首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1997, 18 human infections with H5N1 influenza type A were identified in Hong Kong and six of the patients died. There were concomitant outbreaks of H5N1 infections in poultry. The gene segments of the human H5N1 viruses were derived from avian influenza A viruses and not from circulating human influenza A viruses. In 1999 two cases of human infections caused by avian H9N2 virus were also identified in Hong Kong. These events established that avian influenza viruses can infect humans without passage through an intermediate host and without acquiring gene segments from human influenza viruses. The likely origin of the H5N1 viruses has been deduced from molecular analysis of these and other viruses isolated from the region. The gene sequences of the H5N1 viruses were analysed in order to identify the molecular basis for the ability of these avian viruses to infect humans.  相似文献   

2.
Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses.  相似文献   

3.
A novel strain of influenza A (H1N1) virus was isolated in Mexico and the US in March and April 2009. This novel virus spread to many countries and regions in a few months, and WHO raised the level of pandemic alert from phase 5 to phase 6 on June 11, 2009. The accurate identification of H1N1 virus and other human seasonal influenza A viruses is very important for further treatment and control of their infections. In this study, we developed an oligonucleotide microarray to subtype human H1N1, H3N2 and H5N1 influenza viruses, which could distinguish the novel H1N1 from human seasonal H1N1 influenza viruses and swine H1N1 influenza viruses. The microarray utilizes a panel of primers for multiplex PCR amplification of the hemagglutinin (HA), neuraminidase (NA) and matrix (MP) genes of human influenza A viruses. The 59-mer oligonucleotides were designed to distinguish different subtypes of human influenza A viruses. With this microarray, we accurately identified and correctly subtyped the reference virus strains. Moreover, we confirmed 4 out of 39 clinical throat swab specimens from suspected cases of novel H1N1.  相似文献   

4.
Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface.  相似文献   

5.
Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. This first part concentrates on epidemiologic concerns and virulence determinants. H5N1 spread over the world and caused a series of fowl pest outbreaks. Significant human-to-human transmissions have not been observed yet. Mutations that make the virus more compatible with human-to-human transmission may occur at any time. Nevertheless, no one can currently predict with certainty whether H5N1 will become a human pandemic virus.  相似文献   

6.
7.
Song BM  Kang YM  Kim HS  Seo SH 《Viral immunology》2011,24(3):179-187
Respiratory epithelial cells are one of main targets for infections caused by influenza viruses. Recently, the induction of proinflammatory cytokines and toll-like receptors (TLRs) in normal human bronchial/tracheal epithelial cells infected with seasonal H1N1, 2009 pandemic H1N1, seasonal H3N2, or highly pathogenic H5N1 influenza virus were studied to understand the pathogenesis and early immune responses. The cells were productively infected with the viruses. Among the inflammatory cytokines tested, interleukin (IL)-8 was predominantly induced in virus-infected cells. Among the chemokines tested, interferon-γ-inducible protein-10 (IP-10) and growth-related oncogene-α (GRO-α) were predominantly induced in virus-infected cells. TLR-5 was predominantly induced in cells infected with seasonal H1N1, pandemic H1N1, or H5N1 influenza virus, and TLR-3 was predominantly induced in cells infected with seasonal H3N2 influenza virus. Taken together, the results suggest that IL-8, IP-10, and GRO-α are predominantly induced in respiratory epithelial cells infected with influenza A viruses, and that TLR-5 and TLR-3 are involved in the stimulation of virus-infected respiratory epithelial cells.  相似文献   

8.
Influenza constitutes one of the most important upper respiratory tract infections regarding morbidity, and mortality. Prevention and treatment of influenza rely on inactivated vaccines and antiviral drugs. Zanamivir and Oseltamivir, the currently available influenza neuraminidase inhibitors (NAI) can be used in clinical practice for the treatment of influenza infection. These drugs have also shown their efficacy against highly pathogenic avian influenza. Recent transmission of avian H7N7 and H5N1 influenza virus to human emphasized the need for active antiviral against emerging influenza viruses. Since their introduction in clinical practice, numerous studies have been implemented to determine the rate of emergence of NAI resistant isolates. These studies describe mechanisms of resistance associated to mutations in the neuraminidase protein, and their consequence in virus fitness and transmission. This review is summarizing the mutations described in human and avian influenza neuraminidases that are associated to resistance or reduction in sensitivity.  相似文献   

