首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To determine whether saline-enhanced dual probe bipolar radiofrequency ablation (RFA) using perfused-cooled electrodes shows better in-vitro efficiency than monopolar or single probe bipolar RFA in creating larger coagulation necrosis.

Materials and Methods

RF was applied to excised bovine livers in both bipolar and monopolar modes using a 200W generator (CC-3; Radionics) and the perfused-cooled electrodes for 10 mins. After placing single or double perfused-cooled electrodes in the explanted liver, 30 ablation zones were created at three different regimens: group A; saline-enhanced monopolar RFA, group B; saline-enhanced single probe bipolar RFA, and group C; saline-enhanced dual probe bipolar RFA. During RFA, we measured the tissue temperature at 15mm from the electrode. The dimensions of the ablation zones and changes in the impedance currents and liver temperature during RFA were then compared between the groups.

Results

The mean current values were higher for monopolar mode (group A) than for the bipolar modes (groups B and C): 1550±25 mA in group A, 764±189 mA in group B and 819±98 mA in group C (p < 0.05). The volume of RF-induced coagulation necrosis was greater in group C than in the other groups: 27.6±2.9 cm3 in group A, 23.7±3.8 cm3 in group B, and 34.2±5.1 cm3 in group C (p < 0.05). However, there was no significant difference between the short-axis diameter of the coagulation necrosis in the three groups: 3.1±0.8 cm, 2.9±1.2 cm and 4.0±1.3 cm in groups A, B and C, respectively (p > 0.05). The temperature at 15 mm from the electrode was higher in group C than in the other groups: 70±18℃ in group A, 59±23℃ in group B and 96±16℃ in group C (p < 0.05).

Conclusion

Saline-enhanced bipolar RFA using dual perfused-cooled electrodes increases the dimension of the ablation zone more efficiently than monopolar RFA or single probe bipolar RFA.  相似文献   

2.

Objective

To determine the in vivo efficiency of monopolar radiofrequency ablation (RFA) using a dual-switching (DS) system and a separable clustered (SC) electrode to create coagulation in swine liver.

Materials and Methods

Thirty-three ablation zones were created in nine pigs using a DS system and an SC electrode in the switching monopolar mode. The pigs were divided into two groups for two experiments: 1) preliminary experiments (n = 3) to identify the optimal inter-electrode distances (IEDs) for dual-switching monopolar (DSM)-RFA, and 2) main experiments (n = 6) to compare the in vivo efficiency of DSM-RFA with that of a single-switching monopolar (SSM)-RFA. RF energy was alternatively applied to one of the three electrodes (SSM-RFA) or concurrently applied to a pair of electrodes (DSM-RFA) for 12 minutes in in vivo porcine livers. The delivered RFA energy and the shapes and dimensions of the coagulation areas were compared between the two groups.

Results

No pig died during RFA. The ideal IEDs for creating round or oval coagulation area using the DSM-RFA were 2.0 and 2.5 cm. DSM-RFA allowed more efficient RF energy delivery than SSM-RFA at the given time (23.0 ± 4.0 kcal vs. 16.92 ± 2.0 kcal, respectively; p = 0.0005). DSM-RFA created a significantly larger coagulation volume than SSM-RFA (40.4 ± 16.4 cm3 vs. 20.8 ± 10.7 cm3; p < 0.001). Both groups showed similar circularity of the ablation zones (p = 0.29).

Conclusion

Dual-switching monopolar-radiofrequency ablation using an SC electrode is feasible and can create larger ablation zones than SSM-RFA as it allows more RF energy delivery at a given time.  相似文献   

3.

Objective

To determine the optimized protocol for wet monopolar radiofrequency ablation (RFA) using a perfused-cooled electrode to induce coagulation necrosis in the ex vivo bovine liver.

Materials and Methods

Radiofrequency was applied to excised bovine livers in a monopolar mode using a 200W generator with an internally cooled electrode (groups A and B) or a perfused-cooled electrode (groups C, D, E, and F) at maximum power (150-200 W) for 10 minutes. A total of 60 ablation zones were created with six different regimens: group A - dry RFA using intra-electrode cooling; group B - dry RFA using intra-electrode cooling and a pulsing algorithm; group C - wet RFA using only interstitial hypertonic saline (HS) infusion; group D - wet RFA using interstitial HS infusion and a pulsing algorithm; group E - wet RFA using interstitial HS infusion and intra-electrode cooling; and group F - wet RFA using interstitial HS infusion, intra-electrode cooling and a pulsing algorithm. In groups C, D, E, and F, RFA was performed with the infusion of 6% HS through the perfused cooled electrode at a rate of 2 mL/minute. During RFA, we measured the tissue temperature at a distance of 15 mm from the electrode. The dimensions of the ablation zones and the changes in impedance, currents, and liver temperature during RFA were compared between these six groups.

