首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CYP2B6 is a highly polymorphic P450 isozyme involved in the metabolism of endo- and xenobiotics with known implications for the activation of many procarcinogens resulting in carcinogenesis. However, lack of validated high-throughput screening (HTS) CYP2B6 assays has limited the current understanding and full characterization of this isozyme's involvement in human drug metabolism. Here, we have developed and characterized a fluorescence-based HTS assay employing recombinant human CYP2B6 and 2 novel fluorogenic substrates (the Vivid CYP2B6 Blue and Cyan Substrates). Assay validation included testing the inhibitory potency of a panel of drugs and compounds known to be metabolized by this isozyme, including CYP2B6 substrates, inhibitors, and known inducers. Compound rankings based on inhibitory potency in the Vivid CYP2B6 Blue and Cyan Assays matched compound rankings based on relative affinity measurements from previously published data (K(i), K(d), or K(m) values) for the CYP2B6 isozyme. In conclusion, these assays are proven to be robust and sensitive, with broad dynamic ranges and kinetic parameters allowing screening in HTS mode of a large panel of compounds for CYP2B6 metabolism and inhibition, and are a valuable new tool for CYP2B6 studies.  相似文献   

2.
Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6 contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine (and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6 was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes. Received: 27 October 1998 / Accepted: 11 January 1999  相似文献   

3.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

4.
The genetically polymorphic cytochrome P450 (CYP) 2A6 is the major nicotine-oxidase in humans that may contribute to nicotine dependence and cancer susceptibility. The authors investigated the types and frequencies of CYP2A6 alleles in the three major ethnic groups in Malaysia and CYP2A6*1A, CYP2A6*1B, CYP2A6*1x2, CYP2A6*2, CYP2A6*3, CYP2A6*4, CYP2A6*5, CYP2A6*7, CYP2A6*8 and CYP2A6*10 were determined by allele-specific polymerase chain reaction (PCR) in 270 Malays, 172 Chinese and 174 Indians. Except for CYP2A6*2 and *3 that were not detected in the Malays and Chinese, all the other alleles were detected. Frequencies for the CYP2A6*4 allele were 7, 5 and 2%, respectively, in Malays, Chinese and Indians. A statistically significant high frequency of the duplicated CYP2A6*1x2 allele occurred among Chinese. Among Malays and Chinese, the most common allele was CYP2A6*1B, but it was CYP2A6*1A among Indians. These ethnic difference in frequencies suggested that further studies are required to investigate the implications on diseases such as cancer and smoking behaviour among these major ethnic groups in Malaysia.  相似文献   

5.
CYP2B6是一个在药理和毒理学上均占有重要地位的代谢酶,参与约7%临床上常用药物代谢,其中包括一些治疗窗较窄的药物。CYP2B6具有高度基因多态性,在基因编码区和非编码存在许多单碱基突变。到目前为止,已发现并被命名的等位基因有CYP2B6*1~*29。本文主要对CYP2B6的基因多态性、种族差异及其在药物代谢上的功能意义等方面的研究进展进行综述。  相似文献   

6.
Cytochrome P450 (P450) enzymes are often used in suicide gene cancer therapy strategies to convert an inactive prodrug into its therapeutic active metabolites. However, P450 activity is dependent on electrons supplied by cytochrome P450 reductase (CPR). Since endogenous CPR activity may not be sufficient for optimal P450 activity, the overexpression of additional CPR has been considered to be a valuable approach in gene directed enzyme prodrug therapy (GDEPT). We have analysed a set of cell lines for the effects of CPR on cytochrome P450 isoform 2B1 (CYP2B1) activity. CPR transfected human embryonic kidney 293 (HEK293) cells showed both strong CPR expression in Western blot analysis and 30-fold higher activity in cytochrome c assays as compared to parental HEK293 cells. In contrast, resorufin and 4-hydroxy-ifosfamide assays revealed that CYP2B1 activity was up to 10-fold reduced in CPR/CYP2B1 cotransfected HEK293 cells as compared to cells transfected with the CYP2B1 expression plasmid alone. Determination of ifosfamide-mediated effects on cell viability allowed independent confirmation of the reduction in CYP2B1 activity upon CPR coexpression. Inhibition of CYP2B1 activity by CPR was also observed in CYP2B1/CPR transfected or infected pancreatic tumour cell lines Panc-1 and Pan02, the human breast tumour cell line T47D and the murine embryo fibroblast cell line NIH3T3. A CPR mediated increase in CYP2B1 activity was only observed in the human breast tumour cell line Hs578T. Thus, our data reveal an effect of CPR on CYP2B1 activity dependent on the cell type used and therefore demand a careful evaluation of the therapeutic benefit of combining cytochrome P450 and CPR in respective in vivo models in each individual target tissue to be treated.  相似文献   

