首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.  相似文献   

2.
Electrically evoked auditory steady-state responses (EASSRs) are EEG potentials in response to periodic electrical stimuli presented through a cochlear implant. For low-rate pulse trains in the 40-Hz range, electrophysiological thresholds derived from response amplitude growth functions correlate well with behavioral T levels at these rates. The aims of this study were: (1) to improve the correlation between electrophysiological thresholds and behavioral T levels at 900 pps by using amplitude-modulated (AM) and pulse-width-modulated (PWM) high-rate pulse trains, (2) to develop and evaluate the performance of a new statistical method for response detection which is robust in the presence of stimulus artifacts, and (3) to assess the ability of this statistical method to determine reliable electrophysiological thresholds without any stimulus artifact removal. For six users of a Nucleus cochlear implant and a total of 12 stimulation electrode pairs, EASSRs to symmetric biphasic bipolar pulse trains were recorded with seven scalp electrodes. Responses to six different stimuli were analyzed: two low-rate pulse trains with pulse rates in the 40-Hz range as well as two AM and two PWM high-rate pulse trains with a carrier rate of 900 pps and modulation frequencies in the 40-Hz range. Responses were measured at eight different stimulus intensities for each stimulus and stimulation electrode pair. Artifacts due to the electrical stimulation were removed from the recordings. To determine the presence of a neural response, a new statistical method based on a two-sample Hotelling T (2) test was used. Measurements from different recording electrodes and adjacent stimulus intensities were combined to increase statistical power. The results show that EASSRs to modulated high-rate pulse trains account for some of the temporal effects at 900 pps and result in improved electrophysiological thresholds that correlate very well with behavioral T levels at 900 pps. The proposed statistical method for response detection based on a two-sample Hotelling T (2) test has comparable performance to previously used one-sample tests and does not require stimulus artifacts to be removed from the EEG signal for the determination of reliable electrophysiological thresholds.  相似文献   

3.
Electrically evoked auditory brainstem responses (EABRs) and loudness functions were measured in 14 subjects equipped with an MXM Digisonic cochlear implant. EABRs were evoked by 75-Hz pulse trains presented on the apical electrode. Loudness functions at the same rate and at a rate more conventional for psychoacoustic measurements (300 Hz) were measured using a categorical loudness-scaling procedure. The results revealed a significant difference in the loudness functions measured at 75 and 300 Hz, loudness increasing more steeply with stimulus intensity for the latter rate. Significant correlations between EABR wave V thresholds and perceptual thresholds measured at both 75 and 300 Hz were observed. Furthermore, in 8 out of the 14 patients, EABR wave V saturated at a stimulus level corresponding precisely to the loudest bearable, i.e. "Too loud" level for the 300-Hz stimulation rate; this same level corresponded to the "Comfortable" loudness level for the 75-Hz stimulation rate. On average, an almost linear relationship was observed over the first half of the loudness range between the stimulus intensity, expressed as a pulse duration in log units, and wave V amplitude in dB. Although further investigation is required before maximum comfort levels can be predicted reliably from EABR measures in individual subjects, these results indicate new directions regarding the estimation of perceptual dynamic range limits on the basis of EABR measures in cochlear implantees.  相似文献   

4.
Responses of populations of auditory-nerve fibers were measured for synthesized consonant-vowel stimuli. This paper explores the encoding of fundamental frequency (pitch) in these responses. Post-stimulus time (PST) histograms were computed from 25 ms segments of the spike trains. Discrete Fourier transforms with a 40 Hz resolution were computed from the histograms. Two representations of pitch are considered. The first representation is based on the pitch-related temporal properties of the speech signal. Histograms for individual units can show envelope modulations directly related to the pitch period. These modulations reflect the responses of these fibers to a number of stimulus harmonics near fiber CF. Responses of fibers near formant frequencies are dominated by a single large harmonic component, and thus show small or no pitch-related enveloped modulations. Envelope modulations are reduced in the presence of background noise. The second representation uses both temporal properties of auditory-nerve responses and cochlear place to encode the pitch-related harmonic structure of speech. As a measure of the response of the population of fibers to each harmonic of 40 Hz the magnitude of the component of the Fourier transform at that frequency was averaged across all fibers whose characteristic frequencies were within one-fourth octave of that harmonic. We call this measure the average localized synchronized rate (ALSR). The ALSR provides a good representation of stimulus spectrum, even in the presence of background noise. From the harmonic structure of the ALSR, we are able to extract the stimulus pitch frequency. The relationship of these two representations to pitch perception in both acoustic and electrical stimulation (via cochlear implants) is discussed.  相似文献   