Results

During RFA, the mean tissue impedances in groups A (243 ± 88 Ω) and C (252.5 ± 108 Ω) were significantly higher than those in groups B (85 ± 18.7 Ω), D (108.2 ± 85 Ω), E (70.0 ± 16.3 Ω), and F (66.5 ± 7 Ω) (p < 0.05). The mean currents in groups E and F were significantly higher than those in groups B and D, which were significantly higher than those in groups A and C (p < 0.05): 520 ± 425 mA in group A, 1163 ± 34 mA in group B, 652.5 ± 418 mA in group C, 842.5 ± 773 mA in group D, 1665 ± 295 mA in group E, and 1830 ± 109 mA in group F. The mean volumes of the ablation regions in groups E and F were significantly larger than those in the other groups (p < 0.05): 17.7 ± 5.6 cm3 in group A, 34.5 ± 3.0 cm3 in group B, 20.2 ± 15.6 cm3 in group C, 36.1 ± 19.5 cm3 in group D, 68.1 ± 12.4 cm3 in group E, and 79.5 ± 31 cm3 in group F. The final tissue temperatures at a distance of 15 mm from the electrode were higher in groups E and F than those in groups A, C, and D (p < 0.05): 50 ± 7.5℃ in group A, 66 ± 13.6℃ in group B, 60 ± 13.4℃ in group C, 61 ±12.7℃ in group D, 78 ± 14.2℃ in group E, and 79 ± 12.0℃ in group F.

Conclusion

Wet monopolar RFA, using intra-electrode cooling and interstitial saline infusion, showed better performance in creating a large ablation zone than either dry RFA or wet RFA without intra-electrode cooling.  相似文献   

4.

Objective

To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC).

Materials and Methods

In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined.

Results

There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%).

Conclusion

Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs.  相似文献   

5.

Objective

We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver.

Materials and Methods

Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups.

Results

With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (p < 0.05). During RF ablation, the tissue impedance was well controlled in groups C and E, but it was often rapidly increased to more than 200 Ω in groups A and B. In group D, the impedance was well controlled in six of ten trials but it was increased in four trials (40%) 7 min after starting RF ablation. As consequences, the mean current was higher for groups C, D, and E than for the other groups: 401 ± 145 mA in group A, 287 ± 32 mA in group B, 1907 ± 96 mA in group C, 1649 ± 514 mA in group D, and 1968 ± 108 mA in group E (p < 0.05). In addition, the volumes of RF-induced coagulation necrosis were greater in groups C and E than in group D, which was greater than in groups A and B than in group E (p < 0.05); 14.3 ± 3.0 cm3 in group A; 12.4 ± 3.8 cm3 in group B; 80.9 ± 9.9 cm3 in group C; 45.3 ± 11.3 cm3 in group D and 81.6 ± 8.6 cm3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (p < 0.05): 53 ± 12℃ in group A, 42 ± 2℃ in group B, 93 ± 8℃ in group C; 79 ± 12℃ in group D and 83 ± 8℃ in group E.

Conclusion

Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with preinjection of NaCl solutions.  相似文献   

6.

Objective

To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model.

Materials and Methods

A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05).

Results

One rabbit from the "W" group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups "W" and "R" throughout the procedures (39.2±0.4℃ in group W and 33.4±4.3℃ in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4±237.3 mL in group C, 1,172.0±468.9 mL in group R, and 1,030.6±665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group "C" rabbits (p = 0.030).

Conclusion

Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region.  相似文献   

7.

Objective

To determine in vivo efficacy of radiofrequency ablation (RFA) in porcine liver by using 15-gauge Octopus® (15-G Octopus®) electrodes to create a large coagulation.

Materials and Methods

A total of 18 coagulations were created by using a 180-W generator and 15-G Octopus® electrodes during laparotomy, performed in 14 pigs. Coagulation necrosis was created in the pig livers by the use of one of three RFA protocols: 1) group A, monopolar RFA using a 15-G Octopus® electrode with a 5-mm inter-electrode distance (n = 4); 2) group B, monopolar RFA using a 15-G Octopus® electrode with a 10-mm inter-electrode distance (n = 6); and 3) group C, switching monopolar RFA using two 15-G Octopus® electrodes (n = 8). The energy efficiency, shape, maximum and minimum diameters (Dmx and Dmi), and the volume of the coagulation volume were measured in each group. The Summary statistics were obtained and Mann-Whitney test was were performed.

Results

The mean ablated volume of each group was 49.23 cm3 in A, 64.11 cm3 in B, and 72.35 cm3 in C. The mean Dmx and Dmi values were 5.68 cm and 4.58 cm in A and 5.97 cm and 4.97 cm in B, respectively. In group C, the mean diameters of Dmx and Dmi were 6.80 cm and 5.11 cm, respectively. The mean ratios of Dmi/Dmx were 1.25, 1.20, and 1.35 in groups A, B, and C, respectively. There was one animal death during the RFA procedure, the cause of which could not be subsequently determined. However, there were no other significant, procedure-related complications during the seven-hour-delayed CT scans.

Conclusion

RFA procedures using 15-G Octopus® electrodes are useful and safe for creating a large ablation in a single electrode model as well as in the multiple electrodes model.  相似文献   

8.

Objective

To determine whether hypertonic saline (HS, 36% NaCl) injection prior to or during radiofrequency ablation (RFA) can increase the extent of thermally mediated coagulation in in-vivo rabbit liver tissue, and also to establish the ideal injection time in relation to RFA in order to maximize its effect on the extent of radiofrequency (RF)-induced coagulation.

