首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of age on the neural correlates of episodic encoding   总被引:3,自引:3,他引:0  
Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.  相似文献   

2.
We used functional magnetic resonance imaging (fMRI) of a visual target detection (oddball) task to investigate age differences in neural activation for the detection of two types of infrequent events: visually simple items requiring a response shift (targets) and visually complex items that did not entail a response shift (novels). Targets activated several prefrontal regions (e.g. middle frontal gyrus), as well as deep gray matter regions (caudate, putamen, thalamus and insula). Prefrontal activation was similar for younger and older adults, whereas deep gray matter activation was relatively greater for the older adults. Novels activated occipital regions (fusiform and lateral occipital gyri), and this activation was relatively reduced for older adults. The changes in behavioral performance across the task conditions were similar for the two age groups, although the older adults' responses were slower overall. Regression analyses of the relation between neural activation and task performance (response time) indicated that whereas performance was mediated most directly by prefrontal cortex for younger adults, older adults' performance was influenced to a greater extent by deep gray matter structures. Older adults may place relatively greater emphasis on the attentional control of response regulation, in compensation for the age-related decline in visual processing efficiency.  相似文献   

3.
Acoustic rhinometry (AR) evaluates the cross-sectional areas and volume of the nasal cavity through acoustic reflections. Successive valleys displayed on an AR graph are believed to correspond to anatomic landmarks. To assess the anatomic accuracy of AR, we performed AR and endoscopic measurements with a rigid endoscope in 85 normal human subjects after topical decongestion. Endoscopic measurements were recorded for distances between the midcolumella and the nasal valve, the anterior end of the inferior turbinate, the anterior end of the middle turbinate, the midportion of the middle turbinate, and the posterior nasopharynx. The first AR valley most closely corresponded with endoscopic measurements of the nasal valve. The second valley had a mean value that corresponded with the anterior end of the inferior turbinate. The third valley matched best with the values of the anterior end of the middle turbinate. Nasopharyngeal measurements by each modality yielded a good agreement. AR appears to correspond to nasal anatomic landmarks but not in an exact point-to-point manner.  相似文献   

4.
Recent parallels between neurophysiological and neuroimaging findings suggest that repeated stimulus processing produces decreased responses in brain regions associated with that processing--a 'repetition suppression' effect. In the present study, volunteers performed two tasks on repeated presentation of famous and unfamiliar faces during functional magnetic resonance imaging (fMRI). In the implicit task, they made fame-judgements (regardless of repetition); in the explicit task, they made episodic recognition judgements (regardless of familiarity). Only in the implicit task was repetition suppression observed: for famous faces in a right lateral fusiform region, and for both famous and unfamiliar faces in a left inferior occipital region. Repetition suppression is therefore not an automatic consequence of repeated perceptual processing of stimuli.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine produces episodic memory deficits. We used functional magnetic resonance imaging to characterize the effects of ketamine on frontal and hippocampal responses to memory encoding and retrieval in healthy volunteers using a double-blind, placebo-controlled, randomized, within-subjects comparison of two doses of intravenous ketamine. Dissociation of the effects of ketamine on encoding and retrieval processes was achieved using two study-test cycles: in the first, items were encoded prior to drug infusion and retrieval tested, during scanning, on drug; in the second, encoding was scanned on drug, and retrieval tested once ketamine plasma levels had declined. We additionally determined the interaction of ketamine with the depth of processing that occurred at encoding. A number of effects upon task-dependent activations were seen. Overall, our results suggest that left frontal activation is augmented by ketamine when elaborative semantic processing is required at encoding. In addition, successful encoding on ketamine is supplemented by additional non-verbal processing that is incidental to task demands. The effects of ketamine at retrieval are consistent with impaired access to accompanying contextual features of studied items. Our findings show that, even when overt behaviour is unimpaired, ketamine has an impact upon the recruitment of key regions in episodic memory task performance.  相似文献   

6.
The ability to recognize one's own inner speech is essential for a sense of self. The verbal self-monitoring model proposes that this process entails a communication from neural regions involved in speech production to areas of speech perception. According to the model, if the expected verbal feedback matches the perceived feedback, then there would be no change in activation in the lateral temporal cortices. We investigated the neural correlates of verbal self-monitoring in a functional magnetic resonance (fMRI) study. Thirteen healthy male volunteers read aloud presented adjectives and heard their auditory feedback which was experimentally modified. Decisions about the source of the feedback were made with a button-press response. We used a 'clustered' fMRI acquisition sequence, consisting of periods of relative silence in which subjects could speak aloud and hear the feedback in the absence of scanner noise, and an event-related design which allowed separate analysis of trials associated with correct attributions and misattributions. Subjects made more misattribution responses when the feedback was a distorted version of their voice. This condition showed increased superior temporal activation relative to the conditions of hearing their own voice undistorted and hearing another person's voice. Furthermore, correct attributions during this condition were associated with greater temporal activation than misattributions. These findings support the self-monitoring model as mismatches between expected and actual auditory feedback were associated with greater temporal activation.  相似文献   

