首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo imaging was recently introduced, producing high‐resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted‐averaging‐based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal‐to‐noise ratio‐optimized version of the phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three‐step prescribed signal evolution while those in the second acquisition are calculated using a two‐step pseudo‐steady state signal transition with a high flip‐angle pseudo‐steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip‐angle pseudo‐steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal‐to‐noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid‐attenuated imaging. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
PURPOSE: The authors conducted a clinical evaluation of single-slab, 3-dimensional, T2-weighted turbo-spin-echo (TSE) with high sampling efficiency (SPACE) for high isotropic body imaging with large field-of-view (FoV). MATERIALS AND METHODS: Fifty patients were examined in clinical routine with SPACE (regions of interest: pelvis n=30, lower spine n=12, upper spine n=6, extremities n=4) at 1.5 T. For achieving a high sampling efficiency, parallel imaging, high turbofactor, and magnetization restore pulses were used. In contrast to a conventional TSE imaging technique with constant flip angle refocusing, the refocusing pulse train of the SPACE sequence consists of variable flip angle radiofrequency pulses along the echo train. RESULTS: Signal-to-noise ratio and contrast-to-noise ratio of SPACE images were of sufficient diagnostic value. The possibility of image reconstruction in multiple planes was of clinical relevance in all cases and simplified data analysis. CONCLUSION: The achievement of 3-dimensional, T2-weighted TSE magnetic resonance imaging with isotropic and high spatial resolution and interactive 3-dimensional visualization essentially improve the diagnostic potential of magnetic resonance imaging.  相似文献   

3.
Hybrid RARE (rapid acquisition with relaxation enhancement) is a family of magnetic resonance (MR) imaging techniques whereby a set of images is phase encoded with more than one spin echo per excitation pulse. This increases the efficiency of obtaining T2-weighted images, allowing greater flexibility regarding acquisition time, resolution, signal-to-noise ratio, and tissue contrast. Hybrid RARE techniques involve several important new user-selectable parameters such as effective TE, echo train length, and echo spacing. Choices of other parameters, such as TR, sampling bandwidth, and acquisition matrix, may be different from those of comparable conventional T2-weighted spin-echo images. Different hybrid RARE implementations can be used for abdominal screening, with T2-weighted or T2-weighted and inversion-recovery contrast, or for characterizing liver lesions or imaging the biliary system with an extremely long TE. High-resolution images may be obtained by averaging multiple signals during quiet breathing, or images may be acquired more rapidly during suspended respiration. In this review, the authors discuss the basic principles of hybrid RARE techniques and how various imaging parameters can be manipulated to increase the quality and flexibility of abdominal T2-weighted MR imaging.  相似文献   

4.
PURPOSE: To propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T(1)-weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. METHODS: To estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T(2)(*) effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. RESULTS: In the phantom study, the uniformity of the T(1)-weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. CONCLUSION: The present method improves the image uniformity of high-field T(1)-weighted SE images.  相似文献   

5.
PURPOSE: To compare, in a cadaveric model, magnetic resonance (MR) imaging techniques with differing contrast and spatial resolution properties in the evaluation of disruption of the lateral ulnar collateral ligament (LUCL) at the elbow. MATERIALS AND METHODS: LUCL tears were surgically created in eight of 28 cadaveric elbow specimens. All specimens underwent 1.5-T MR imaging with the following pulse sequences: T1-weighted spin echo (SE), intermediate-weighted fast SE, fat-suppressed T2-weighted fast SE, gradient-recalled echo (GRE) with high spatial resolution, intermediate-weighted fast SE with high spatial resolution, and fat-suppressed T1-weighted SE with intraarticular administration of gadopentetate dimeglumine (MR arthrography). All images were obtained in the oblique coronal plane. Two radiologists independently graded the LUCL with separate and side-by-side assessment. RESULTS: Areas under the receiver operating characteristic curve were as follows for readers A and B, respectively: T1-weighted SE imaging, 0.64 and 0.62; intermediate-weighted fast SE imaging, 0.87 and 0.67; T2-weighted fast SE imaging, 0.68 and 0.69; GRE imaging, 0.56 and 0.68; MR arthrography, 0.84 and 0.85; and intermediate-weighted imaging with high spatial resolution, 0.92 and 0.88. Interobserver reliability was poor with T1-weighted SE imaging (kappa = 0.13) and GRE imaging (kappa = 0.18), fair with T2-weighted fast SE imaging (kappa = 0.36), and moderate with MR arthrography (kappa = 0.46), intermediate-weighted fast SE imaging (kappa = 0.55), and intermediate-weighted imaging with high spatial resolution (kappa = 0.59). CONCLUSION: Intermediate-weighted imaging with high spatial resolution and MR arthrography showed the greatest overall ability to enable the diagnosis of LUCL tears.  相似文献   

