首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Rats normally eat about 85% of their food at night. Lactation increases food intake 3- to 4-fold, but the diurnal pattern of food intake persists. The mechanisms responsible for the diurnal and lactation-induced changes in food intake are still unresolved, hence we have further investigated the possible roles of serum leptin and hypothalamic expression of neuropeptide Y (NPY), agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in rats. Suppressor of cytokine signalling-3 (SOCS-3) acts as a feedback inhibitor of leptin signalling in the hypothalamus, hence changes in expression of SOCS-3 were also investigated. Changes in expression of NPY, AgRP or POMC alone could not account for the diurnal changes in intake and their alteration by lactation. However, there were increased AgRP mRNA:POMC mRNA ratios at night and also during lactation, which were very similar to estimated changes in food intake. Such changes in expression may result in dominance of the orexigenic AgRP peptide over the appetite-suppressing POMC-derived peptides, and so could contribute to the hyperphagia in these states. Diurnal and lactation-related changes in the AgRP mRNA:POMC mRNA ratio and food intake are not due to changes in leptin alone. However, hypoleptinaemia, possibly through increased expression of NPY, may contribute to the hyperphagia of lactation. In the dark, expression of SOCS-3 was decreased in non-lactating rats; lactation decreased SOCS-3 expression in both light and dark phases. However, such changes are likely to enhance the ability of leptin-responsive neurones to transmit the leptin signal, and so are unlikely to contribute to either the nocturnal increase in appetite or the hyperphagia of lactation.  相似文献   

4.
5.
6.
7.
8.
9.
C75 is a potent inhibitor of fatty acid synthase that acts centrally to reduce food intake and body weight in mice; a single dose causes a rapid (>90%) decrease of food intake. These effects are associated with inhibition of fasting-induced up-regulation and down-regulation, respectively, of the expression of orexigenic (NPY and AgRP) and anorexigenic (POMC and CART) neuropeptide messages in the hypothalamus. Repeated administration of C75 at a submaximal level, however, differentially affected food intake of lean and obese mice. With lean mice, C75 suppressed food intake by approximately 50% and, with obese mice (ob/ob and dietary-induced obesity), by 85-95% during the first day of treatment. Lean mice, however, became tolerant/resistant to C75 over the next 2-5 days of treatment, with food intake returning to near normal and rebound hyperphagia occurring on cessation of treatment. In contrast, ob/ob obese mice responded to C75 with a >90% suppression of food intake throughout the same period with incipient tolerance becoming evident only after substantial weight loss had occurred. Dietary-induced obese mice exhibited intermediate behavior. In all cases, a substantial loss of body weight resulted. Pair-fed controls lost 24-50% less body weight than C75-treated mice, indicating that, in addition to suppressing food intake, C75 may increase energy expenditure. The decrease in body weight by ob/ob mice was due primarily to loss of body fat. In contrast to the short-term effects of C75 on "fasting-induced" changes of hypothalamic orexigenic and anorexigenic neuropeptide mRNAs, repeated administration of C75 either had the inverse or no effect as tolerance developed.  相似文献   

10.
11.
12.
13.
14.
15.
Although glucocorticoid-induced hyperphagia is observed in the patients with glucocorticoid treatment or Cushing's syndrome, its molecular mechanism is not clear. We thus explored the expression of neuropeptide mRNAs in the hypothalamus related to appetite regulation in CRH over-expressing transgenic mice (CRH-Tg), a model of Cushing's syndrome. We measured food intake, body weight (including body fat weight) and plasma corticosterone levels in CRH-Tg and their wild-type littermates (WT) at 6 and 14 weeks old. We also examined neuropeptide Y (NPY), proopiomelanocortin (POMC) and Agouti-related protein (AgRP) mRNAs in the arcuate nucleus (ARC) using in situ hybridization. Circulating corticosterone levels in CRH-Tg were markedly elevated at both 6 and 14 weeks old. Body fat weight in CRH-Tg was significantly increased at 14 weeks old, which is considered as an effect of chronic glucocorticoid excess. At both 6 and 14 weeks old, CRH-Tg mice showed significant hyperphagia compared with WT (14w old: WT 3.9±0.1, CRH-Tg 5.1±0.7 g/day, p<0.05). Unexpectedly, NPY mRNA levels in CRH-Tg were significantly decreased at 14 weeks old (WT: 1571.5±111.2, CRH-Tg: 949.1±139.3 dpm/mg, p<0.05), and there were no differences in POMC mRNA levels between CRH-Tg and WT. On the other hand, AgRP mRNA levels in CRH-Tg were significantly increased compared with WT at both ages (14w old: WT 365.6±88.6, CRH-Tg 660.1±87.2 dpm/ mg, p<0.05). These results suggest that glucocorticoid-induced hyperphagia is associated with increased hypothalamic AgRP. Our results also indicate that hypothalamic NPY does not have an essential role in the increased food intake during glucocorticoid excess.  相似文献   