Materials and Methods

In 26 rabbits, 43 RFA lesions were produced using a 17-gauge internally cooled electrode with a 1-cm active tip under ultrasound (US) guidance. Rabbits were assigned to one of three groups: Group A: RFA alone (n=8); Group B: RFA after the instillation of 1 mL HS (n=8); Group C: RFA after and during the instillation of 0.5 mL HS (n=10). RF energy (30 W) was applied for 3 minutes, and changes occurring in tissue impedance, current, power output, and the temperature of the electrode tip were automatically measured. After RFA, contrast-enhanced spiral CT was performed, and in each group the maximum diameters of the thermal lesions in gross specimens were compared. Technical success and the complications arising were evaluated by CT and on the basis of autopsy findings.

Results

All procedures were technically successful. There were six procedure-related complications (6/26; 23%), including five localized perihepatic hematomas and one thermal injury to the stomach. With instillation of HS in group B rabbits, markedly decreased tissue impedance (73Ω ± 5) and increased current (704 mA ± 41) were noted, compared to RF ablation without saline infusion (116.3Ω ± 13, 308 mA ± 80). With instillation of the solution before RFA (group B), coagulation necrosis was greater (14.9 mm ± 3.8) than in rabbits not injected (group A: 11.5 mm ± 2.4; Group A vs. B: p < .05) and in those injected before and during RFA (group C: 12.5 mm ± 3.1; Group B vs. C: p > .05).

Conclusion

RFA using HS instillation can increase the volume of RFA-induced necrosis of the liver with a single application, thereby simplifying and accelerating the treatment of larger lesions. In addition, HS instillation before RFA more effectively achieves coagulation necrosis than HS instillation before and during RFA.  相似文献   

9.

Objective

Arsenic trioxide (As2O3) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As2O3 on RF-induced ablation in an experimentally induced liver tumor.

Materials and Methods

VX2 carcinoma was grown in the livers of 30 rabbits. As2O3 (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA ± 35; 90 ± 5℃). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test.

Results

The overall ablation areas were 156 ± 28.9 mm2 (group A), 119 ± 31.7 (group B), and 92 ± 17.4 (group C, p < 0.04). The ablation area of the tumor was significantly larger in group A (73 ± 19.7 mm2) than both group B (50 ± 19.4, p = 0.02) and group C (28 ± 2.2, p < 0.01). The ratios of the tumoral ablation area to the overall ablation area were larger in group A (47 ± 10.5%) than that of the other groups (42 ± 7.3% in group B and 32 ± 5.6% in group C) (p < 0.03).

Conclusion

Radiofrequency-induced ablation area can be increased with intraarterial or intravenous administration of As2O3. The intraarterial administration of As2O3 seems to be helpful for the selective ablation of the tumor.  相似文献   

10.

Objective

To assess the feasibility and safety of CT-guided percutaneous transthoracic radiofrequency ablation (RFA) with saline infusion of pulmonary tissue in rabbits.

Materials and Methods

Twenty-eight New Zealand White rabbits were divided into two groups: an RFA group (n=10) and a saline-enhanced RFA (SRFA) group (n=18). In the RFA group, percutaneous RFA of the lung was performed under CT guidance and using a 17-gauge internally cooled electrode. In the SRFA group, 1.5 ml of 0.9% saline was infused slowly through a 21-gauge, polyteflon-coated Chiba needle prior to and during RFA. Lesion size and the healing process were studied in rabbits sacrificed at times from the day following treatment to three weeks after, and any complications were noted.

Results

In the SRFA group, the mean diameter (12.5 ± 1.6 mm) of acute RF lesions was greater than that of RFA lesions (8.5 ± 1.4 mm) (p < .05). The complications arising in 12 cases were pneumothorax (n=8), thermal injury to the chest wall (n=2), hemothorax (n=1), and lung abscess (n=1). Although procedure-related complications tended to occur more frequently in the SRFA group (55.6%) than in the RFA group (20%), the difference was not statistically significant (p = .11).

Conclusion

Saline-enhanced RFA of pulmonary tissue in rabbits produces more extensive coagulation necrosis than conventional RFA procedures, without adding substantial risk of serious complications.  相似文献   

11.
Lee E  Lee J  Kim W  Choi Sh  Joo I  Kim M  Yoo D  Yoo RE  Han J  Choi B 《The British journal of radiology》2012,85(1017):e609-e615

Objectives

The objective of this study was to determine the in vivo efficacy of radiofrequency ablation (RFA) in porcine liver using Octopus® electrodes for creating a large coagulation compared with RFA using clustered electrodes.

Methods

A total of 39 coagulations were created using a 200-W generator and clustered electrodes or Octopus electrodes during laparotomy in 19 pigs. Radiofrequency was applied to the livers using four protocols: (1) Group A-1, monopolar mode using a clustered electrode (n=11); (2) Group A-2, monopolar mode using an Octopus electrode (n=11); (3) Group B-1, consecutive monopolar mode using three, clustered electrodes (n=8); and (4) Group B-2, switching monopolar mode using two Octopus electrodes (n=9). The energy efficiency, shape, diameters (D) and volume (V) of the coagulation volume were compared in each of the two groups.