6.
The value of T2-weighted fast spin-echo imaging of the musculoskeletal system was assessed in 22 patients with various neoplastic, inflammatory, and traumatic disorders. Images were acquired with high echo number (i.e., echo train length) fast spin-echo (FSE; TR 2000 ms, effective TE 100 ms, echo number 13, lineark-space ordering), conventional spin-echo (SE; TR 2000 ms, TE 100 ms) and gradient-echo (GRE) sequences (TR 600 ms, TE 34 ms, flip angle 25°). Signal intensities, signal-to-noise ratios, contrast, contrast-to-noise ratios, lesion conspicuousness, detail perceptibility, and sensitivity towards image artifacts were compared. The high signal intensity of fat on FSE images resulted in a slightly inferior lesion-to-fat contrast on FSE images. However, on the basis of lesion conspicuity, FSE is able to replace time-consuming conventional T2-weighted SE imaging in musculoskeletal MRI. In contrast, GRE images frequently showed superior lesion conspicuity. One minor disadvantage of FSE in our study was the frequent deterioration of image quality by blurring, black band, and rippling artifacts. Some of these artifacts, however, can be prevented using short echo trains and/or short echo spacings.  相似文献   

7.
Dynamic magnetic resonance (MR) imaging for pituitary microadenomas is usually performed in 2-dimensional (2D) multi-slice method which used coronal T(1)-weighted imaging with turbo spin echo (SE) method. However, on MR images using 2D multi-slice method, the detectability of small lesions between slices may decrease. Therefore, the aim of our study is to investigate the influence that imaging parameters give to T(1)-weighted image with 3-dimensional (3D) turbo SE method, and to examine the use of 3D turbo SE method as the detection of pituitary microadenomas. We can plan the shortening of imaging time by shortening repetition time (TR), because the contrast to noise ratio (CNR) in the 3D turbo SE method was superior enough than that of the 2D turbo SE method. In addition, low refocusing flip angle induced the decrease of CNR, but it has the effect which decreases flow-induced artifacts. Dynamic MR imaging which used coronal T(1)-weighted imaging with 3D turbo SE method is feasible by utilizing the reduction of TR and low refocusing flip angle, as well as the combination of parallel imaging and radial sampling.  相似文献   

8.
An inhomogeneous radiofrequency (RF) magnetic field is an essential source of error for the quantification of MRI and MRS parameters. To correct for effects of RF inhomogeneities in 3D data sets, it is necessary to have knowledge of the 3D RF distribution in the sample. In this paper a method for fast 3D RF mapping is presented. The method is based on the simultaneous acquisition of a spin echo (SE) and a stimulated echo (STE) using echo-planar imaging (EPI). The acquisition of the 3D RF map using 64 partitions and TR = 500 ms requires 1.5 min. The use of the sequence in vivo is demonstrated by the calculation of the RF maps in the human brain at 3T. The comparison of calculated flip angles with the flip angles obtained by fitting signal behavior in the 3D stimulated-echo acquisition mode (STEAM)-EPI sequence and the analysis of errors due to spatially dependent T(1) values in the brain show that the accuracy of the calculated flip angles in the human brain is about 2 degrees.  相似文献   