16.
17.
18.
19.
In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits food intake. Despite these well-known effects of estrogen, neuronal subtypes that mediate estrogen''s anorexigenic effects have not been identified. In this study, we show that changes in hypothalamic expression of agouti-related protein (Agrp) and neuropeptide Y (Npy) coincide with the cyclic changes in feeding across the estrous cycle. These cyclic changes in feeding are abolished in mice with degenerated AgRP neurons even though these mice cycle normally. Central administration of 17β-estradiol (E2) decreases food intake in controls but not in mice lacking the AgRP neurons. Furthermore, E2 treatment suppresses fasting-induced c-Fos activation in AgRP and NPY neurons and blunts the refeeding response. Surprisingly, although estrogen receptor alpha (ERα) is the key mediator of estrogen''s anorexigenic effects, we find that expression of ERα is completely excluded from AgRP and NPY neurons in the mouse hypothalamus, suggesting that estrogen may regulate these neurons indirectly via presynaptic neurons that express ERα. This study indicates that neurons coexpressing AgRP and NPY are functionally required for the cyclic changes in feeding across estrous cycle and that AgRP and NPY neurons are essential mediators of estrogen''s anorexigenic function.  相似文献   

20.
Proulx K  Richard D  Walker CD 《Endocrinology》2002,143(12):4683-4692
Leptin regulates food intake in adult mammals by stimulating hypothalamic anorexigenic pathways and inhibiting orexigenic ones. In developing rodents, fat stores are low, yet circulating leptin levels are high and do not appear to regulate food intake. We determined whether two appetite-related neuropeptides [neuropeptide Y (NPY) and proopiomelanocortin (POMC)] and food intake behavior are sensitive to leptin [3 mg/kg body weight (BW), ip] in neonates. We measured the effects of 1) acute leptin administration (3 mg/kg BW, ip, 3 h before testing) on food intake on postnatal day (PND) 5, 8, and 10; and 2) chronic leptin treatment (3 mg/kg BW, ip, daily PND3-PND10) on BW gain and fat pads weight on PND10. In addition to hypothalamic POMC and NPY expression, we determined the expression of suppressor of cytokine signaling-3, all subtypes of leptin receptors, and corticotropin-releasing factor receptor-2 mRNA in PND10 pups receiving either an acute (PND10) or a chronic (PND 3-10) leptin (3 mg/kg BW, ip) or vehicle treatment. Brains were removed 30 or 120 min after the last injection. Acute leptin administration did not affect food intake at any age tested. Chronic leptin treatment did not change BW but decreased fat pad weight significantly. In the arcuate nucleus (ARC), acute leptin increased SOCS-3 and POMC mRNA levels, but decreased NPY mRNA levels in the rostral part of ARC. Chronic leptin down-regulated all subtypes of leptin receptors mRNA and decreased NPY mRNA levels in the caudal ARC but had no further effect on POMC expression. Chronic leptin increased corticotropin-releasing factor receptor-2 mRNA levels in the ventromedial hypothalamus. We conclude that despite adult-like effects of leptin on POMC, NPY, and CRFR-2 expression in neonates, leptin does not regulate food intake during early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号