in these cells. Furthermore, COX-2 activity in HeLa H21 cells could be inhibited by NS-398 concentrations that were 10 000-fold lower compared to those required for the induction of cell death. Most intriguingly, sensibilization to apoptosis was specifically observed in response to activation of death receptors. Not only TNF-induced cell death but also apoptosis triggered by the CD95 and TRAIL receptors was enhanced by nimesulide. In contrast, apoptosis induced by the anticancer drugs doxorubicine and etoposide that target the mitochondrial death pathway remained unaffected. Together, our data suggest that COX-2 inhibitors overcome apoptosis resistance and selectively sensitize tumor cells to the extrinsic death receptor-induced apoptotic pathway independently of COX-2.  相似文献   

13.
14.
15.
16.
Myelosuppression is the most common unwanted side effect associated with the administration of anticancer drugs, and infections remain a common cause of death in chemotherapy-treated patients. Several mechanisms of the cytotoxicity of these drugs have been proposed and may synergistically operate in a given cell. Survivin expression has been associated with cancer, but recent reports suggest that this molecule is also expressed in several immature and mature hematopoietic cells. Here, we provide evidence that treatment of immature neutrophils with anticancer drugs reduced endogenous survivin levels causing apoptosis. The anticancer drugs did not directly target survivin, instead they blocked the activity of phosphatidylinositol-3-OH kinase, which regulated survivin expression and apoptosis in these cells. Strikingly, and in contrast to other cells, this pathway did not involve the serine/threonine kinase c-akt/PKB. Moreover, in combination with anticancer drug therapy, rapamycin did not induce increased myelosuppression in an experimental lymphoma mouse model. These data suggest that drugs that block either c-akt/PKB or signaling molecules located distal to c-akt/PKB may preferentially induce apoptosis of cancer cells as they exhibit no cytotoxicity for immature neutrophils.  相似文献   

17.
There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and alpha-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and alpha-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induce the intrinsic death pathway in MCF-7/casp-3 cells, an event readily observed in IR-induced apoptosis of HeLa cells. Although IR-induced DNA double-strand breaks were repaired with similar efficiencies in all cell lines, cell cycle analyses revealed a persistent G2/M arrest in the two MCF-7 cell lines, but not in HeLa cells. Together, our data demonstrate that caspase-3 is required for DNA fragmentation and alpha-fodrin cleavage in drug-induced apoptosis and that the intrinsic death pathway is fully functional in MCF-7 cells. Furthermore, they show that the radiation-resistant phenotype of MCF-7 cells is not due to the lack of caspase-3, but is caused by the failure of IR to activate the intrinsic death pathway. We propose (1) different signaling pathways are induced by anticancer drugs and IR, and (2) IR-induced G2/M arrest prevents the generation of an apoptotic signal required for the activation of the intrinsic death pathway.  相似文献   

18.
Prostate cancer is one of the malignant tumors which exhibit resistance to anticancer drugs, at least in part due to enhanced antiapoptotic mechanisms. Therefore, the understanding of such mechanisms should improve the design of chemotherapy against prostate cancer. Galectin-3 (Gal-3), a multifunctional oncogenic protein involved in the regulation of tumor proliferation, angiogenesis, and apoptosis has shown antiapoptotic effects in certain cell types. Here, we show that the expression of exogenous Gal-3 in human prostate cancer LNCaP cells, which do not express Gal-3 constitutively, inhibits anticancer drug-induced apoptosis by stabilizing the mitochondria. Thus, Gal-3-negative cells showed 66.31% apoptosis after treatment with 50 micromol/L cis-diammine-dichloroplatinum for 48 hours, whereas two clones of Gal-3-expressing cells show only 2.92% and 1.42% apoptotic cells. Similarly, Gal-3-negative cells showed 43.8% apoptosis after treatment with 300 micromol/L etoposide for 48 hours, whereas only 15.38% and 14.51% of Gal-3-expressing LNCaP cells were apoptotic. The expression of Gal-3 stimulated the phosphorylation of Ser(112) of Bcl-2-associated death (Bad) protein and down-regulated Bad expression after treatment with cis-diammine-dichloroplatinum. Gal-3 also inhibited mitochondrial depolarization and damage after translocation from the nuclei to the cytoplasm, resulting in inhibition of cytochrome c release and caspase-3 activation. These findings indicate that Gal-3 inhibits anticancer drug-induced apoptosis through regulation of Bad protein and suppression of the mitochondrial apoptosis pathway. Therefore, targeting Gal-3 could improve the efficacy of anticancer drug chemotherapy in prostate cancer.  相似文献   

