首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the susceptibility of various oncogene-transformed NIH/3T3 cells to apoptosis induced by alkylating agents. Only v-Ha-ras-transformed cells showed marked resistance to apoptotic death induced by these drugs. Upon treatment with methylmethane sulfonate (MMS), NIH/3T3 cells exhibited normal G1 checkpoint function accompanied by the accumulation of p53 and p21CIP1/WAF1 protein. However, no such effects were observed in v-Ha-ras-transformed cells. To further examine the functional status of p53 in ras-transformed cells, we determined the DNA sequence, protein half-life, protein-complexing activity, and specific DNA-binding activity of p53. The results showed that ras transformants and parental NIH/3T3 cells had the same p53 protein half-life of 40 min or less, the same normal wild-type p53 cDNA sequence, and the same co-immunoprecipitable cellular proteins complexed with p53. In electrophoretic mobility gel-shift assays, however, nuclear extracts of cells treated with MMS, ras-transformed cells, and normal cells displayed distinct patterns of binding between p53 ad its consensus binding site. Furthermore, western blot analysis showed that the bcl-2 and bax proteins were constitutively elevated in ras-transformed cells but not in parental NIH/3T3 cells. Heat-shock protein 70 (hsp70), which has been found to be negatively regulated by wild-type p53, was also dramatically induced in ras-transformed cells but not in NIH/3T3 cells in response to MMS. Thus, our data suggest that an activated ras oncogene can suppress alkylating agent-induced apoptotic cell death by means of a defect in the signal transduction pathway regulating p53 function and alteration in the expression of apoptotic (bax) or anti-apoptotic proteins (bcl-2 and hsp70). Mol. Carcinog. 18:221–231, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Xia S  Rosen EM  Laterra J 《Cancer research》2005,65(12):5248-5255
A prominent feature of glioblastoma is its resistance to death from Fas pathway activation. In this study, we explored the modulation of Fas-induced glioblastoma death with chemotherapeutic agents. Camptothecin significantly increased the glioblastoma cell death response to Fas receptor activation regardless of p53 status. Sublethal concentrations of camptothecin reduced the IC50 of agonistic anti-Fas antibody (CH-11) 10-fold, from 500 to 50 ng/mL, in human U87 glioblastoma cells (p53 wild-type). Cell viability in response to camptothecin, CH-11 alone, and the combination of camptothecin + CH-11 was found to be 84%, 85%, and 47% (P < 0.001), respectively. A similar pattern of relative cytotoxicity was found in U373 cells (p53 mutant). We further examined the pathways and mechanisms involved in this apparent synergistic cytotoxic response. Cell death was found to be predominantly apoptotic involving both extrinsic and intrinsic pathways as evidenced by annexin V staining, cleavage of caspases (3, 8, and 9), increased caspase activities, Smac release, and cytoprotection by caspase inhibitors. Expression of Fas-associated death domain, and not Fas, Fas ligand, or caspase proteins, increased following cell treatment with camptothecin + CH-11. Camptothecin treatment enhanced c-jun-NH2-kinase activation in response to CH-11, but inhibition of c-jun-NH2-kinase did not prevent cell death induced by the combination treatment. Reactive oxygen species, especially H2O2, were elevated following camptothecin treatment; and H2O2 enhanced cell death induced by CH-11. The antioxidants glutathione and N-acetyl-cysteine prevented cell death induced by camptothecin + CH-11. These findings show that camptothecin synergizes with Fas activation to induce glioblastoma apoptosis via a mechanism involving reactive oxygen species and oxidative stress pathways.  相似文献   

3.
Aim: To observe the apoptotic changes following exposure to EMP and to explore the possible injury mechanism in NIH - 3T3 fibroblasts. Methods: Following NIH - 3T3 cells were exposed to EMP, the proliferation and viability of NIH - 3T3 fibroblasts were estimated by hemacytometer and MTT Measurements. Apoptotic rate was measured by flow cytometer. The immnohistochemical SP method was used to determine'bcl-2, p53. The positively stained cells were analyzed with CMIAS-Ⅱ image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. Results: The proliferation and viability of NIH-3T3 cells were markedly inhibited and significant apoptosis was induced following exposure to EMP. EMP could increase the number of non - adherent cells, the highest ratio (33.9%) of non - adherent cells also occurred at 6h. The A570 value of MTT decreased immediately at 1h, 6h following the cells were exposed as compared with the control (P<0.05) . The highest ratio of apoptosis was 15.07% at 6h, then de  相似文献   