9.
Single‐slab 3D turbo/fast spin echo (SE) imaging with very long echo trains was recently introduced with slab selection using a highly selective excitation pulse and short, nonselective refocusing pulses with variable flip angles for high imaging efficiency. This technique, however, is vulnerable to image degradation in the presence of spatially varying B1 amplitudes. In this work we develop a B1 inhomogeneity‐reduced version of single‐slab 3D turbo/fast SE imaging based on the hypothesis that it is critical to achieve spatially uniform excitation. Slab selection was performed using composite adiabatic selective excitation wherein magnetization is tipped into the transverse plane by a nonselective adiabatic‐half‐passage pulse and then slab is selected by a pair of selective adiabatic‐full‐passage pulses. Simulations and experiments were performed to evaluate the proposed technique and demonstrated that this approach is a simple and efficient way to reduce B1 sensitivity in single‐slab 3D turbo/fast SE imaging with very long echo trains. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Various parameters of the three-dimensional (3D) T1-weighted magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) sequence were evaluated to improve spatial resolution while maintaining T1 contrast and a short examination time in imaging of the cervical spine in volunteers. The most dramatic improvements in image resolution occurred by decreasing section thickness to 1.2 mm and increasing the in-plane matrix to 192 x 256, with a 230-mm field of view. The increase in imaging time due to the increased matrix was offset by the elimination of the preparation pulse and wait time, without dramatic changes in contrast-to-noise ratio or overall image quality. Optimum parameters included elimination of the preparation pulse and wait time, 12 degrees flip angle, 192 x 256 matrix, 1.2-mm section thickness, nonselective excitation (coronal acquisition), RF spoiling, and standard k-space ordering, for an examination time of 5 minutes 21 seconds.  相似文献   

11.
Three-dimensional (3D) MR imaging of the knee is useful to detect cartilage abnormalities, although the tissue contrast in 3D gradient-recalled echo (GRE) sequences such as gradient-recalled acquisition in the steady state (GRASS) or fast low-angle shot (FLASH) is poor. T2 contrast can be added to a GRASS sequence by combining the signals from the first and second gradient echoes, which form immediately after and immediately before each radiofrequency (RF) pulse in a 3D GRE sequence. We have optimized a 3D dual echo in the steady state (DESS) sequence, which produces one averaged image from the two echoes, for use in the detection of articular cartilage abnormalities. In the optimization process, we examined the imaging parameters of flip angle (α), repetition time (TR), echo time (TE), and bandwidth to maximize the contrast between cartilage and joint fluid. A theoretical simulation of the sequence was confirmed with experiments conducted on phantoms with known T1 and T2. On the basis of theoretical predictions and experiments using healthy volunteers, we determined that an optimized sequence with a bandwidth of 98 Hz per pixel, a TR of 30 msec, a TE of 7.1 msec, and an α of 60° produced the highest contrast between cartilage and fluid within a defined acquisition time of 6 minutes. Additional contrast was obtained by filtering the second-echo image to eliminate noise before adding it to the first-echo image.  相似文献   

