首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article describes the discovery and characterization of nanocolloidal structures formed between VX-985 (an orally administered inhibitor of hepatitis C virus protease) and the bile salt, sodium taurocholate at concentrations of the latter >4 mM. These complexes (1) distribute narrowly in size around a mean diameter of 260 nm, (2) separate from solution only with ultracentrifugation, and (3) appear to influence the absorption of VX-985 from the intestinal tract in vivo, in rodents and humans. Although the oral bioavailability of suspensions of its solid forms is poor, addition of vitamin E D-alpha-tocopherol polyethylene glycol 1000 succinate to dosing vehicles improves the fraction absorbed of the compound in vivo. In vitro characterization is compatible with the hypothesis that surfactants like D-alpha-tocopherol polyethylene glycol 1000 succinate preclude nanocolloidal structures and increase the bioavailability by increasing the rate of absorption of VX-985. This study, while specific to VX-985, provides a route to circumvent the poor oral bioavailability caused by formation of kinetically stable complexes between bile salts and drug molecules. This study also underscores the importance of characterizing aggregation phenomenon that may be observed in solubility measurements during preclinical formulation development.  相似文献   

2.
To improve the bioavailability of a poorly water-soluble drug, RP 69698 (1), solid dispersion formulations were investigated in beagle dogs. The formulations were prepared by a melting method with water-soluble carriers in which 1 is highly soluble. When incorporated into a solid dispersion formulation composed of polyethylene glycol (PEG) 3350, Transcutol and Labrasol, the bioavailability of 1 was determined to be 11.8%. This represented about 2-fold improvement over 6% bioavailability observed previously with an aqueous suspension of the drug in 0.5% methylcellulose. When the formulation contained only Labrasol, in which 1 was completely solubilized, the bioavailability of 1 was 12.9%. Addition of a surfactant, polysorbate 80, at a strength of 10% to the dispersion with PEG 3350 and Labrasol as carriers increased the bioavailability of 1 from 11.8 to 27.6%. This result was attributed to the ability of the surfactant to increase the wettability and spreadability of the drug in a solubilized state once released in the gastrointestinal medium. Increase in the concentration of the surfactant did not further increase the bioavailability of 1. DSC and powder XRD data demonstrated that the major fraction of drug was dissolved in the carrier. A possible explanation for the maximum achievable bioavailability of about 25% with solid dispersion preparation may be that once released, a significant fraction of drug may precipitate in the GI tract. Re-solubilization of the precipitated drug for the absorption is likely to be difficult due to its very low aqueous solubility.  相似文献   

3.
The micellar solubilization of timobesone acetate, a novel topical corticosteroid, was studied in aqueous and aqueous propylene glycol solutions of 1 to 5% nonionic surfactants at 25°C. The surfactants used were polyoxyethylene (POE) sorbitan monofatty acid esters (polysorbates), fatty acid esters (Myrj), and fatty alcohol ethers (Brij), as well as sucrose monolaurate (Crodesta SL40). The increase in the solubility of timobesone acetate in the micellar solutions was dependent on the type and concentration of surfactant. The solubilizing capacity of the surfactant micelles and the distribution coefficient of timobesone acetate in aqueous micellar solutions were found (1) to increase with increasing length of the hydrophobic fatty acid group; (2) to increase according to the structure of the hydrophilic group in the order of POE sorbitan ester, sucrose ester, POE ester, and POE ether; (3) to be unaffected by the increase in POE chain length; and (4) to tend to decrease in surfactant containing unsaturated fatty acid groups. In aqueous propylene glycol solution, the solubilizing capacity increased slightly, i.e., up to 1.5-fold in 50% propylene glycol solution, for the ester-type surfactants (polysorbates and Myrj). But this increase was not observed in the ether-type surfactant (Brij) solution. The distribution coefficient decreased logarithmically with increasing concentrations of propylene glycol in the solution. This was caused by the logarithmic increase in the timobesone acetate solubility in the bulk phase, while the solubility in the micellar phase was practically unchanged. The results support the equilibrium distribution model of micellar solubilization.  相似文献   