4.
Kim BJ  Kim MS  Kim KB  Kim KW  Hong YM  Kim IK  Lee HW  Jung YK 《Carcinogenesis》2002,23(9):1411-1417
Tumor necrosis factor (TNF)-alpha and TNF-related apoptosis inducing ligand (TRAIL) share a common signaling pathway. Here we show a novel potentiating effect of cadmium on TNF-alpha- or TRAIL-mediated cell death via distinct signaling. TNF-alpha or TRAIL sensitized otherwise resistant NIH3T3 embryo fibroblast cells to death, when exposed to cadmium. The potentiating effects elicited by TNF-alpha or TRAIL on cell death were NF-kappaB- and SAPK/JNK-independent and were not diminished by the expression of Bcl-2. TNF-alpha potentiated the cadmium-induced accumulation of p53 but did not affect expression levels of Bax, Mdm2 and p21(WAF/CIP). A similar pattern of p53 accumulation was also observed in Balbc/3T3 fibroblasts but not in human tumor cell lines, MCF7 and HeLa cells. The synergistic cell death evoked by TNF-alpha and cadmium was attenuated by transient expression of a dominant negative p53(Val135) mutant in NIH3T3 cells and was not observed in p53(-/-) mouse embryo fibroblasts, indicating that p53 accumulation appears to contribute to cell death. In contrast, TRAIL did not further increase the cadmium-induced accumulation of p53 despite its potentiation effects on the cadmium-induced cell death. Expression of p53(Val135) mutant did not reduce TRAIL- and cadmium-mediated cell death. Taken together, these results suggest that TNF-alpha and TRAIL potentiate the cadmium-mediated cell death via distinct p53 expression patterns.  相似文献   

5.
6.
Interleukin 3-dependent bone marrow and Ba/F3 cells present constitutive Fas expression. A dose dependent increase in Fas surface expression was induced in these cells by X-ray irradiation. Using primary cell cultures and established cell lines derived from p53-null mice (p53-/-), we demonstrated that the increase in Fas expression upon X-ray irradiation is dependent on the presence of at least one wild-type p53 allele. Fas induction by X-ray irradiation was negatively modulated by IL-3; an earlier Fas induction was observed in the absence of IL-3 or at low IL-3 concentrations. However, IL-3 withdrawal in non-irradiated cells did not induce an increase in Fas expression. X-ray irradiation of Ba/F3 cells induced the expression of functional Fas receptors. Therefore, in IL-3-dependent cells, IL-3 regulates the rate of Fas expression, which is correlated with the degree of apoptosis observed in X-irradiated cells. Finally, we demonstrate that IL-3 controls the degree of Fas expression induced by irradiation through a p53-mediated pathway.  相似文献   

7.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors are members of the tumor necrosis factor superfamily. TRAIL selectively kills cancer cells but not normal cells. We report here the cloning of the mouse homologue of the TRAIL receptor KILLER/DR5 (MK). The cDNA of MK is 1146 bp in length and encodes a protein of 381 amino acids. MK contains an extracellular cysteine-rich domain, a transmembrane domain, and a cytoplasmic death-domain characteristic of Fas, tumor necrosis factor, and human TRAIL receptors. MK is highly homologous and binds TRAIL with similar affinity as human DR4 and KILLER/DR5. MK induces apoptosis in mouse and human cells and inhibits colony growth of NIH3T3 cells. Expression of MK is p53-dependent and up-regulated by tumor suppressor p53 and by DNA damaging agents in mouse cells undergoing apoptosis. This is the first report describing a mouse TRAIL receptor gene and also demonstrating that the p53-dependent regulation of KILLER/DR5-mediated apoptosis is conserved between human and mouse.  相似文献   