12.
Echo‐planar imaging is the most widely used imaging sequence for functional magnetic resonance imaging (fMRI) due to its fast acquisition. However, it is prone to local distortions, image blurring, and signal voids. As these effects scale with echo train length and field strength, it is essential for high‐resolution echo‐planar imaging at ultrahigh field to address these problems. Partially parallel acquisition methods can be used to improve the image quality of echo‐planar imaging. However, partially parallel acquisition can be affected by aliasing artifacts and noise enhancement. Another way to shorten the echo train length is to reduce the field‐of‐view (FOV) while maintaining the same spatial resolution. However, to achieve significant acceleration, the resulting FOV becomes very small. Another problem occurs when FOV selection is incomplete such that there is remaining signal aliased from the region outside the reduced FOV. In this article, a novel approach, a combination of reduced FOV imaging with partially parallel acquisition, is presented. This approach can address the problems described above of each individual method, enabling high‐quality single‐shot echo‐planar imaging acquisition, with submillimeter isotropic resolution and good signal‐to‐noise ratio, for fMRI at ultrahigh field strength. This is demonstrated in fMRI of human brain at 7T with an isotropic resolution of 650 μm. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Resolution enhanced T(1)-insensitive steady-state imaging (RE-TOSSI) is a new MRI pulse sequence for the generation of rapid T(2) contrast with high spatial resolution. TOSSI provides T(2) contrast by using nonequally spaced inversion pulses throughout a balanced steady-state free precession (SSFP) acquisition. In RE-TOSSI, these energy and time intensive adiabatic inversion pulses and associated magnetization preparation are removed from TOSSI after acquisition of the data around the center of k-space. Magnetization evolution simulations demonstrate T(2) contrast in TOSSI as well as reduction in the widening of the point spread function width (by up to a factor of 4) to a near ideal case for RE-TOSSI. Phantom experimentation is used to characterize and compare the contrast and spatial resolution properties of TOSSI, RE-TOSSI, balanced SSFP, Half-Fourier Acquisition Single-Shot Turbo Spin Echo (HASTE), and turbo spin echo and to optimize the fraction of k-space acquired using TOSSI. Comparison images in the abdomen and brain demonstrate similar contrast and improved spatial resolution in RE-TOSSI compared with TOSSI; comparison balanced SSFP, HASTE, and turbo spin echo images are provided. RE-TOSSI is capable of providing high spatial resolution T(2)-weighted images in 1 s or less per image.  相似文献   

14.
Conventional T2‐weighted turbo/fast spin echo imaging is clinically accepted as the most sensitive method to detect brain lesions but generates a high signal intensity of cerebrospinal fluid (CSF), yielding diagnostic ambiguity for lesions close to CSF. Fluid‐attenuated inversion recovery can be an alternative, selectively eliminating CSF signals. However, a long time of inversion, which is required for CSF suppression, increases imaging time substantially and thereby limits spatial resolution. The purpose of this work is to develop a phase‐sensitive, dual‐acquisition, single‐slab, three‐dimensional, turbo/fast spin echo imaging, simultaneously achieving both conventional T2‐weighted and fluid‐attenuated inversion recovery–like high‐resolution whole‐brain images in a single pulse sequence, without an apparent increase of imaging time. Dual acquisition in each time of repetition is performed, wherein an in phase between CSF and brain tissues is achieved in the first acquisition, while an opposed phase, which is established by a sequence of a long refocusing pulse train with variable flip angles, a composite flip‐down restore pulse train, and a short time of delay, is attained in the second acquisition. A CSF‐suppressed image is then reconstructed by weighted averaging the in‐ and opposed‐phase images. Numerical simulations and in vivo experiments are performed, demonstrating that this single pulse sequence may replace both conventional T2‐weighted imaging and fluid‐attenuated inversion recovery. Magn Reson Med 63:1422–1430, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
D A Feinberg  K Oshio 《Radiology》1991,181(2):597-602
A novel technique of magnetic resonance (MR) imaging, which combines gradient-echo and spin-echo (GRASE) technique, accomplishes T2-weighted multisection imaging in drastically reduced imaging time, currently 24 times faster than spin-echo imaging. The GRASE technique maintains contrast mechanisms, high spatial resolution, and image quality of spin-echo imaging and is compatible with clinical whole-body MR systems without modification of gradient hardware. Image acquisition time is 18 seconds for 11 multisection body images (2,000/80 [repetition time msec/echo time msec]) and 36 seconds for 22 brain images (4,000/104). With a combination of multiple Hahn spin echoes and short gradient-echo trains, the GRASE technique overcomes several potential problems of echo-planar imaging, including large chemical shift, image distortions, and signal loss from field inhomogeneity. Advantages of GRASE over the RARE (rapid acquisition with relaxation enhancement) technique include faster acquisition times and lower deposition of radio-frequency power in the body. Breath holding during 18-second GRASE imaging of the upper abdomen eliminates respiratory-motion artifacts in T2-weighted images. A major improvement in T2-weighted abdominal imaging is suggested.  相似文献   