Results

The mean maximum D and V of the coagulations in Group A-2 (4.7 cm and 33.1 cm3, respectively) were significantly larger than those in Group A-1 (4.1 cm and 20.3 cm3, respectively) (p<0.05). Furthermore, the mean minimum D, maximum D and V of the coagulations in Group B-2 were significantly larger than those in Group B-1, i.e. 5.3 vs 4.0 cm, 6.6 vs 4.9 cm and 66.9 vs 30.2 cm3, respectively (p<0.05). The energy efficiencies were also significantly higher in Groups A-2 and B-2 than in Groups A-1 and B-1 (p<0.05).

Conclusion

The Octopus electrodes were more efficient for creating a large ablation zone than clustered electrodes, and the efficacy of RFA with Octopus electrodes can be amplified in the switching monopolar mode.In recent years, image-guided percutaneous tumour ablation using radiofrequency (RF) energy has become increasingly popular and has gained wide acceptance as a valuable, minimally invasive treatment for primary and secondary liver malignancies [1]. Compared with conventional surgery, RF ablation (RFA) has many advantages in terms of reduced complications, morbidity and mortality as well as its cost-effectiveness. However, a major obstacle preventing the widespread use of RFA is its inability to reliably create adequate volumes of complete tumour destruction with sufficient safety margins, thus causing an increasing rate of marginal recurrence in large tumours due to the incomplete RFA. Most clinically available electrodes, including internally cooled electrodes, clustered electrodes, multitined expandable needle electrodes and perfusion electrodes, can induce coagulation necrosis in the range of 3–4 cm in diameter after a single ablation session [2,3]. Therefore, to treat liver tumours >3 cm in diameter, multiple overlapping ablations are often required to cover the entire tumour volume as well as the peripheral ablation margins [4,5]. However, in clinical practice, there is considerable difficulty repositioning the probe under ultrasound guidance during overlapping ablations as numerous microbubbles form in the heated tissue during RFA and may thus interfere with finding the electrode tip and the untreated portions of the target tumour on ultrasound [6].In order to avoid problems related to multiple overlapping ablations, including technical difficulties and a long procedure time, several approaches have been used to treat medium and large liver tumours. These include the use of cluster electrodes [7], multitined electrodes with saline infusion (RITA Medical Systems, Mountain View, CA) [2] and multiple electrodes in the switching monopolar mode or multipolar mode [8-11]. Although several previous studies demonstrated that the use clustered electrodes or multiple electrodes in the switching or multipolar modes could create larger coagulations [2,3,6,8-14], they also presented several potential unsolved problems. The clustered electrode problems include: (1) convergence of the three individual needles <5 mm; (2) limited access to the target tumour owing to narrow intercostal spaces; and (3) displacement of the liver due to its resistance to the electrode. Although RFA using multiple electrodes can successfully treat large liver tumours, it is still not widely used in clinical practice, primarily owing to its high cost and the complexity of using multiple electrodes.Recently, in order to improve the efficiency of clustered electrodes in creating a large ablation zone and to diminish any potential problems, we developed a separable clustered electrode (Octopus®; Taewoong Medical Co., Ltd, Goyang, Republic of Korea) with a specialised handle that can be incorporated into a larger handle in a single unit (Figure 1). Our electrode can be placed as a single electrode with variable interelectrode distances, according to the shape and size of the target tumour, or in a similar way to the clustered electrodes that are also composed of three electrodes as a single body at a fixed 5-mm interelectrode distance. Therefore, prior to their clinical application, we attempted to prove the in vivo efficacy of RFA using the Octopus electrodes to create a large area of coagulation necrosis in either the conventional or switching monopolar mode compared with RFA using a clustered electrode in porcine liver.Open in a separate windowFigure 1(a,b) Photographs of the Octopus® electrodes (Taewoong Medical Co., Ltd, Goyang, Republic of Korea), all of which have three individual needles. (c) Adaptor for the Octopus electrodes which connects the three cables to one port. (d) An illustration, which shows details of the connection between the needles and radiofrequency (RF) ablution system in a three Octopus electrodes system.  相似文献   