4.
Equipment was developed to study the quantum yield for nitrofurazone in aqueous solutions. Various factors including the wavelength of irradiation, the pH of the medium, the presence of surfactants, polyethylene glycols or ultraviolet light absorbers influenced the photolability of the drug. The quantum yield decreased with increasing wavelength of incident radiation or pH of the medium. However, the quantum yield in surfactants was markedly higher than that in either polyethylene glycol or aqueous solution. The enhanced photodecomposition of drug in polyethylene glycol and surfactant solutions as compared to simple aqueous solution, is likely to be caused by the association of nitrofurazone with the surfactants and polyethylene glycol in the dark (ground state). There is a linear relationship between the molar uptake and quantum yield. The increase of quantum yield in the presence of ultraviolet light absorbers suggests that the compounds were acting as photosensitizers.  相似文献   

5.
A practical hindrance in using many therapeutic agents is their limited solubility in aqueous matrixes. This is usually overcome by incorporating the active compounds in a matrix, with the aid of a non-ionic surfactant. Three water-insoluble natural polyphenols with inherent biological activity, quercetin (CAS 117-39-5), caffeic acid and caffeic acid phenylethyl ester, were solubilized in water, with the aid of Tween 80 (an esterified and polyethoxylated derivative of sorbitan), Solutol HS15 (a polyethoxylated derivative of 12-hydroxy-stearic acid), Cremophor RH40 (a ricinoleic acid derivative) or Cremophor EL and the effect of the solubilized polyphenols on histamine release was studied in vitro (mast cells) and in vivo in the rat. In vivo Cremophor EL alone increased, and Tween 80 decreased histamine plasma levels. All four groups injected with solubilized quercetin exhibited a decrease in their plasma histamine levels. Caffeic acid solubilized in Cremophor RH40 decreased histamine levels, too. In vitro Tween 80 increased histamine release in a dose-dependent mode. Quercetin in vitro inhibited histamine release in all solubilizers used. It is concluded that the ability of the studied polyphenols to release histamine is not only depending on the condition of the storage vesicles in the mast cells, but also on the surfactant used to solubilize them.  相似文献   

6.
Oral bioavailability of the highly lipophilic and poorly water-soluble immunosuppressive agent cyclosporin A (CyA) in two different formulations was investigated in male Wistar rats. An aqueous microsuspension and a self-dispersing formulation composed of the surface-active ingredients Solutol HS 15:Labrafil M2125CS:oleic acid=7:2:1 (v/v/v) were administered to the animals at a dose level of 20 mg/kg. In order to calculate the absolute oral bioavailability, CyA was additionally administered intravenously at 10 mg/kg as microsuspension. It was found that the oral bioavailability of CyA in the Solutol HS 15-based formulation was twofold higher as compared to the microsuspension (69.9+/-2.8 vs. 35.7+/-3.3%, P=0.001). By contrast, the time to reach maximum plasma concentration (t(max)) and the terminal half-life (t(1/2)) did not differ significantly with the different formulations (t(max): 7.0+/-1.0 vs. 6.3+/-1.7 h; t(1/2): 20.5+/-2.9 vs. 16.7+/-4.7 h). In vitro solubility experiments demonstrated a marked increase in the aqueous solubility of CyA in the presence of the self-dispersing formulation as compared to the micronized powder alone (solubility after 120 min at 37 degrees C: 136 vs. 23.2 microg/ml in human gastric juice; 133 vs. 10.8 microg/ml in simulated intestinal juice). Most likely, the enhanced systemic exposure of CyA in the self-dispersing formulation was caused by improved solubility of CyA in the gastrointestinal fluids in the presence of the surface-active ingredients. Additional factors that may have contributed to increased oral bioavailability are inhibition of metabolism and/or transport processes as well as permeability enhancement by the co-administered excipients.  相似文献   