8.
9.
10.
The CD95 (Fas/APO-1) system regulates a number of physiological and pathological processes of cell death. The ligand for CD95 induces apoptosis in sensitive target cells by interacting with a transmembrane cell surface CD95 receptor. We previously reported that the recombinant adenovirus-mediated transfer of the wild-type p53 gene caused apoptotic cell death in a variety of human cancer cells. To better understand the mechanism responsible for this cell death signaling, we have investigated the potential involvement of the CD95 receptor/ligand system in p53-mediated apoptosis. The transient expression of the wild-type p53 gene upregulated the CD95 ligand mRNA as well as protein expression in H1299 human lung cancer cells deficient for p53 and in DLD-1 and SW620 human colon cancer cells with mutated p53, all of which constitutively expressed CD95 receptor as shown by a flow cytometric analysis, and induced rapid apoptotic cell death as early as 24 h after gene transfer. However, the sensitivity to the cytolytic effect of agonistic anti-CD95 antibody (CH11) varied among these cell lines: CH11 induced apoptosis in H1299 cells, but not in DLD-1 and SW620 cells despite their abundant CD95 receptor expression, suggesting that the CD95 receptors on DLD-1 and SW620 cells might be inactivated. In addition, an antagonistic anti-CD95 ligand antibody (4H9) that interfered with the CD95-receptor-ligand interaction partially reduced the apoptosis induced by the wild-type p53 gene transfer in H1299 cells, whereas apoptosis of DLD-1 and SW620 cells occurred in the presence of 4H9. Taken together, these findings led us to conclude that the CD95 receptor/ligand system is differentially involved in p53-mediated apoptosis, suggesting that the restoration of the wild-type p53 function may mediate apoptosis through CD95 receptor/ligand interactions as well as an alternative pathway.  相似文献   

11.
CAIR-1/BAG-3 forms an EGF-regulated ternary complex with Hsp70/Hsc70 and latent phospholipase C-gamma (PLC-gamma). The expression of CAIR-1, CAI stressed-1, was induced in A2058 human melanoma cells by continuous exposure to CAI, an inhibitor of nonvoltage-gated calcium influx. CAIR-1 sequence is identical, save 2 amino acids, to BAG-3 also cloned recently as Bis, a member of the bcl-2-associated athanogene family. We show that CAIR-1/BAG-3 binds to Hsp70/Hsc70 in intact cells and this binding is increased by short term exposure to CAI (P<0.007). CAIR-1/BAG-3 is phosphorylated in vivo in the absence of stimulation. Basal phosphorylation is inhibited by treatment with d-erythrosphingosine (d-ES), a broad inhibitor of the protein kinase C family. CAIR-1/BAG-3 contains several PXXP SH3 binding domains leading to the hypothesis that it is a partner protein of phospholipase C-gamma. PLC-gamma is bound to CAIR-1/BAG-3 in unstimulated cells. It is increased by CAI or d-ES (P=0.05) treatment, and abrogated by EGF (r2=0.99); d-ES treatment blocks the EGF-mediated dissociation. We show that CAIR-1/BAG-3 binds to PLC-gamma and Hsp70/Hsc70 through separate and distinct domains. Hsp70/Hsc70 binds to the BAG domain of BAGs-1 and -3. CAIR-1/BAG-3 from control and EGF-treated cell lysates bound selectively to the SH3 domain of PLC-gamma, but not its N-SH2 or C-SH2 domains. Confirming the SH3 interaction, PLC-gamma was pulled down by CAIR-1/BAG-3 PXXP-GST fusions, but GST-PXXP constructs confronted with lysates from EGF-treated cells did not bind PLC-gamma as was seen in intact cells. Hsp70/Hsc70 was brought down by the PLC-gamma SH3 construct equally from native and EGF-treated cells, but did not bind the PXXP construct under either condition. We propose that CAIR-1/BAG-3 may act as a multifunctional signaling protein linking the Hsp70/Hsc70 pathway with those necessary for activation of the EGF receptor tyrosine kinase signaling pathways.  相似文献   