12.
The purpose of this study was to validate the saline-enhanced bipolar radiofrequency ablation (RFA) technique using a perfused electrode to increase RF-created coagulation necrosis, to compare that technique with monopolar RFAs and to find appropriate concentrations and volumes of perfused NaCl solution for the bipolar RFA. A total of 90 ablations were performed in explanted bovine livers. In the initial experiments to determine appropriate conditions for bipolar RFA, we created five thermal ablation zones in each condition, with instillations of varied concentrations (0.9–36%) or injection rates (30 mL/hr–120 mL/hr) of NaCl solution. After placement of one or two 16-gauge open-perfused electrodes into bovine livers, the NaCl solution was instilled into the tissue through the electrode. In the second part of the study, 10 ablation zones were created using one or two perfused electrodes for each of five groups under different conditions: a conventional monopolar mode with 0.9% NaCl solution (group A) or with 6% NaCl solution (group B), a simultaneous monopolar mode with 6% NaCl solution (group C) and a bipolar mode with 6% NaCl solution (groups D and E). RF was applied to each electrode for 20 min in groups A, B, C, and E, or for 10 min in group D. During RFA, we measured the tissue temperature 15 mm from the electrode. The temperature changes during the RFA and the dimensions of the ablation zones were compared among the groups. Bipolar RFA created larger short-axis diameters of coagulation necrosis with 6% NaCl solution (35.8 ± 15 mm) than with 0.9% NaCl solution (17 ± 9.7 mm) (P < 0.05). However, concentrations of NaCl solution above 6% did not further increase the extent of coagulation necrosis. In addition, bipolar RFA with 6% NaCl solution instillation at a rate of 1.0 mL/min (37.9 ± 5.4 mm) or 2.0 mL/min (35.6 ± 9.3 mm) produced larger diameters at the mid-point between the electrodes of the ablated lesion than did 0.5 mL/min (25.8 ± 9.3 mm) (P < 0.05). The bipolar mode showed a more rapid increase in temperature at the mid-point between the two probes, up to 60°C, than did the monopolar modes (P < 0.05). In addition, the bipolar RFA (group E) treated for 20 min showed a larger value of the short-axis diameter than did the conventional or simultaneous monopolar modes (P < 0.05), and bipolar RFA (group D) treated for 10 min, showed similar results with conventional monopolar modes treated for 20 min (P > 0.05): 31.0 ± 5.4 mm (group A); 28.8 ± 3.8 mm (group B); 25.5 ± 6.4 mm (group C); 32.6 ± 4.2 mm (group D); 49.4 ± 5.0 mm (group E). Bipolar RFA with instillation of 6% NaCl solution through an open perfusion system demonstrates better efficacy in creating a larger ablation zone than does conventional or simultaneous monopolar modes at the various times examined. Therefore, hypertonic saline-enhanced bipolar RFA seems to be a promising approach for treating larger liver tumors.  相似文献   

13.

Objective:

To evaluate whether switching bipolar radiofrequency ablation (SB-RFA) using three internally cooled wet (ICW) electrodes can induce coagulations >5 cm in porcine livers with better efficiency than consecutive monopolar (CM) or switching monopolar (SM) modes.

Methods:

A total of 60 coagulations were made in 15 in vivo porcine livers using three 17-gauge ICW electrodes and a multichannel radiofrequency (RF) generator. RF energy (approximately 200 W) was applied in CM mode (Group A, n = 20) for 24 min, SM mode for 12 min (Group B, n = 20) or switching bipolar (SB) mode for 12 min (Group C, n = 20) in in vivo porcine livers. Thereafter, the delivered RFA energy, as well as the shape and dimension of coagulations were compared among the groups.

Results:

Spherical- or oval-shaped ablations were created in 30% (6/20), 85% (17/20) and 90% (18/20) of coagulations in the CM, SM and SB groups, respectively (p = 0.003). SB-RFA created ablations >5 cm in minimum diameter (Dmin) in 65% (13/20) of porcine livers, whereas SM- or CM-RFA created ablations >5 cm in only 25% (5/20) and 20% (4/20) of porcine livers, respectively (p = 0.03). The mean Dmin of coagulations was significantly larger in Group C than in Groups A and B (5.1 ± 0.9, 3.9 ± 1.2 and 4.4 ± 1.0 cm, respectively, p = 0.002) at a lower delivered RF energy level (76.8 ± 14.3, 120.9 ± 24.5 and 114.2 ± 18.3 kJ, respectively, p < 0.001).

Conclusion:

SB-RFA using three ICW electrodes can create coagulations >5 cm in diameter with better efficiency than do SM- or CM-RFA.

Advances in knowledge:

SB-RFA can create large, regular ablation zones with better time–energy efficiency than do CM- or SM-RFA.Radiofrequency (RF) tumour ablation is increasingly being utilized as an alternative option in patients with unresectable primary and secondary liver malignancies.1,2 In the treatment of small hepatocellular carcinomas (HCCs), RF ablation (RFA) has been shown to yield satisfactory local tumour control, with one study pathologically demonstrating complete tumour necrosis in 83% of HCCs <3 cm.3 Indeed, according to the recent Barcelona Clinic Liver Cancer staging and treatment strategy guidelines for HCCs, RFA is favoured over surgical resection for very early stage HCCs (single nodule <2 cm) in patients with Child–Pugh A liver cirrhosis.4 Furthermore, a recent systematic review paper by Cucchetti et al5 reported that for very early HCCs (single nodule <2 cm) in Child–Pugh Class A patients, RFA provided similar life expectancy and quality-adjusted life expectancy at a lower cost than did surgical resection.However, for single HCCs 3–5 cm in diameter, resection was shown to provide better life expectancy and to be more cost effective than RFA owing to high local tumour progression rates after RFA.512 This is in large part owing to the limited ability of currently available RFA devices in creating a sufficiently large ablation zone encompassing HCCs 3–5 cm in diameter along with a safety margin.7,11,13,14 Therefore, an ideal RFA system would provide the capability to create coagulations >5 cm in short-axis diameter within a reasonable time frame (<30 min) for the treatment of tumours >3 cm in diameter considering a sufficient safety margin (5–10 mm in thickness). Currently, multiple overlapping ablations are often used for the treatment of liver tumours >2 cm in order to cover the complete tumour volume as well as to create a 1-cm-thick peripheral ablation margin.15,16 However, there is considerable technical difficulty in probe repositioning during overlapping ablations, especially under ultrasound guidance, owing to gas bubble formations, ultimately resulting in incomplete ablations.1719Recently, multiple-electrode RFA approaches, including the switching monopolar (SM) mode, bipolar mode and multipolar mode, have been attempted with each demonstrating efficiency in creating a larger ablation zone in liver tissue than in the standard monopolar RF technique.2,2026 Theoretically, RFA in switching bipolar (SB) mode using multiple electrodes should further improve the thermal and electronic efficiency of RFA devices compared to conventional monopolar modes. However, until now, the efficacy of SB-RFA with internally cooled wet (ICW) electrodes, which allow simultaneous internal cooling and saline infusion, in creating 3- to 5-cm coagulation areas, have not been tested in previous in vivo studies.Therefore, the purpose of this study was to evaluate whether SB-RFA using three ICW electrodes can induce coagulations >5 cm in diameter in porcine livers with better efficiency than consecutive monopolar (CM) or SM mode.  相似文献   