16.
PURPOSE: To compare various Array Spatial and Sensitivity Encoding Technique (ASSET)-enhanced T2W SSFSE (single shot fast spin echo) and T1-weighted (T1W) 3D SPGR (spoiled gradient recalled echo) sequences for polyp detection and image quality at MR colonography (MRC) in a phantom model. Limitations of MRC using standard 3D SPGR T1W imaging include the long breath-hold required to cover the entire colon within one acquisition and the relatively low spatial resolution due to the long acquisition time. Parallel imaging using ASSET-enhanced T2W SSFSE and 3D T1W SPGR imaging results in much shorter imaging times, which allows for increased spatial resolution. MATERIALS AND METHODS: Using two porcine colon phantoms each with eight simulated 3-10-mm "polyps," baseline reference sequences acquired without ASSET (6-mm slices and readout bandwidth [BW] 62 kHz) were compared with 11 SSFSE and 8 SPGR sequences acquired with 2-fold ASSET acceleration. ASSET-enhanced SSFSE and SPGR sequences comprised BW/matrix combinations ranging from 20-62 kHz/256-352x256, respectively, with slice thicknesses adjusted from 3.0 to 4.5 mm to maintain a 23-26-second acquisition time and 30 cm slab thickness. Two experienced radiologists viewed the datasets in a randomized, blinded fashion. RESULTS: Compared to reference sequences, ASSET-enhanced SSFSE and SPGR sequences facilitated better polyp detection and had similar overall image quality and per-phantom specificity. The two best ASSET-enhanced SSFSE (3 and 4.5 mm slices, each with BW of 62.5 kHz and 352x256 matrices) and three best ASSET-enhanced SPGR BW/slice thickness/matrix combinations of 31 kHz/4.4 msec/192x256; 62/3.4/192x256; and 62/4.0/192x256, respectively, permitted detection of all polyps>or=5 mm. CONCLUSION: Parallel imaging using ASSET-enhanced T2W SSFSE and T1W 3D SPGR improves the ability to detect significant colon polyps in an MRC phantom model.  相似文献   

17.
This study was undertaken to determine whether phased array breath-hold T1- and T2-weighted sequences can replace non-breath-hold spin echo (SE) sequences in the imaging of focal liver lesions by comparing overall image quality, liver-lesion contrast, and artifact. Both breath-hold and non-breath-hold T1-weighted and T2-weighted imagings of focal liver lesions were prospectively compared in 120 patients with suspected focal liver lesions imaged at 1.5 T with use of a body phased array multicoil. Breath-hold images were acquired with T1-weighted fast low-angle shot (FLASH) and T2-weighted turbo spin echo (TSE) sequences, and non-breath-hold images were made with conventional T1- and T2-weighted SE sequences. Qualitative image analysis was done by three blinded readers, and quantitative analysis was done. The highest signal-to-noise ratios were obtained with breath-hold T1-weighted FLASH sequence. The signal-to-noise ratios of breath-hold T2-weighted TSE sequence were slightly inferior to those of non-breath-hold SE sequence. Both T1-weighted and T2-weighted breath-hold sequences had less image artifact. Overall image quality of breath-hold sequences was better than that of non-breath-hold sequences for both T1- and T2-weighted sequences (P < .01). The tissue contrast of T1-weighted FLASH sequence was superior to that of SE sequence (P < .01). On T2-weighted imaging, tissue contrast of solid lesions was better on conventional SE sequence than that on breath-hold TSE sequence (P < .01). Respiratory ghost artifact was less prominent on T1-weighted FLASH sequence, although this artifact was occasionally seen on breath-hold T2-weighted TSE sequence. In a state-of-art MR unit with use of a phased array multicoil, conventional T1-weighted can be replaced by breath-hold sequences. On T2-weighted imaging, because solid tumor-liver contrast on breath-hold TSE imaging is inferior to that on non-breath-hold SE image, breath-hold imaging may not replace conventional non-breath-hold T2-weighted SE sequence.  相似文献   