5.
Literature often refers to a 300 pps limit for cochlear implant (CI) electrical stimulation, above which pulse rate discrimination deteriorates or above which rate pitch is not perceived to increase. The present study investigated the effect on pulse rate difference limens (PRDLs) when using compound stimuli in which identical pulse trains were applied to multiple electrodes across the length of the electrode array and compared the results to those of single-electrode stimuli. PRDLs of seven CI users were determined in two stimulus pulse phase conditions, one in which the phase delays between pulses on different electrodes were minimised (burst mode) and a second in which they were maximised (spread mode). PRDLs were measured at base rates of 100 to 600 pps in 100 pps intervals, using compound stimuli on one, two, five, nine and 18 electrodes. As smaller PRDLs were expected to reflect improved rate pitch perception, 18-electrode spread mode stimuli were also included in a pitch ranking task. PRDLs improved markedly when multi-electrode compound stimuli were used, with average spread mode PRDLs across listeners between 6 and 8 % of the base rate in the whole range tested (i.e. up to 600 pps). PRDLs continued to improve as more electrodes were included, up to at least nine electrodes in the compound stimulus. Stimulus pulse phase had a significant influence on the results, with PRDLs being smaller in spread mode. Results indicate that pulse rate discrimination may be manipulated with stimulus parameter choice so that previously observed deterioration of PRDLs at 300 pps probably does not reflect a fundamental limitation to rate discrimination. However, rate pitch perception did not improve in the conditions that resulted in smaller PRDLs. This may indicate that listeners used cues other than pitch to perform the rate discrimination task or may reflect limitations in the electrically evoked neural excitation patterns presented to a rate pitch extraction mechanism.  相似文献   

6.
The effects of several hours of continuous electrical stimulation in the cats' cochlear nucleus with chronically implanted activated iridium microelectrodes was investigated from the changes in the evoked response near the inferior colliculus and also by histologic evaluation of the stimulated tissue. The stimulating microelectrodes had geometric surface areas of 75-500 microns2. They were pulsed continuously for 4 h, at a pulse repetition rate of 200 Hz, using charge-balanced pulse pairs. The charge per phase was 1.8 or 3.6 nC/ph. The animals were sacrificed for histologic evaluation 2 h, or several days later. The only remarkable histologic change resulting from the 4 h of stimulation was some aggregation of lymphocytes at the site of stimulation. However, depression of the electrical excitability of neurons near the sites often persisted for several days after 4 h of stimulation at 3.6 nC/phase. The charge per phase of the stimulus pulse pair was correlated strongly with the depression of excitability, and there was a weaker correlation between the depression and the amplitude of the first phase of voltage transient induced across the electrode-tissue interface. The charge density, calculated from the geometric surface area of the stimulating electrodes, was poorly correlated with the severity of the depression. The findings suggest a means of detecting impending stimulation-induced neural damage while it is still reversible.  相似文献   

7.
The purpose of the experiment was to determine if the most-confortable-listening (MCL) levels and loudness-discomfort levels (LDLs) can be predicted from threshold measurements obtained from patients with cochlear implants using direct electrical stimulation. Psychophysical measurements of thresholds, MCLs, and LDLs with 125-Hz and 2000-Hz sinusoids were obtained from 16 patients with cochlear-implants 1 month after the connection of their ineraid processor (an auditory prosthesis). In general, the correlation coefficients among the loudness indexes obtained with a 125-Hz stimulus were similar to those for a 2000-Hz stimulus. Correlations between thresholds and MCLs were moderate, whereas correlations for thresholds and LDLs were fair. Correlations between MCLs and LDLs were high. This suggests that LDLs cannot be predicted from thresholds. On the other hand, these preliminary data suggest that MCLs may be reliably predicted from thresholds or LDLs to set the gain on a cochlear-implant processor.  相似文献   