9.
Subbarao K  Chen H  Swayne D  Mingay L  Fodor E  Brownlee G  Xu X  Lu X  Katz J  Cox N  Matsuoka Y 《Virology》2003,305(1):192-200
Avian influenza A H5N1 viruses similar to those that infected humans in Hong Kong in 1997 continue to circulate in waterfowl and have reemerged in poultry in the region, raising concerns that these viruses could reappear in humans. The currently licensed trivalent inactivated influenza vaccines contain hemagglutinin (HA) and neuraminidase genes from epidemic strains in a background of internal genes derived from the vaccine donor strain, A/Puerto Rico/8/34 (PR8). Such reassortant candidate vaccine viruses are currently not licensed for the prevention of human infections by H5N1 influenza viruses. A transfectant H5N1/PR8 virus was generated by plasmid-based reverse genetics. The removal of the multibasic amino acid motif in the HA gene associated with high pathogenicity in chickens, and the new genotype of the H5N1/PR8 transfectant virus, attenuated the virus for chickens and mice without altering the antigenicity of the HA. A Formalin-inactivated vaccine prepared from this virus was immunogenic and protected mice from subsequent wild-type H5N1 virus challenge. This is the first successful attempt to develop an H5N1 vaccine seed virus resembling those used in currently licensed influenza A vaccines with properties that make it a promising candidate for further evaluation in humans.  相似文献   

10.
The high pathogenicity of H5N1 viruses in sporadic infections of humans has raised concerns for its potential to acquire the ability to transmit between humans and emerge as a highly pathogenic pandemic virus. Because avian and human influenza viruses differ in their specificity for recognition of their host cell receptors, receptor specificity represents one barrier for efficient transmission of avian viruses in human hosts. Over the last century, each influenza virus pandemic has coincided with the emergence of virus with an immunologically distinct hemagglutinin exhibiting a ‘human-type’ receptor specificity, distinct from that of viruses with the same hemagglutinin circulating in zoonotic species. Recent studies suggest that it is possible for H5N1 to acquire human type receptor specificity, but this has not occurred in nature. This review covers what is known about the molecular basis for the switch between avian and human-type receptor specificity for influenza viruses that have successfully adapted to man, the potential for H5N1 to evolve to human-type receptor specificity and its relevance to pandemic risk.  相似文献   

11.
BACKGROUND: Rapid and simple methods for diagnosing human influenza A (H5N1) disease urgently needed. The limited data so far suggest that the currently available rapid antigen detection kits have poor clinical sensitivity for diagnosis of human H5N1 disease. OBJECTIVES: To compare the analytical sensitivity of six commercially available rapid antigen detection kits for the detection of "human" (subtypes H1N1, H3N2) and "avian" (subtype H5N1) influenza A viruses. STUDY DESIGN: Six commercially available test kits for the detection of influenza A were investigated. Analytic sensitivity for the detection of two contemporary H1N1, two H3N2 and three H5N1 viruses was determined using virus culture as a reference method. RESULTS AND CONCLUSIONS: Each test kit detected the H5N1 virus subtypes as efficiently as they detected conventional human viruses of subtypes H1N1 or H3N2. However, limits of detection of influenza viruses of all subtypes by antigen detection kits were >1000-fold lower than virus isolation. Thus, the reportedly poor clinical sensitivity of these antigen detection kits for diagnosis of patients with H5N1 disease is not due to a difference of sensitivity for detecting avian influenza H5N1 compared to human influenza viruses.  相似文献   

12.
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.  相似文献   

13.
Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced receptor binding domain mutations within the hemagglutinin (HA) gene of two H5N1 viruses and evaluated changes in receptor binding specificity by glycan microarray analysis. The impact of these mutations on replication efficiency was assessed in vitro and in vivo. Although certain mutations switched the receptor binding preference of the H5 HA, the rescued mutant viruses displayed reduced replication in vitro and delayed peak virus shedding in ferrets. An improvement in transmission efficiency was not observed with any of the mutants compared to the parental viruses, indicating that alternative molecular changes are required for H5N1 viruses to fully adapt to humans and to acquire pandemic capability.  相似文献   