7.
Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.  相似文献   

8.
Indirubin and its derivatives have been shown to interrupt the cell cycle by inhibiting cyclin-dependent kinases, explaining their long-time use in traditional Chinese medicine for the treatment of chronic myelocytic leukemia. A potent derivative of indirubin, indirubin-3′-oxime 2,3-dihydroxypropyl ether (E804), has been shown to block the Src-Stat3 and Src-Stat5 signaling pathway in human cancer cells, inducing apoptosis. The anticancer effects of E804, however, cannot be easily examined in vivo because of its poor water solubility and low absorption. The aim of this study was to develop and evaluate a self-nanoemulsifying drug delivery system (SNEDDS) containing E804 for enhancing its solubility and bioavailability. Solubility of E804 was determined in various vehicles, and pseudoternary phase diagram was used to evaluate the self-emulsifying existence area. The SNEDDS composed of Capmul MCM (oil), Solutol HS 15 (surfactant), and polyethylene glycol 400 (cosurfactant) on the ratio of 20.5:62.5:16 loaded 1.5% of E804. The particle size of droplets was found to be 16.8 and 140 nm, and SNEDDS was stable after freeze–thaw cycles and upon dilution in HCl 0.1 N and pH 7.4 HBSS++. The ability of formulation for absorption enhancement was studied in rats in vivo after oral administration. The results showed that the developed SNEDDS increased the E804 bioavailability 984.23% compared with the aqueous suspension. Our studies for the first time show that the developed SNEDDS can be used as a possible formulation for E804 to improve its solubility and oral bioavailability. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:3792–3799, 2013  相似文献   

9.
SU5416, the first in a new class of anti-angiogenesis agents, is an insoluble and neutral molecule which requires a formulation containing Cremophor EL, ethanol, and polyethylene glycol. SU010382, a prodrug of SU5416, was designed as N-Mannich base to provide a basic handle that could be exploited to increase the compound's solubility. Though an increase in solubility was obtained, the inherent hydrolytic instability of SU010382 presented a major challenge in formulation development. The aim of this study is to design a stable intravenous formulation of SU010382 at 2 mg/mL equivalent to the 1.5 mg/mL clinical formulation of SU5416 without a high surfactant/co-solvent content. A stable formulation of SU010382 was successfully designed using a combination of adjusted pH and complexation with sulfobutyl-ether-beta-cyclodextrin. This formulation was designed as a lyophilized product to further increase stability. The lyophilized formulation was stable for at least 6 months at 40 degrees C/75% relative humidity, reconstituted completely within 1 min, and was stable for at least 24 h at 25 degrees C following reconstitution.  相似文献   

10.
The main purpose of this study was to evaluate the effect of a mixed drug solution containing a surfactant and β-cyclodextrin (β-CD) on the solubility and bioavailability of a poorly watersoluble drug, flurbiprofen. Solubility, dissolution and in vivo pharmacokinetics of flurbiprofen in the presence of surfactant, β-CD or mixture of surfactant and β-CD were investigated. Among the surfactants tested, Tween 80 produced the highest improvement in the aqueous solubility of flurbiprofen. The solubility of flurbiprofen increased linearly as a function of β-CD, resulting in B8 type that suggested a formation of inclusion complex in a molar ratio of 1:1. The solubility of flurbiprofen increased further when Tween 80 was included in addition to β-CD, suggesting that a micelle formation in the presence of Tween 80 was the likely reason for additional increase. Furthermore, the data suggested that Tween 80 did not interfere with the inclusion interaction between flurbiprofen and β-CD. The solubility of flurbiprofen was the highest in the mixed system containing 1.3 mM β-CD and 0.3% w/v Tween 80, and the maximum solubility of 160 μg/mL was achieved. Consistent with the enhanced solubility, the plasma exposure (both AUC and Cmax) of flurbiprofen when dosed as the mixed system was significantly higher (as much as 2 to 3-fold) than that without surfactant or β-CD, with surfactant alone, or with β-CD alone. Therefore, the mixed system consists of surfactant and β-CD could be used as an effective oral dosage form to improve bioavailability of poorly water soluble drugs such as flurbiprofen.  相似文献   