8.
A multiple electrode cochlear implant   总被引:1,自引:0,他引:1  
The University of Melbourne Departments of Otolaryngology and Electrical Engineering (UMDOLEE) receiving and stimulating component of a multiple-electrode cochlear implant hearing prosthesis produces constant stimulation. It has a stimulating pulse shape that minimizes the production of toxic substances and loss of metal from the electrodes, and this is achieved with a biphasic rectangular waveform where the first phase is negative with respect to ground. The duration of each stimulus phase in 180 msec, which is long enough to allow low levels of current stimulation, and short enough to permit rates of 1000 pulses/second to be achieved. In order to be consistent with our present understanding of the perception of pitch, the device permits the independent stimulation of a number of electrodes. Furthermore, to electrically isolate the stimulus to small areas, there is the capacity to vary the current and set the threshold independently at individual electrodes. The phase and amplitude of the pulses to neighbouring electrodes with also be varied to assist in localizing the current flow. The pattern to stimulation to individual or groups of electrodes can also be altered to enable studies to be carried out to determine ways of conveying frequency and intensity information over a more normal dynamic range.  相似文献   

9.
Auditory steady state responses are neural potentials in response to repeated auditory stimuli. This study shows that electrically evoked auditory steady state responses (EASSRs) to low-rate pulse trains can be reliably recorded by electrodes placed on the scalp of a cochlear implant (CI) user and separated from the artifacts generated by the electrical stimulation. Response properties are described, and the predictive value of EASSRs for behaviorally hearing thresholds is analyzed. For six users of a Cochlear Nucleus CI, EASSRs to symmetric biphasic pulse trains with rates between 35 and 47 Hz were recorded with seven scalp electrodes. The influence of various stimulus parameters was assessed: pulse rate, stimulus intensity, monopolar or bipolar stimulation mode, and presentation of either one pulse train on one electrode or interleaved pulse trains with different pulse rates on multiple electrodes. To compensate for the electrical artifacts caused by the stimulus pulses and radio frequency transmission, different methods of artifact reduction were employed. The validity of the recorded responses was confirmed by recording on–off responses, determination of response latency across the measured pulse rates, and comparison of amplitude growth of stimulus artifact and response amplitude. For stimulation in the 40 Hz range, response latencies of 35.6 ms (SD = 5.3 ms) were obtained. Responses to multiple simultaneous stimuli on different electrodes can be evoked, and the electrophysiological thresholds determined from EASSR amplitude growth in the 40 Hz range correlate well with behaviorally determined threshold levels for pulse rates of 41 Hz.  相似文献   

10.
Meyer K  Rouiller EM  Loquet G 《Hearing research》2007,228(1-2):144-155
The present study was designed to complete two previous reports [Loquet, G., Rouiller, E.M., 2002. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat. Hear. Res. 171, 72-81; Loquet, G., Meyer, K., Rouiller, E.M., 2003. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat. Exp. Brain Res. 153, 436-442] on neural adaptation properties in the auditory system of the rat. Again, auditory near-field evoked potentials (ANEPs) were recorded in response to 250-ms trains of clicks from an electrode chronically implanted in the ventral cochlear nucleus (VCN). Up to now, our interest had focused on the adaptive behavior of the first one (N1) of the two negative ANEP components. A re-examination of our data for the second negative component (N2) was now undertaken. Results show that the adaptation time course observed for N2 displayed the same three-stage pattern previously reported for N1. Similarly, adaptation became more pronounced and occurred faster as stimulus intensity and/or repetition rate were increased. Based on latency data which suggest N1 and N2 to be mainly due to the activity of auditory-nerve (AN) fibers and cochlear nucleus neurons, respectively, it was concluded that neural adaptation assessed by gross-potentials was similar in the AN and VCN. This finding is meaningful in the context of our search to restore normal adaptation phenomena via electro-auditory hearing with an auditory brainstem implant on the same lines as our work in cochlear implants.  相似文献   