14.

Objective

We wanted to determine whether combined radiofrequency ablation (RFA) and acetic acid-hypertonic saline solution (AHS) instillation can increase the extent of thermally mediated coagulation in in vivo rabbit liver tissue. We also wished to determine the optimal concentration of the solution in order to maximize its effect on extent of the RFA-induced coagulation.

Materials and Methods

Forty thermal ablation zones were produced in 40 rabbits by using a 17-gauge internally cooled electrode with a 1-cm active tip under ultrasound guidance. The rabbits were assigned to one of four groups: group A: RFA alone (n=10); group B: RFA with 50% AHS instillation (n=10); group C: RFA with 25% AHS instillation (n=10); group D: RFA with 15% AHS instillation (n=10). A range of acetic acid concentrations diluted in 36% NaCl to a total volume of 1 mL were instilled into the liver before RFA. The RF energy (30 W) was applied for three minutes. After RFA, in each group, the maximum diameters of the thermal ablation zones in the gross specimens were compared. Technical success and the complications that arose were evaluated by CT and on the basis of autopsy findings.

Results

All procedures are technically successful. There were six procedure-related complications (6/40; 15%): two localized perihepatic hematomas and four chemical peritonitis. The incidence of chemical peritonitis was highest for group B with the 50% AHS solution instillation (30%). With instillation of 15% AHS solution, a marked decrease of tissue impedance (24.5 ± 15.6 Ω) and an increase of current (250 mA) occurred as compared to RFA alone. With instillation of the solutions before RFA (group B, C and D), this produced a greater mean diameter of coagulation necrosis than the diameters for rabbits not instilled with the solution (group A) (p < 0.05). However, there was no significant difference between group B, C, and D.

Conclusion

Combined AHS instillation and RFA can increase the dimension of coagulation necrosis in the liver with a single application. A low concentration of AHS (15%) showed similar effects in increasing the extent of RF-induced coagulation, but there were less side effects as compared to the high concentration of AHS.  相似文献   

15.
Lee JM  Han JK  Kim SH  Lee JY  Park HS  Eo H  Choi BI 《European radiology》2005,15(10):2163-2170
The purpose of this study was to demonstrate the efficacy of bipolar radiofrequency ablation (RFA) using cooled-wet electrodes inducing coagulation in ex vivo bovine livers and in in vivo canine livers. In ex vivo experiments, 20 coagulations were created by monopolar (group A), and bipolar RFA (group B) using a 200 W generator (Valleylab) and one or two cooled-wet electrodes. In in vivo experiments, one coagulation was created by bipolar RFA in each of eight dogs via laparotomy. In ex vivo and in vivo experiments, RF was applied to one or two electrodes at 100 W for 10 min. The dimensions of the coagulations were compared in the two groups. In ex vivo experiments, the mean volumes of the coagulations produced in group B (54.0±16.5 cm3) were greater than those produced in group A (33.9±12.7 cm3) (P=0.007). In in vivo experiments, bipolar RFA produced a coagulation of 39.4±15.6 cm3 without a major complication. The present study showed that a RF electrode system using two cooled-wet electrodes in the bipolar mode created larger coagulation volumes than the monopolar mode, and this system can be used to create large coagulation without major complications.An erratum to this article can be found at  相似文献   