14.
The first known cases of human infection with highly pathogenic avian influenza (HPAI) H5N1 viruses in Vietnam occurred in late 2003. However, HPAI H5N1 and low-pathogenic avian influenza (LPAI) H5N2 and H9N3 viruses were isolated from domestic waterfowl during live-bird market (LBM) surveillance in Vietnam in 2001 and 2003. To understand the possible role of these early viruses in the genesis of H5N1 strains infecting people, we performed sequencing and molecular characterization. Phylogenetic analysis revealed that the hemagglutinin (HA) genes of two geese HPAI H5N1 strains belonged to clade 3, and their surface glycoprotein and replication complex genes were most closely related (98.5–99.7% homologous) to A/duck/Guangxi/22/01 (H5N1) virus, detected contemporarily in southern China, whilst the M and NS genes were derived from an A/duck/Hong Kong/2986.1/00 (H5N1)-like virus. The H5 HA gene of the duck HPAI H5N1 strain belonged to clade 5 and acquired a gene constellation from A/quail/Shantou/3846/02 (H5N1), A/teal/China/2978.1/02 (H5N1) and A/partridge/Shantou/2286/03 (H5N1)-like viruses. The phylogenetic analysis further indicated that all eight gene segments of goose and duck HPAI H5N1 and LPAI H5N2 viruses were distinct from those of H5N1 clade-1 viruses known to have caused fatal human infections in Vietnam since late 2003. The duck H9N3 isolates derived genes from aquatic-bird influenza viruses, and their H9 HA belonged to the Korean lineage. The PB2 gene of A/duck/Vietnam/340/01 (H9N3) virus had lysine at position 627. Based on the molecular characterization of specific amino acid residues in the surface and relevant internal protein-coding genes, the Vietnamese H5N1 and H9N3 virus isolates indicated specificity to avian cell surface receptor and susceptibility for currently licensed anti-influenza A virus chemotherapeutics. Our findings suggest that the H5N1 and H5N2 viruses that circulated among geese and ducks in LBMs in Hanoi, Vietnam, during 2001 and 2003 were not the immediate ancestors of the clade-1 viruses associated with fatal human infections in Vietnam. The clade-1 HPAI H5N1 viruses were independently introduced into Vietnam.  相似文献   

15.
Cross‐protection against divergent strains of influenza virus is an objective of various vaccination approaches. B cells cross‐neutralizing several influenza A heterosubtypes have been isolated from cultured human memory B cells (MBCs) and plasmablasts early after influenza vaccination or infection. However, a systematic assessment of the frequency of MBCs and plasmablasts in the blood of healthy individuals is lacking. Here, we show that under resting conditions about 45% of human adults never vaccinated nor exposed to avian A/H5N1 influenza have detectable circulating MBCs cross‐reacting with H5N1. This proportion rises to 63.3% among subjects with a large pool of MBCs specific for seasonal H1N1 (i.e. frequency ≥1% of total IgG MBCs). Moreover, subjects with high baseline frequencies of H1N1‐specific MBCs had an expansion of H5N1‐specific MBCs producing H5‐neutralizing antibodies already after the first dose of an MF59‐adjuvanted H5N1 vaccine. These results suggest that H1N1‐specific MBCs contain a subset of cells cross‐reacting to H5. We propose that a proportion of human adults have a pool of H5/H1 cross‐reactive MBCs that contribute to the rapid rise of the antibody response to divergent influenza strains. This may have implications on vaccination strategies aimed at counteracting future influenza pandemics.  相似文献   

16.
17.
In 1918 the Spanish influenza pandemic, caused by an avian H1N1 virus, resulted in over 50 million deaths worldwide. Several outbreaks of H7 influenza A viruses have resulted in human cases, including one fatal case. Since 1997, the outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype have affected a wide variety of mammals in addition to poultry and wild birds. Here, we give an overview of the current knowledge of the determinants of pathogenicity of these three subtypes of avian influenza A virus in mammals. Common mechanisms for acquisition of virulence and replication of these avian influenza viruses in mammals are becoming apparent. Therefore, monitoring these and additional genetic changes upon zoonotic infections is important. Identification of genetic changes responsible for transmission between mammals will be an important task for the near future.  相似文献   

18.
Influenza viruses cause acute respiratory inflammation in humans and symptoms such as high fever, body aches, and fatigue. Usually these symptoms improve after several days; however, the 2009 pandemic H1N1 influenza virus [influenza A(H1N1) 2009] is more pathogenic than seasonal influenza viruses and the pathogenicity of highly pathogenic H5N1 viruses is still higher. The 1918 influenza pandemic virus caused severe pneumonia, resulting in an estimated 50 million deaths worldwide. Several virulence factors have been identified in these virus strains, but host factors are also responsible for the pathogenesis of infections caused by virulent viruses. Here, we review the contributions of both virus and host factors to the pathogenesis of these viral infections.  相似文献   

19.
20.
Avian H9N2 influenza A virus has caused repeated human infections in Asia since 1998. Here we report that an H9N2 influenza virus infected a 5-year-old child in Hong Kong in 2003. To identify the possible source of the infection, the human isolate and other H9N2 influenza viruses isolated from Hong Kong poultry markets from January to October 2003 were genetically and antigenically characterized. The findings of this study show that the human H9N2 influenza virus, A/Hong Kong/2108/03, is of purely avian origin and is closely related to some viruses circulating in poultry in the markets of Hong Kong. The continued presence of H9N2 influenza viruses in poultry markets in southern China increases the likelihood of avian-to-human interspecies transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号