11.
Fos-like immunoreactivity evoked by basal, second or apical turn bipolar intracochlear electrical stimulation was evaluated in the spiral ganglion and cochlear nuclei. At stimulation levels of six times the electrically evoked auditory brain stem response thresholds, immunoreactive neurons were observed at appropriate discrete cochleotopic regions relative to stimulation site. The number of neurons increased with stimulus level and closely correlated to wave I amplitude. At 10 times thresholds, some spread in fos-like immunoreactivity to adjacent cochlear turns was found. However, fos-like immunoreactivity at this high level of stimulation still clearly showed a differential distribution in density of expression. These results indicated that the restricted topographic distribution of activity evoked by high levels of electrical stimulation is initiated at first order primary neurons of the system. For the profoundly deaf with cochlear implants, this indicates that place (channel) information can be maintained in the spiral ganglion and central nervous system even at very high levels of electrical stimulation. Together with our previous studies, these results indicate that fos provides a marker which can be used for evaluation of extent and pattern of cellular activation throughout the central auditory pathways, including activation of auditory nerve cells.  相似文献   

12.
The directionality of hair cell stimulation combined with the vibration of the basilar membrane causes the auditory nerve fiber action potentials, in response to low-frequency stimuli, to occur at a particular phase of the stimulus waveform. Because direct mechanical measurements at the cochlear apex are difficult, such phase locking has often been used to indirectly infer the basilar membrane motion. Here, we confirm and extend earlier data from mammals using sine wave stimulation over a wide range of sound levels (up to 90 dB sound pressure level). We recorded phase-locked responses to pure tones over a wide range of frequencies and sound levels of a large population of auditory nerve fibers in the anesthetized guinea pig. The results indicate that, for a constant frequency of stimulation, the phase lag decreases with increases in the characteristic frequency (CF) of the nerve fiber. The phase lag decreases up to a CF above the stimulation frequency, beyond which it decreases at a much slower rate. Such phase changes are consistent with known basal cochlear mechanics. Measurements from individual fibers showed smaller but systematic variations in phase with sound level, confirming previous reports. We found a “null” stimulation frequency at which little variation in phase occurred with sound level. This null frequency was often not at the CF. At stimulation frequencies below the null, there was a progressive lag with sound level and a progressive lead for stimulation frequencies above the null. This was maximally 0.2 cycles.  相似文献   

13.
Bilateral cochlear implantation is intended to provide the advantages of binaural hearing, including sound localization and better speech recognition in noise. In most modern implants, temporal information is carried by the envelope of pulsatile stimulation, and thresholds to interaural time differences (ITDs) are generally high compared to those obtained in normal hearing observers. One factor thought to influence ITD sensitivity is the overlap of neural populations stimulated on each side. The present study investigated the effects of acoustically stimulating bilaterally mismatched neural populations in two related paradigms: rabbit neural recordings and human psychophysical testing. The neural coding of interaural envelope timing information was measured in recordings from neurons in the inferior colliculus of the unanesthetized rabbit. Binaural beat stimuli with a 1-Hz difference in modulation frequency were presented at the best modulation frequency and intensity as the carrier frequencies at each ear were varied. Some neurons encoded envelope ITDs with carrier frequency mismatches as great as several octaves. The synchronization strength was typically nonmonotonically related to intensity. Psychophysical data showed that human listeners could also make use of binaural envelope cues for carrier mismatches of up to 2–3 octaves. Thus, the physiological and psychophysical data were broadly consistent, and suggest that bilateral cochlear implants should provide information sufficient to detect envelope ITDs even in the face of bilateral mismatch in the neural populations responding to stimulation. However, the strongly nonmonotonic synchronization to envelope ITDs suggests that the limited dynamic range with electrical stimulation may be an important consideration for ITD encoding.  相似文献   