7.
Functional neuroimaging investigations have revealed a range of age-related differences in the neural correlates of episodic memory retrieval. Typically, whereas activity is reduced in older compared with younger adults in some regions, other regions are engaged exclusively, or to a greater extent, in older adults. It is unclear whether such differences merely represent the neural correlates of the lower levels of memory performance and impaired recollection typical of older adults. This issue was addressed in the present event-related functional magnetic resonance imaging study. The level of recollection was matched between groups of healthy younger and older adults for a subset of picture items in a source memory task by manipulating the number of study presentations. Contrasts of the activity elicited by old items attracting correct source judgments and correctly identified new items revealed that the 2 groups recruited many of the same brain regions. However, a striking pattern of age-related differences was also observed. In older adults, retrieval-related increases in activity were more widespread and of greater magnitude than in the young. Moreover, regions demonstrating retrieval-related decreases in activity were almost absent in the older participants. These findings suggest an age-related decline in the efficiency with which neural populations support cognitive function.  相似文献   

8.
Recent studies suggest that human theta oscillations appear to be functionally associated with memory processes. It is less clear, however, to what type of memory sub-processes theta is related. Using a continuous word recognition task with different repetition lags, we investigate whether theta reflects the strength of an episodic memory trace or general processing demands, such as task difficulty. The results favor the episodic trace decay hypothesis and show that during the access of an episodic trace in a time window of approximately 200-400 ms, theta power decreases with increasing lag (between the first and second presentation of an item). LORETA source localization of this early theta lag effect indicates that parietal regions are involved in episodic trace processing, whereas right frontal regions may guide the process of retrieval. We conclude that episodic encoding can be characterized by two different stages: traces are first processed at parietal sites at approximately 300 ms, then further processing takes place in regions of the medial temporal lobe at approximately 500 ms. Only the first stage is related to theta, whereas the second is reflected by a slow wave with a frequency of approximately 2.5 Hz.  相似文献   

9.
The present functional magnetic resonance imaging (fMRI) study investigated whether age-related differences in the neural correlates of successful memory encoding are modulated by memory performance. Young (mean age 22 years; N = 16) and older (mean age 69 years; N = 32) subjects were scanned while making animacy decisions on visually presented words. Memory for the words was later assessed in a recognition test, allowing fMRI activity elicited by study words to be contrasted according to subsequent memory performance. Young and older adults exhibited equivalent subsequent memory effects (enhanced activity for later remembered items) in an extensive network that included left inferior prefrontal cortex and anterior hippocampus. In posterior cingulate cortex, reversed subsequent memory effects (greater activity for later forgotten items) were of greater magnitude in young subjects. A voxel-of-interest analysis conducted on left and right prefrontal subsequent memory effects revealed that the effects were distributed more bilaterally in older than in young subjects, replicating previous findings. This age-related difference was confined to older subjects with relatively poor recognition performance, who were also the only group to demonstrate statistically significant right prefrontal subsequent memory effects. The findings suggest that relative preservation of memory performance with increasing age does not depend upon right prefrontal "over-recruitment."  相似文献   

10.
Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.  相似文献   

11.
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation.  相似文献   

12.
On the neural correlates of visual perception   总被引:7,自引:5,他引:2  
  相似文献   

13.
Patients with beta-Thalassemia Major have a requirement for repeated blood transfusion, which ultimately results in liver iron- and whole body iron-overload. These patients are also at risk of reduced bone mineral density (BMD). Seventeen patients (9 female, age 19-32 yr) were referred for bone density estimations of the hip, spine, and whole body. As well as calculating the usual indices of body composition, we superimposed regions of interest over the liver, and expressed the result as "BMD" (g/cm2). This was compared with the serum ferritin as a noninvasive indication of total body iron status. Twelve patients were studied at least twice, more than 18 mo apart. This group showed a significantly below average BMD (T-spine -2.1, T-femoral neck -1.2, T-whole body -1.7, p < 0.001). The group's hepatic density correlated significantly with initial serum ferritin (r = 0.90, p < 0.001). Changes in individual liver density did not correlate significantly with changes in ferritin levels (p = 0.15), possibly due to wide variability in individual results. DEXA may be a useful noninvasive technique for estimating liver-iron concentration.  相似文献   

14.
15.
The neural correlates of conscious vision   总被引:3,自引:1,他引:2  
Conflicting accounts of the neurobiology of consciousness have emerged from previous imaging studies. Some studies suggest that visual consciousness relates to a distributed network of frontal and partietal regions while others point to localized activity within individual visual areas. While the two positions seem mutually exclusive, timing issues may help reconcile the two. Networks that appear unified in functional magnetic resonance imaging (fMRI) studies may reflect processes that are widely distributed in time. To help resolve this issue, we have investigated timing across a network correlating with consciousness in parallel fMRI and evoked potential (EP) studies of grating stimuli. At threshold, a stimulus is perceived on some occasions but not on others, dissociating sensory input and perception. We have found correlates of consciousness in the occipital lobe at 100 ms and in parietal, frontal, auditory and motor regions from 260 ms onwards. The broad temporal and spatial distribution of activity argues against a unified, distributed fronto-parietal correlate of consciousness. Instead, it suggests that correlates of consciousness are divided into primary and secondary network nodes, with early activity in the occipital lobe correlating with perception and later activity in downstream areas with secondary processes contingent on the outcome of earlier perceptual processing.  相似文献   