11.
Marketed glyburide tablets present unsatisfying dissolution profiles that give rise to variable bioavailability. With the purpose of developing a fast-dissolving tablet formulation able to assure a complete drug dissolution, we investigated the effect of the addition to a reference tablet formulation of different types (anionic and nonionic) and amounts of hydrophilic surfactants, as well as the use of a new technique, based on ternary solid dispersions of the drug with an hydrophilic carrier (polyethylene glycol [PEG] 6000) and a surfactant. Tablets were prepared by direct compression or previous wet granulation of suitable formulations containing the drug with each surfactant or drug:PEG:surfactant ternary dispersions at different PEG:surfactant w/w ratios. The presence of surfactants significantly increased (p<0.01) the drug dissolution rate, but complete drug dissolution was never achieved. On the contrary, in all cases tablets containing ternary solid dispersions achieved 100% dissolved drug within 60 min. The best product was the 10:80:10 w/w ternary dispersion with PEG 6000 and sodium laurylsulphate, showing a dissolution efficiency 5.5-fold greater than the reference tablet formulation and 100% drug dissolution after only 20 min.  相似文献   

12.
The ability to define compound solubility targets that are predictive of good oral absorption at high dose preclinical studies (≥ 100 mg compound/kg animal) is of use in drug discovery and development. Two different approaches to identify these targets in preclinical formulations are evaluated herein. The first approach is the use of solubility values from in vitro formulation dilutions using biorelevant parameters for rats. These dilution/solubility results are applied to the maximum absorbable dose (MAD) model to predict compound exposure (AUC) from oral doses and allow the fraction of dose absorbed (F(abs)) calculation. The results from 26 such in vitro evaluations are compared to in vivo studies and discussed. The second approach is the analysis of in vivo AUC proportionality between 10 and 100 mg/kg doses for 28 compounds where only the compound solubility in neat formulation is known. Both assessments suggest similar threshold targets to remove solubility as an absorption limitation for any given compound. Specifically, compound solubility should be >2 mg/mL in aqueous surfactants and >15 mg/mL in cosolvent (PEG400) or pH-adjusted aqueous formulations. The results are a starting place for formulation rule-of-thumb solubility targets applied in discovery and development settings.  相似文献   

13.
To study the effect of β-cyclodextrin (βCD) inclusion complex on the bioavailability of clotrimazole from poloxamer-based suppository, formulations composed of P 188, propylene glycol and different molar ratio of clotrimazole-βCD inclusion complex were prepared. Clotrimazole (1%) has been formulated in a suppository using the thermo sensitive polymer P188 (70%) together with propylene glycol (30%). To increase its aqueous solubility, clotrimazole was incorporated as its inclusion complex at various molar ratios with βCD (1:0.25, 1:0.5, 1:1, and 1:2). The inclusion complex was characterized by differential scanning calorimetry (DSC), XRD and phase solubility studies. It was observed that the complexation with βCD, particularly at high molar ratio (F3 (1:1) and F4 (1:2)) decreased the release profile of clotrimazole considerably. However, suppositories containing inclusion complex at low molar ratio (F1 (1:0.25) and F2 (1:0.5)) showed excellent release profile compared to control formulation. In vivo study in rats at 15 mg/Kg dose showed that the F1 and F2 (82.39 ± 15.40 and 67.05 ± 8.79, respectively) significantly increased the AUC compared to that of F3 (41.48 ± 11.51), F4 (23.34 ± 8.37) and control (46.7 ± 7.87) suppositories. Thus, the suppositories containing inclusion complexes prepared at low drug to βCD molar ratio (F1) could be a potential suppository formulation to increase the bioavailability of hydrophobic drugs such as clotrimazole.  相似文献   