19.
With an increasing cancer rate worldwide, there is an urgent quest for the improvement of anticancer drugs. One of the main problems of present chemotherapy in treatment of tumor patients is the toxicity of drugs. Most of the existent anticancer drugs, unfortunately, attack also proliferating normal cells. In recent years, traditional Chinese herbal remedies have gradually gained considerable attention as a new source of anticancer drugs. Although their healing mechanisms are still largely unknown, some of the drugs have been used to help cancer patients fight their disease at reduced side effects compared to other treatments. In our study, we show that Rocaglamide (Roc), derived from the traditional Chinese medicinal plants Aglaia, induces apoptosis through the intrinsic death pathway in various human leukemia cell lines and in acute lymphoblastic leukemia, chronic myeloid leukemia and acute myeloid leukemia cells freshly isolated from patients. Investigation of the molecular mechanisms by which Roc kills tumors revealed that it induces a consistent activation of the stress-response mitogen-activated protein kinase (MAPK) p38 accompanied with a long-term suppression of the survival MAPK extracellular signal-regulated kinase. These events affect proapoptotic Bcl-2 family proteins leading to depolarization of the mitochondrial membrane potential and trigger caspase-mediated apoptosis involving caspase-9, -8, -3 and -2. Importantly, Roc shows no effects on MAPKs in normal lymphocytes and therefore has no or very low toxicity on healthy cells. Up to now, more than 50 different Roc derivatives have been isolated from Aglaia. Our study suggests that Roc derivatives may be promising candidates for the development of new drugs against hematologic malignancies.  相似文献   

20.
MycN sensitizes neuroblastoma cells for drug-induced apoptosis   总被引:8,自引:0,他引:8  
Fulda S  Lutz W  Schwab M  Debatin KM 《Oncogene》1999,18(7):1479-1486
Amplification of the MYCN gene is found in a large proportion of neuroblastoma and considered as an adverse prognostic factor. To investigate the effect of ectopic MycN expression on the susceptibility of neuroblastoma cells to cytotoxic drugs we used a human neuroblastoma cell line harboring tetracycline-controlled expression of MycN. Neither conditional expression of MycN alone nor low drug concentrations triggered apoptosis. However, when acting in concert, MycN and cytotoxic drugs efficiently induced cell death. Apoptosis depended on mitochondrial permeability transition and activation of caspases, since the mitochondrion-specific inhibitor bongkrekic acid and the caspase inhibitor zVAD-fmk almost completely abrogated apoptosis. Loss of mitochondrial transmembrane potential and release of cytochrome c from mitochondria preceded activation of caspase-8 and caspase-3 and cleavage of PARP. CD95 expression was upregulated by treatment with cytotoxic drugs, while MycN cooperated with cytotoxic drugs to increase sensitivity to CD95-induced apoptosis and enhancing CD95-L expression. MycN overexpression and cytotoxic drugs also synergized to induce p53 and Bax protein expression, while Bcl-2 and Bcl-X(L) protein levels remained unchanged. Since amplification of MYCN is usually associated with a poor prognosis, these findings suggest that dysfunctions in apoptosis pathways may be a mechanism by which MycN-induced apoptosis of neuroblastoma cells is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号