12.
Oxidative stress to mammalian cells causes cellular damage and triggers inducible cellular responses leading to cell death by apoptosis. In this paper, we report that p53 was required for programmed cell death induced by oxidative stress in both mouse and human cells and that p53 transactivation was involved in induction of oxidative cell death. Furthermore, we show that p21 was highly responsive to oxidative stress in a p53-dependent manner and that ectopic expression of p21 could increase cellular susceptibility to oxidative stress in the absence of p53. However, p21 was not required for p53-directed oxidative cell death because mouse embryo fibroblasts MEFs lacking p21(p21-/- MEFs) were still susceptible to oxidative cell death. Interestingly, bax, a cell-death mediator regulated by p53, was overexpressed in p21-/- MEFs that underwent cell death by oxidative stress, suggesting a compensation for loss of p21 that may be responsible for the existence of cell-death responses in p21-knockout mouse fibroblasts. Finally, we provide evidence that the retinoblastoma gene product (Rb) is a negative regulator of p21 and a repressor of the cellular apoptotic process. Because p21 is regulated by p53 positively and by Rb negatively, p21 may be a link between p53 and Rb in determining cell fate after oxidative damage.  相似文献   

13.
14.
Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells.  相似文献   

15.
Isolinderanolide B (IOB), a butanolide extracted from the stems of Cinnamomum subavenium, was investigated for its antiproliferative activity in T24 human bladder cancer cells. To identity the anticancer mechanism of IOB, its effect on apoptosis, cell cycle distribution, and levels of p53, p21 Waf1/Cip1, Fas/APO-1 receptor, and Fas ligand was assayed. Enzyme-linked immunosorbent assay showed that the G0/G1 phase arrest is because of increase in the expression of p21 Waf1/Cip1. An enhancement in Fas/APO-1 and membrane-bound Fas ligand (mFasL) might be responsible for the apoptotic effect induced by IOB. This study reports the novel finding that the induction of p21 Waf1/Cip1 and activity of the Fas/mFas ligand apoptotic system may participate in the antiproliferative activity of IOB in T24 cells.  相似文献   

16.
The tumor suppressor p53 exerts its antioncogenic effects in cells chiefly by regulating their progression through the cell cycle and by inducing cell death. It has been claimed that p53-transduced apoptosis involves the death receptor CD95 (Fas/APO-1). We report that thymocytes from mice lacking functional Fas ligand (gld) show normal sensitivity to apoptosis transduced by p53, and that hepatocytes fromp53-/- mice have normal sensitivity to apoptosis triggered through ligation of CD95. p53 and CD95, therefore, function in independent pathways to cell death in these diverse cell types.  相似文献   

17.
Regulation of SV40 large T-antigen stability by reversible acetylation   总被引:3,自引:0,他引:3  
Reversible acetylation on protein lysine residues has been shown to regulate the function of both nuclear proteins such as histones and p53 and cytoplasmic proteins such as alpha-tubulin. To identify novel acetylated proteins, we purified several proteins by the affinity to an anti-acetylated-lysine antibody from cells treated with trichostatin A (TSA). Among the proteins identified, here we report acetylation of the SV40 large T antigen (T-Ag). The acetylation site was determined to be lysine-697, which is located adjacent to the C-terminal Cdc4 phospho-degron (CPD). Overexpression of the CBP acetyltransferase acetylated T-Ag, whereas HDAC1, HDAC3 and SIRT1 bound and deacetylated T-Ag. The acetylation and deacetylation occurred independently of p53, a binding partner of T-Ag, but the acetylation was enhanced in the presence of p53. T-Ag in the cells treated with TSA and NA or the acetylation mimic mutant (K697Q) became unstable in COS-7 cells, suggesting that acetylation regulates stability of T-Ag. Indeed, NIH3T3 cells stably expressing K697Q showed decreased anchorage-independent growth compared with those expressing wild type or the K697R mutant. These results demonstrate that acetylation destabilizes T-Ag and regulates the transforming activity of T-Ag in NIH3T3 cells.  相似文献   