14.
The number of surviving spiral ganglion neurons (SGNs) is important for the function of cochlear implants. Electrical stimulation has been discussed controversially regarding its protective effects on SGNs both in vivo and in vitro. The aim of this study was to develop a device for electrical stimulation of cultured SGNs. The developed device was first evaluated with cultivated fibroblasts at voltages from 10 to 60 V using biphasic rectangular pulses (pulse width: 10 ms, frequency: 50 Hz, stimulus burst: 1 s, interburst interval: 19 s). Possible toxic effects of 48 h patterned electrical stimulation were evaluated by propidium-iodide flow cytometry of the harvested fibroblasts. Second, the effects of 48-h electrical stimulation at voltages of 6 and 30 V on survival of cultivated SGNs were investigated as a single treatment and in the presence of brain-derived neurotrophic factor (BDNF, 100 ngml) in the culture medium. The results demonstrated constant pH and temperature behavior during electrical stimulation. Furthermore, no toxic effects on fibroblasts up to 40 V were found. The electrical stimulation of cultured neurons did not alter the survival rate compared to unstimulated control conditions. While BDNF application alone showed a significant effect on SGN survival, combination with electrical stimulation resulted in a not significantly increased cell survival. As a limitation of the study, the sensitivity of the described experimental setup appears to be low and only one stimulation pattern has been tested. Thus, experiments using different patterns of electrical stimulation and a more sensitive cultivation setup have to be carried out to fully investigate the effects of electrical stimulation on cultured SGNs. In this context, the developed device can be of help as it provides controlled and reproducible electrical stimulation conditions.  相似文献   

15.
The latency of the N100m component of the auditory evoked field (AEF) is sensitive to the period and spectrum of a sound. However, little attention was paid so far to the wave shape at stimulus onset, which might have biased previous results. This problem was fixed in the present study by aligning the first major peaks in the acoustic waveforms. The stimuli were harmonic tones (spectral range: 800-5000 Hz) with periods corresponding to 100, 200, 400, and 800 Hz. The frequency components were in sine, alternating or random phase. Simulations with a computational model suggest that the auditory-nerve activity is strongly affected by both the period and the relative phase of the stimulus, whereas the output of the more central pitch processor only depends on the period. Our AEF data, recorded from the right hemisphere of seven subjects, are consistent with the latter prediction: The latency of the N100m depends on the period, but not on the relative phase of the stimulus components. This suggests that the N100m reflects temporal pitch extraction, not necessarily implying that the underlying generators are directly involved in this analysis.  相似文献   

16.
人工耳蜗植入术中EABR监测的应用   总被引:2,自引:0,他引:2  
目的探讨人工耳蜗植入术中进行EABR监测的方法,以了解耳蜗电刺激下听觉传导通路的神经反应情况。方法20例人工耳蜗植入患者,男14例,女6例,平均年龄13.6岁,语前聋患者14例,语后聋患者6例。全麻后安置体表记录电极,将PPS与听觉诱发电位仪触发端口连接,并选定听觉诱发电位仪的外触发模式。人工耳蜗电极植入后,先行常规NRT监测,然后将NRT刺激参数改为EABR模式,采用Basic双极刺激,脉宽50μs,强度由200CL起以10CL为步长递减至反应阈值。结果20例患者均记录到EABR,阈上20CL时Ⅲ波.Ⅴ波的平均潜伏期分别为2.04±0.20ms.3.96±0.41ms。相同刺激条件下的EABR反应平均阈值为148.46±11.63CL,NRT反应平均阈值为160.72±13.56CL。一例脑白质轻度发育异常患儿,术中NRT波形引出良好,EABRⅠ~Ⅳ波分化良好,Ⅴ波波形低钝,Ⅴ波/Ⅲ波振幅比〈1/2,考虑可能存在耳蜗核上性神经发育不良,现正在语言康复训练随访中。结论人工耳蜗植入术中进行EABR监测比NRT能提供更完整的.更接近听觉中枢的神经反应信息,能更进一步了解听觉传导通路的功能状态,以期对患者听力康复的效果提供更准确的预测。  相似文献   