18.
The purpose of this study was to explore systematically the effect of the imaging parameters changeable by the user in spin-echo (SE) imaging sequences to minimize image distortion when imaging joint prostheses. A titanium alloy hip joint prosthesis was studied at 1.0 T. The SE imaging parameters were bandwidth/pixel (BW/p), TE, strength of encoding gradients (matrix size), echo train length (ETL), and direction of phase and frequency encoding. The effect of ETL in rapid acquisition relaxation enhanced (RARE) sequences was also evaluated with a turbo-SE sequence using a different ETL with the same TR and an effective TE. It is concluded that an optimized image quality can be achieved in SE imaging by using a high bandwidth/pixel value (at least 130 Hz/pixel), a high resolution matrix (256–512), sequences with multiple refocusing, and a frequency-encoding axis parallel to the long axis of the prosthesis. The degree of distortion is reduced with this optimized technique.  相似文献   

19.
Summary To assess the clinical usefulness of partial flip angle (PFA) spin-echo (SE) brain imaging, a total of eighty patients were examined with both conventional double echo T2-weighted SE (2500/30, 80/90o/one excitation) and PFA double echo SE (1200/30, 70/45o/two excitations) on 2.0T system. Two comparative studies were performed: (1) in 65 patients PFA SE technique was compared with conventional SE without flow compensating gradients, and (2) in 15 patients the former was compared with the latter with flow compensating gradients. Imaging time was nearly identical in each sequence. In both studies we found that PFA T2-weighted SE images were almost identical to those obtained with the conventional SE technique in the contrast characteristics and the detection rate of the abnormalities (100%, 85/85 lesions), and more importantly, PFA SE revealed few flow artifacts in the brain stem, temporal lobes and basal ganglia which were frequently seen on conventional SE without flow compensating gradients. Additionally, PFA SE images demonstrated no suppression of CSF flow void in the aqueduct which was commonly seen on conventional SE with flow compensating gradients. In overall image quality, the PFA SE images, particularly the second echo images, were almost comparable with those of conventional SE with flow compensating gradients. A flip angle of 45o seems to be close to Ernst angle, the angle at which maximum signal occurs, for a given TR of 1200 msec for CSF and most of the abnormalities containing higher water content. In conclusion, PFA SE sequence (i. e. 1200/30, 70/45o/2) appears to be useful as a primary or an adjunctive technique in certain clinical circumstances, particularly in imaging of hydrocephalic patients for assessing aqueductal patency.  相似文献   

20.
PURPOSE: To compare an optimized water selective balanced steady-state free precession sequence (WS-bSSFP) with conventional magnetic resonance (MR) sequences in imaging cartilage of osteoarthritic knees. MATERIALS AND METHODS: Flip angles of sagittal and axial WS-bSSFP sequences were optimized in three volunteers. Subsequently, the knees of 10 patients with generalized osteoarthritis were imaged using sagittal and axial WS-bSSFP and conventional MR imaging techniques. We calculated contrast-to-noise ratios (CNR) between cartilage and its surrounding tissues to quantitatively analyze the various sequences. Using dedicated software we compared, in two other patients, the accuracy of cartilage volume measurements with anatomic sections of the tibial plateau. RESULTS: CNRtotal eff (CNR efficiency between cartilage and its surrounding tissue) using WS-bSSFP was maximal with a 20-25 degrees flip angle. CNRtotal eff was higher in WS-bSSFP than in conventional images: 6.1 times higher compared to T1-weighted gradient echo (GE) images, 5.1 compared to proton-density (PD) fast spin echo (FSE) images, and 4.8 compared to T2-weighted FSE images. The mean difference of cartilage volume measurement on WS-bSSFP and anatomic sections was 0.06 mL compared to 0.24 mL for T1-GE and anatomic sections. CONCLUSION: A WS-bSSFP sequence is superior to conventional MR imaging sequences in imaging cartilage of the knee in patients with osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号