18.
A p53 C-terminal peptide (aa 361-382, p53p), fused at its C-terminus to the minimal carrier peptide of antennapedia (17 aa, Ant; p53p-Ant), induced rapid apoptosis in human cancer cells, via activation of the Fas pathway. We examined p53p-Ant mechanism of action, toxicity in various human normal, non-malignant, pre-malignant and malignant cancer cells and investigated its biophysical characteristics. p53p-Ant selectively induced cell death in only pre-malignant or malignant cells in a p53-dependent manner and was not toxic to normal and non-malignant cells. p53p-Ant was more toxic to the mutant p53 than wild-type p53 phenotype in H1299 lung cancer cells stably expressing human temperature-sensitive p53 mutant 143Ala. Surface plasmon resonance (BIACORE) analysis demonstrated that this peptide had higher binding affinity to mutant p53 as compared to wild-type p53. p53p-Ant induced-cell death had the classical morphological characteristics of apoptosis and had no features of necrosis. The mechanism of cell death by p53p-Ant was through the FADD/caspase-8-dependent pathway without the involvement of the TRAIL pathway, Bcl-2 family and cell cycle changes. Blocking Fas with antibody did not alter the peptide's effect, suggesting that Fas itself did not interact with the peptide. Transfection with a dominant-negative FADD with a deleted N-terminus inhibited p53p-Ant-induced apoptosis. Its mechanism of action is related to the FADD-induced pathway without restoration of other p53 functions. p53p-Ant is a novel anticancer agent with unique selectivity for human cancer cells and could be useful as a prototype for the development of new anti-cancer agents.  相似文献   

19.
Human heat shock cognate protein 70 (Hsc70), also known as Hsp73 and Hsp70-8, is a molecular chaperone. The human Hsp70 family comprises at least eight different molecular groups with strong homology. Among them, Hsc70 and Hsp72 share 86% homology. Both Hsp72 and Hsc70 localize in the cell cytoplasm and the nucleus. While Hsp72 expression is enhanced by stress, Hsc70 is constitutively expressed, suggesting that Hsc70 is critically involved in cell functions other than the stress response. Hsc70 has cell-specific and tissue-specific functions, such as cellular signaling, but its functions are not well understood. To further study the functions of Hsc70, we established a monoclonal antibody specific for Hsc70 using a rat medial iliac lymph node method. Immunoblot analysis with this antibody revealed that it specifically recognizes Hsc70. Immunocytochemical staining using this newly established antibody revealed that Hsc70 localizes predominantly in the cytoplasm in unstressed cells, whereas oxidative stress produced by H2O2 induces Hsc70 to translocate into the nucleus. This monoclonal antibody will be useful for further studies of Hsc70, including changes in its intracellular location, binding molecules, and functions.  相似文献   

20.
Yin Z  Ivanov VN  Habelhah H  Tew K  Ronai Z 《Cancer research》2000,60(15):4053-4057
To elucidate mechanisms underlying glutathione S-transferase p (GSTp)-mediated cellular protection against oxidative stress-induced cell death, the effect of GSTp on stress signaling pathways was investigated before and after H2O2 treatment. Under nonstressed conditions, increased expression of GSTp via a tet-off-inducible GSTp in NIH 3T3 cells increased the phosphorylation of mitogen-activated protein (MAP) kinase kinase 4, p38, extracellular receptor kinase (ERK), and inhibitor of kappa-kinase (IKK), and reduced phosphorylation of MAP kinase kinase 7 and Jun NH2-terminal kinase (JNK). Whereas H2O2 treatment of cells induced JNK, p38, and IKK activities, in the presence of H2O2 and elevated GSTp expression there was an additional increase in ERK, p38, and IKK activities and a decrease in JNK activity. GSTp-mediated protection from H2O2-induced death was attenuated upon inhibition of p38, nuclear factor KB, or MAP kinase by dominant negative or pharmacological inhibitors. Conversely, expression of a dominant negative JNK protected cells from H2O2-mediated death. These data suggest that the coordinated regulation of stress kinases by GSTp, as reflected by increased p38, ERK, and nuclear factor kappaB activities together with suppression of JNK signaling, contributes to protection of cells against reactive oxygen species-mediated death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号