17.
The neural mechanisms of pitch coding have been debated for more than a century. The two main mechanisms are coding based on the profiles of neural firing rates across auditory nerve fibers with different characteristic frequencies (place-rate coding), and coding based on the phase-locked temporal pattern of neural firing (temporal coding). Phase locking precision can be partly assessed by recording the frequency-following response (FFR), a scalp-recorded electrophysiological response that reflects synchronous activity in subcortical neurons. Although features of the FFR have been widely used as indices of pitch coding acuity, only a handful of studies have directly investigated the relation between the FFR and behavioral pitch judgments. Furthermore, the contribution of degraded neural synchrony (as indexed by the FFR) to the pitch perception impairments of older listeners and those with hearing loss is not well known. Here, the relation between the FFR and pure-tone frequency discrimination was investigated in listeners with a wide range of ages and absolute thresholds, to assess the respective contributions of subcortical neural synchrony and other age-related and hearing loss-related mechanisms to frequency discrimination performance. FFR measures of neural synchrony and absolute thresholds independently contributed to frequency discrimination performance. Age alone, i.e., once the effect of subcortical neural synchrony measures or absolute thresholds had been partialed out, did not contribute to frequency discrimination. Overall, the results suggest that frequency discrimination of pure tones may depend both on phase locking precision and on separate mechanisms affected in hearing loss.  相似文献   

18.
A rather general basic working hypothesis for cochlear implant research might be formulated as follows. Signal processing for cochlear implants should carefully select a subset of the total information contained in the sound signal and transform these elements into those physical stimulation parameters which can generate distinctive perceptions for the listener. Several new digital processing strategies have thus been implemented on a laboratory cochlear implant speech processor for the Nucleus 22-electrode system. One of the approaches (PES, pitch excited sampler) is based on the maximum peak channel vocoder concept whereby the spectral energy of a number of frequency bands is transformed into appropriate electrical stimulation parameters for up to 22 electrodes using a voice pitch synchronous pulse rate at any electrode. Another approach (CIS, continuous interleaved sampler) uses a maximally high pitch-independent stimulation pulse rate on a selected number of electrodes. As only one electrode can be stimulated at any instance of time, the rate of stimulation is limited by the required stimulus pulse widths (as determined individually for each subject) and some additional constraints and parameters which have to be optimized and fine tuned by psychophysical measurements. Evaluation experiments with 5 cochlear implant users resulted in significantly improved performance in consonant identification tests with the new processing strategies as compared with the subjects own wearable speech processors whereas improvements in vowel identification tasks were rarely observed. The pitch-synchronous coding (PES) resulted in worse performance compared to the coding without explicit pitch extraction (CIS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Single auditory nerve fibers exhibit firing synchronized to one or both phases of periodic AC stimulus currents. Responses to biphasic pulses depend on order and excitation sites of the two phases. Sine and triangle stimuli between 100 Hz and 500 Hz elicit similar response patterns. Responses to square waves are sometimes more synchronized and generally shifted in phase with respect to sine wave responses. Preferred firing phase(s): (1) are largely independent of stimulus intensity; (2) vary among fibers; (3) may shift continuously or discontinuously over several seconds before steady state is achieved. Responses to an unprocessed synthetic vowel stimulus were dominated by pitch period, first formant, and 'spurious' components.  相似文献   

20.
Most cochlear implant systems available today provide the user with information about the envelope of the speech signal. The goal of this study was to explore the feasibility of recording electrically evoked auditory steady-state response (ESSR) and in particular to evaluate the degree to which the response recorded using electrical stimulation could be separated from stimulus artifact. Sinusoidally amplitude-modulated electrical stimuli with alternating polarities were used to elicit the response in adult guinea pigs. Separation of the stimulus artifact from evoked neural responses was achieved by summing alternating polarity responses or by using spectral analysis techniques. The recorded response exhibited physiological response properties including a pattern of nonlinear growth and their abolishment following euthanasia or administration of tetrodotoxin. These findings demonstrate that the ESSR is a response generated by the auditory system and can be separated from electrical stimulus artifact. As it is evoked by a stimulus that shares important features of cochlear implant stimulation, this evoked potential may be useful in either clinical or basic research efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号