14.
Purpose. To investigate the effect of vitamin E-TPGS, d--tocopheryl polyethylene glycol 1000 succinate, on the solubility and permeability of amprenavir, a potent HIV protease inhibitor. Methods. The aqueous solubility of amprenavir was measured as a function of vitamin E-TPGS concentration. Directional transport through Caco-2 cell monolayers was determined in the presence and absence of vitamin E-TPGS and P-glycoprotein inhibitors. Absorption flux was estimated from Caco-2 cell permeability and aqueous solubility. Results. The solubility of amprenavir in a pH 7 buffer at 37°C was 0.036 ± 0.007 mg/mL. The solubility linearly increased with increasing vitamin E-TPGS concentration (above 0.2 mg/mL). Polarized transport was demonstrated in the basolateral to apical direction, exceeding apical to basolateral transport by a factor of 6. The active efflux system was inhibited by vitamin E-TPGS and known P-glycoprotein inhibitors verapamil and GF120918. Conclusions. The solubility of amprenavir was improved in the presence of vitamin E-TPGS through micelle solubilization. Vitamin E-TPGS inhibits the efflux system and enhances the permeability of amprenavir. Overall, vitamin E-TPGS enhanced the absorption flux of amprenavir by increasing its solubility and permeability. The enhancement is essential to the development of the novel soft gelatin capsule formulation of amprenavir for use in the clinic.  相似文献   

15.
The aim of this study was to prepare and characterize a self-emulsifying drug delivery system (SEDDS) with a high drug load of poorly water-soluble atorvastatin for the enhancement of dissolution and oral bioavailability. Solubility of atorvastatin in oil, surfactant, and cosurfactant was determined. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations. A high drug load (10% w/w) was achieved with a combination of oleic acid, Tween 80, and polyethylene glycol 400, ensuring the maximum dissolution property (in the case of SES6). Effects of lipids and surfactants on physical properties of SEDDS such as in vitro emulsification efficiency in terms of self-emulsification time, emulsion droplet size, and percent transmittance were measured. Multiple regression analysis revealed that a higher amount of surfactants significantly increased dissolution of ATV while decreasing emulsion droplet size and emulsification time. About a four-fold increase in dissolution was achieved by SEDDS compared to pure ATV powder. Overall, this study suggests that dissolution and oral bioavailability of ATV could be improved by SEDDS technology.  相似文献   

16.
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists, which is time-consuming, high cost and waste materials. This research aims to integrate various computational tools, including machine learning, molecular dynamic simulation and physiologically based absorption modeling (PBAM), to enhance andrographolide (AG) /cyclodextrins (CDs) formulation design. The lightGBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy. AG/γ-CD inclusion complexes showed the strongest binding affinity, which was experimentally validated by the phase solubility study. The molecular dynamic simulation was used to investigate the inclusion mechanism between AG and γ-CD, which was experimentally characterized by DSC, FTIR and NMR techniques. PBAM was applied to simulate the in vivo behavior of the formulations, which were validated by cell and animal experiments. Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate (TPGS) significantly increased the intracellular uptake of AG in MDCK-MDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers. The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills, respectively. In conclusion, this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility, dissolution rate and bioavailability. The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.  相似文献   

17.
The objective of this study was to develop an injectable formulation of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) suitable for intravenous infusion. The solubility of 3-AP in different solvents and pH conditions was determined. The developed formulation underwent stability assessment and compatibility testing with large volume parenteral (LVP) solutions. The aqueous solubility of 3-AP was found to be 0.1 mg/ml and could only be increased marginally by altering the pH or adding surfactants. To achieve the desired concentration (> 4 mg/ml), 3-AP was formulated at 5-10 mg/ml in a nonaqueous system consisting of 70% polyethylene glycol 300 and 30% ethanol. However, 3-AP readily precipitated from this formulation when diluted with LVP solutions. Dilution-induced drug precipitation was eliminated by acidifying the solution with citric acid. Ascorbic acid, 0.1%, was found to minimize oxidative degradation of 3-AP. Accelerated stability data indicated that the formulation is compatible with the packaging components and is chemically stable at 2-8 degrees C, and retained > 90% of 3-AP at 40 degrees C for 3 months. Simulated infusion studies showed that the citric acid formulation was compatible with LVP solutions. However, because of the potential of extraction of plasticizers from polyvinyl chloride (PVC) plastic containers, it is recommended that the formulation be diluted in glass containers prior to administration.  相似文献   