16.
The neural basis for successful recognition of previously studied items, referred to as "retrieval success," has been investigated using either neuroimaging or brain potentials; however, few studies have used both modalities. Our study combined event-related functional magnetic resonance imaging (fMRI) and event-related potential (ERP) in separate groups of subjects. The neural responses were measured while the subjects performed an old/new recognition task with pictures that had been previously studied in either a deep- or shallow-encoding condition. The fMRI experiment showed that among the frontoparietal regions involved in retrieval success, the inferior frontal gyrus and intraparietal sulcus were crucial to conscious recollection because the activity of these regions was influenced by the depth of memory at encoding. The activity of the right parietal region in response to a repeated item was modulated by the repetition lag, indicating that this area would be critical to familiarity-based judgment. The results of structural equation modeling revealed that the functional connectivity among the regions in the left hemisphere was more significant than that in the right hemisphere. The results of the ERP experiment and independent component analysis paralleled those of the fMRI experiment and demonstrated that the repeated item produced an earlier peak than the hit item by approximately 50 ms.  相似文献   

17.
The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (one-way analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P > 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated.  相似文献   

18.
The lexical effect is a phenomenon whereby lexical information influences the perception of the phonetic category boundary for stimuli from word-nonword continua. At issue is whether this effect is due to "top-down" influence of upper levels of processing on perceptual processing, or instead is due to decision-stage processes. In this study, brain activity was monitored using functional magnetic resonance imaging as subjects performed a phonetic categorization task on items taken from 2 continua in which one end of the continuum was a real word and the other was not (gift-kift and giss-kiss). If the lexical effect has a perceptual basis, modulation of activation should be seen as a function of the lexical effect in areas such as the superior temporal gyri (STG) which have previously been implicated in perceptual processing. In contrast, if the effect is purely due to decision-related factors, such modulation would be expected only in areas which have been linked to executive processes, such as frontal and midline structures. Modulation of activation as a function of the lexically biased shift in phonetic category boundary was observed in the STG bilaterally as well as in frontal and midline structures. This activation pattern suggests that the lexical effect has at minimum a perceptual component, in addition to an executive decision-related component. These results challenge the view that lexical effects on phonetic boundary placement are due solely to postperceptual, decision-stage processes, and support those models of language processing which allow for higher-level lexical information to directly influence the perception of incoming speech.  相似文献   

19.
Deception is a complex cognitive activity, and different types of lies could arise from different neural systems. We investigated this possibility by first classifying lies according to two dimensions, whether they fit into a coherent story and whether they were previously memorized. fMRI revealed that well-rehearsed lies that fit into a coherent story elicit more activation in right anterior frontal cortices than spontaneous lies that do not fit into a story, whereas the opposite pattern occurs in the anterior cingulate and in posterior visual cortex. Furthermore, both types of lies elicited more activation than telling the truth in anterior prefrontal cortices (bilaterally), the parahippocampal gyrus (bilaterally), the right precuneus, and the left cerebellum. At least in part, distinct neural networks support different types of deception.  相似文献   

20.
Fractures of the thoracic spine account for a large portion of vertebral fractures in the elderly, yet noninvasive measurements of bone mineral properties are limited to the L2–L4 vertebral bodies. The purpose of this investigation was to determine whether bone mineral properties of the umbar spine correlate with the failure properties of thoracic ertebrae. Cadaveric lumbar segments were scanned using dual-energy x-ray absorptiometry (DXA) from both the latcrol and anteroposterior projections. Three-body segments L1–L3 and T10–T12 were then compressed to create crush tractures in the L2 and T11 vertebral bodies, and linear corelation analyses were performed to compare each DXA measure with the failure properties of L2 and T11. Lumbar BMD from the lateral view correlated significantly with T11 altimate load (r=0.94, P<0.001), as did lumbar BMD from the anteroposterior projection (r=0.83, P=0.001). Significant correlations were also found between both lumbar BMD and BMC and the stiffness and energy to failure of I'll. Furthermore, BMD and BMC measured at L2 correlated significantly with L2 ultimate load, stiffness, and energy to failure. We conclude that bone mineral properties measured at the lumbar spine provide a valid assessment of the compressive strength of both thoracic and lumbar vertebrae. Lumbar BMD may therefore be used to derive an index for the prediction of thoracolumbar fractures to aid in the early intervention of vertebral fractures.Portions of this work were presented at the 40th Annual Meeting of the Orthopaedic Research Society and appeared in abstract form in the conference proceedings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号