16.
The aim of this study was to investigate the efficacy of bipolar radiofrequency ablation (RFA) with the open-perfused electrode and cooled-wet electrode. Bipolar RF was applied for 20 min to the ex vivo bovine liver using either the Berchtold system with two 16-gauge open-perfused electrodes (group A, n=15) or the Radionics system with two 15-gauge cooled-wet electrodes (group B, n=15). In both groups, two electrodes were placed 3 cm apart. The ablation zone was created by the RF energy delivered together with the infusion of 5% hypertonic saline (2 ml/min). The dimension of the ablation zone, its shape and the changes in the impedance and W s of two groups during the RFA were examined and documented. The vertical diameter (Dv) along the probe, the long-axis diameter (Dl) perpendicular to the Dv in the longitudinal plane and the short-axis diameter of the ablation zone (Ds) in the transverse plane through the midpoint between the tips of two probes were measured. The mean accumulated energy output in the Radionics system was higher than in the Berchtold system (159,887.0±36,423 W s vs. 87,555.1±86,787 W s). The difference was statistically significant (P<0.05). In group A, the impedance intermittently rose to above 700 during the RFA in all sessions, which led to a gradual decrease of the power output to lower than 30 W. In group B, on the other hand, the impedance did not change markedly. The mean Dv value of the coagulation necrosis in group B was significantly longer than in group A (5.0±0.4 cm vs. 4.3±0.6 cm, P<0.05). The mean Dl and Ds were 6.7±0.5 cm and 5.0±0.8 cm in group A, and 6.5±0.8 cm and 5.5±0.7 cm in group B, respectively (P>0.05). The data demonstrate that the cooled-wet electrode generates the more spherical ablation zone than the open-perfused electrode. With approximately doubled power output, the bipolar RFA with the cooled-wet electrodes induces a larger volume of tissue coagulation than with the open-perfused electrodes.  相似文献   

17.

PURPOSE

We aimed to validate actually achieved macroscopic ablation volumes in relation to calculated target volumes using four different radiofrequency ablation (RFA) systems operated with default settings and protocols for 3 cm and 5 cm target volumes in ex vivo bovine liver.

MATERIALS AND METHODS

Sixty-four cuboid liver specimens were ablated with four commercially available RFA systems (Radionics Cool-tip, AngioDynamic 1500X, Boston Scientific RF 3000, Celon CelonPower LAB): 16 specimens for each system; eight for 3 cm, and eight for 5 cm. Ablation diameters were measured, volumes were calculated, and RFA times were recorded.

RESULTS

For the 3 cm target ablation volume, all tested RFA systems exceeded the mathematically calculated volume of 14.14 cm3. For the 3 cm target ablation volume, mean ablation volume and mean ablation time for each RFA system were as follows: 28.5±6.5 cm3, 12.0±0.0 min for Radionics Cool-tip; 17.1±4.9 cm3, 9.36±0.63 min for AngioDynamic 1500X; 29.7±11.7 cm3, 4.60±0.50 min for Boston Scientific RF 3000; and 28.8±7.0 cm3, 20.85±0.86 min for Celon Celon-Power LAB. For the 5 cm target ablation volume, Radionics Cool-tip (48.3±9.9 cm3, 12.0±0.0 min) and AngioDynamic 1500X (39.4±16.2 cm3, 19.59±1.13 min) did not reach the mathematically calculated target ablation volume (65.45 cm3), whereas Boston Scientific RF 3000 (71.8±14.5 cm3, 9.15±2.93 min) and Celon CelonPower LAB (93.9±28.1 cm3, 40.21±1.78 min) exceeded it.

CONCLUSION

While all systems reached the 3 cm target ablation volume, results were variable for the 5 cm target ablation volume. Only Boston Scientific RF 3000 and Celon CelonPower LAB created volumes above the target, whereas Radionics Cool-tip and AngioDynamic 1500X remained below the target volume. For the 3 cm target ablation volume, AngioDynamic 1500X with 21% deviation was closest to the target volume. For the 5 cm target volume Boston Scientific RF 3000 with 10% deviation was closest.Radiofrequency ablation (RFA) is a minimally invasive technique for eliminating both primary tumors and metastases. It may be particularly useful for treating patients with inoperable lesions or contraindications to open surgery. Since its introduction, percutaneous ablation has been established as an effective and safe treatment (1, 2), especially in patients with primary and secondary malignancies of the liver (3, 4), the kidney (5, 6), the lung (7, 8), and the breast (9, 10).As radiofrequency (RF) energy can only be deployed in a closed electrical circuit, monopolar RFA devices may require up to four neutral electrodes (grounding pads), commonly placed on the thighs. The large surface of the grounding pads (manufacturer-specific, up to 200 cm2) is intended to prevent excessive heating at the skin level; the surface of the active part(s) of the RF electrode(s) is about 100 times smaller (manufacturer-specific, usually 1–5 cm2) than the grounding pad surface area.Instead of monopolar systems with grounding pads, a different technique to apply RF energy is to use bipolar or multipolar devices (3, 11, 12). In bipolar devices, both the cathode and the anode are positioned within the active tip of the electrode, separated by an insulator. The current is applied between the electrodes; no grounding pads are needed. Multipolar systems induce synergetic heat effects by using a switching algorithm between two or more electrodes to induce synergetic heat effects (3).The volume and shape of the coagulation necrosis (due to possibly different diameter extensions in the three spatial dimensions) achievable with standard clinical RF generators (apart from the generators’ monopolar, bipolar or multipolar nature) depend especially on the impact of the energy applied, probe geometry, duration of heat exposure, fluid content of the target tissue, organ perfusion, and blood vessel density (13). Additionally, in in vivo settings, the so-called heat-sink effect has to be taken into account. The fluid content and perfusion of the tissue and blood vessel density in the target organ have been described as the main factors dissipating heat from the target site and thereby resulting in a smaller ablation volume (6).For hepatocellular carcinoma for example, based on commonly accepted patient selection criteria, only some patients are suited for conventional surgery, mainly because patients present with poor Child-Pugh status and/or metastases in both hepatic lobes at diagnosis. Delis and Dervenis (14) report that less than 30% of hepatocellular carcinoma patients are eligible for liver resection; thus, approximately 70% require different treatment approaches.RFA may be regarded as the most commonly used interventional modality in clinical practice, either for sole intervention or in combination with other methods, such as transarterial chemoembolization.In a patient, the actual volume of an induced RFA can usually not be dissected and assessed macroscopically after the procedure. Interventionalists have to rely on imaging to assess the ablation volume and geometry of the induced coagulation necrosis after ablation, and hence therapeutic success. With the different RFA systems available on the market, it is valuable to have a sound understanding of the systems’ behavior, especially in terms of ablation volume and geometry the specific RFA system creates, that one intends to clinically use.The objective of this study was to validate the measured size of actual ablation volumes in relation to mathematically calculated expected ablation volumes of four different RFA systems using default settings and protocols for 3 cm and 5 cm target ablation volumes in bovine ex vivo liver.  相似文献   