18.
Objective of present study was to prepare and characterize self-nanoemulsifying drug delivery system (SNEDDS) of lutein and to evaluate its effect on bioavailability of warfarin. The SNEDDS was prepared using an oil, a surfactant, and co-surfactants with optimal composition based on pseudo-ternary phase diagram. Effect of the SNEDDS on the bioavailability of warfarin was performed using Sprague Dawley rats. Lutein was successfully formulated as SNEDDS for immediate self-emulsification and dissolution by using combination of Peceol as oil, Labrasol as surfactant, and Transcutol-HP or Lutrol-E400 as co-surfactant. Almost complete dissolution was achieved after 15 min while lutein was not detectable from the lutein powder or intra-capsule content of a commercial formulation. SNEDDS formulation of lutein affected bioavailability of warfarin, showing about 10% increase in Cmax and AUC of the drug in rats while lutein as non-SNEDDS did not alter these parameters. Although exact mechanism is not yet elucidated, it appears that surfactant and co-surfactant used for SNEDDS formulation caused disturbance in the anatomy of small intestinal microvilli, leading to permeability change of the mucosal membrane. Based on this finding, it is suggested that drugs with narrow therapeutic range such as warfarin be administered with caution to avoid undesirable drug interaction due to large amount of surfactants contained in SNEDDS.  相似文献   

19.
Preparation and evaluation of paclitaxel-containing liposomes   总被引:2,自引:0,他引:2  
Paclitaxel, an antitumoral drug, is poorly soluble in aqueous media. Therefore, in a commercialised formulation (Taxol), paclitaxel (30 mg active compound) is dissolved in polyethoxylated castor oil (Cremophor EL) and ethanol. After dilution of Taxol in aqueous media paclitaxel tends to precipitate. Several side effects, attributed to the surfactant Cremophor EL, occur, e.g. bronchospasm, hypotension, neuro- and nephrotoxicity, and anaphylactic reactions. To eliminate these side effects, the solubility of paclitaxel was enhanced using liposomes instead of Cremophor EL. The amount of entrapped paclitaxel in crystal-free liposomes was 0.5 mg/ml liposome suspension, i.e. almost 85 times the native solubility. Thus, 30 mg paclitaxel had to be dissolved in 60 ml liposome suspension, of either multi-lamellar vesicles (MLV's) or of small unilamellar vesicles (SUV's) with 5% sucrose as cryoprotector. No precipitation was observed after dilution of the MLV-formulation with (physiological) water or with 5% aqueous dextrose solution, which proves their suitability for administration with perfusions. The chemical stability of paclitaxel in the prepared MLV's stored at 4 degrees C was demonstrated during a period of 5 months. The chemical degradation to conjugated dienes and hydroperoxides, two oxidative degradation products of EPC, was negligible (less than 1%).  相似文献   

20.
The D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used to increase the aqueous solubility and dissolution rate of furosemide. The solid dispersion of furosemide with TPGS was prepared by solvent method using methanol. The aqueous solubility and the dissolution rate of furosemide were rapid and markedly enhanced from the 1:2 furosemide-TPGS solid dispersion. The X-ray diffractometry showed that pure furosemide and furosemide contained within the physical mixture were crystalline in nature, whereas furosemide in the solid dispersion was not in crystalline form. The infrared spectroscopic analysis showed that an interaction, in the solid dispersion, such as an association between the functional groups of furosemide and TPGS might occur in the molecular level. The infrared spectroscopy and differential thermal analysis showed the physicochemical modifications of the furosemide from the solid dispersion. The solid dispersion technique with TPGS provides a promising way to increase the solubility and dissolution rate of poorly soluble drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号