18.

Objective

Neointimal hyperplasia is a major complication of endovascular stent placement with consequent in-stent restenosis or occlusion. Improvements in the biocompatibility of stent designs could reduce stent-associated thrombosis and in-stent restenosis. We hypothesised that the use of a diamond-like carbon (DLC)-coated nitinol stent or a polyethylene glycol (PEG)-DLC-coated nitinol stent could reduce the formation of neointimal hyperplasia, thereby improving stent patency with improved biocompatibility.

Methods

A total of 24 stents were implanted, under general anaesthesia, into the iliac arteries of six dogs (four stents in each dog) using the carotid artery approach. The experimental study dogs were divided into three groups: the uncoated nitinol stent group (n = 8), the DLC-nitinol stent group (n = 8) and the PEG-DLC-nitinol stent group (n = 8).

Results

The mean percentage of neointimal hyperplasia was significantly less in the DLC-nitinol stent group (26.7±7.6%) than in the nitinol stent group (40.0±20.3%) (p = 0.021). However, the mean percentage of neointimal hyperplasia was significantly greater in the PEG-DLC-nitinol stent group (58.7±24.7%) than in the nitinol stent group (40.0±20.3%) (p = 0.01).

Conclusion

Our findings indicate that DLC-coated nitinol stents might induce less neointimal hyperplasia than conventional nitinol stents following implantation in a canine iliac artery model; however, the DLC-coated nitinol stent surface when reformed with PEG induces more neointimal hyperplasia than either a conventional or DLC-coated nitinol stent.  相似文献   

19.

Background

Previous studies have demonstrated that in patients with coronary artery disease (CAD) upward deflection of the heart rate (HR) performance curve can be observed and that this upward deflection and the degree of the deflection are correlated with a diminished stress dependent left ventricular function. Magnesium supplementation improves endothelial function, exercise tolerance, and exercise induced chest pain in patients with CAD.

Purpose

We studied the effects of oral magnesium therapy on exercise dependent HR as related to exercise tolerance and resting myocardial function in patients with CAD.

Methods

In a double blind controlled trial, 53 male patients with stable CAD were randomised to either oral magnesium 15 mmol twice daily (n = 28, age 61±9 years, height 171±7 cm, body weight 79±10 kg, previous myocardial infarction, n = 7) or placebo (n = 25, age 58±10 years, height 172±6 cm, body weight 79±10 kg, previous myocardial infarction, n = 6) for 6 months. Maximal oxygen uptake (VO2max), the degree and direction of the deflection of the HR performance curve described as factor k<0 (upward deflection), and the left ventricular ejection fraction (LVEF) were the outcomes measured.

Results

Magnesium therapy for 6 months significantly increased intracellular magnesium levels (32.7±2.5 v 35.6±2.1 mEq/l, p<0.001) compared to placebo (33.1±3.1.9 v 33.8±2.0 mEq/l, NS), VO2max (28.3±6.2 v 30.6±7.1 ml/kg/min, p<0.001; 29.3±5.4 v 29.6±5.2 ml/kg/min, NS), factor k (−0.298±0.242 v −0.208±0.260, p<0.05; −0.269±0.336 v −0.272±0.335, NS), and LVEF (58±11 v 67±10%, p<0.001; 55±11 v 54±12%, NS).

Conclusion

The present study supports the intake of oral magnesium and its favourable effects on exercise tolerance and left ventricular function during rest and exercise in stable CAD patients.  相似文献   

20.

Objective

To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode.

Materials and Methods

Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 ± 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed.

Results

There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 ± 0.306 [group A] vs. 1.084 ± 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 ± 0.16 mSv in group A and 7.1 ± 1.05 mSv in group B (p = 0.001).

Conclusion

In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号