7.
1.?The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes.

2.?100?μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00?μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11?μM, respectively.

3.?Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83?μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75?nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey?>?rat?>?minipig?>?dog?>?human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12?mL/min/kg body weight, respectively.

4.?This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.  相似文献   

8.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25?nM?1?min?1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96?nmol?min?1?nmol?1 P450 and apparent Km value of 0.09?mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03?mM, and Vmax values were 2.94, 6.1 and 13.8?nmol?min?1?nmol?1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

9.
细胞色素P450酶诱导和抑制效应高通量筛选系统研究进展*   总被引:2,自引:0,他引:2  
细胞色素P450酶(CYP450)活性的诱导或抑制,是引起临床药物代谢性相互作用的主要作用机制。目前确定候选药物出现此类相互作用可能性的主要方法是通过体外CYP450诱导和抑制潜能的快速筛选。现从CYP450诱导机制、目前发展的综合活性筛选系统和诱导筛选系统、抑制效应筛选系统以及硅上虚拟筛选系统等几个方面,对CYP450诱导和抑制效应高通量筛选系统的研究进展作一综述。  相似文献   

10.
11.
12.
13.
  1. A novel cytochrome P450 (CYP), CYP2A26, was identified and characterized in cynomolgus monkey, one of the animal species used in preclinical studies.

  2. Deduced amino acid sequences of CYP2A26 cDNA showed high sequence identities (91–95%) with cynomolgus monkey CYP2A23 and CYP2A24, and human CYP2A6 and CYP2A13.

  3. Phylogenetic analysis showed that macaque CYP2As (CYP2A26, CYP2A23, and CYP2A24) were most closely clustered with human CYP2As, unlike CYP2As of dog, rat, and mouse (other species also used in drug metabolism).

  4. Quantitative polymerase chain reaction analysis showed that CYP2A26 mRNA, along with CYP2A23 and CYP2A24 mRNAs, was expressed predominantly in the liver, where CYP2A proteins were also detected by immunoblotting.

  5. Drug-metabolizing assays using the CYP2A26 protein heterologously expressed in Escherichia coli indicated that CYP2A26 catalyzed coumarin 7-hydroxylation with its apparent Km lower than that of CYP2A24, but similar to those of CYP2A6 and CYP2A23.

  6. These results suggest an evolutionary closeness and functional similarity of cynomolgus monkey CYP2A26 (together with CYP2A23 and CYP2A24) to human CYP2A6, and its functional role as a drug-metabolizing enzyme in the liver.

  相似文献   

14.
Although CYP2B6 is known to metabolize numerous pharmaceuticals and toxicants in adults, little is known regarding CYP2B6 ontogeny or its possible role in pediatric drug/toxicant metabolism. To address this knowledge gap, hepatic CYP2B6 protein levels were characterized in microsomal protein preparations isolated from a pediatric liver bank (N = 217). Donor ages ranged from 10 weeks gestation to 17 years of age with a median age of 1.9 months. CYP2B6 levels were measured by semi-quantitative western blotting. Overall, CYP2B6 expression was detected in 75% of samples. However, the percentage of samples with detectable CYP2B6 protein increased with age from 64% in fetal samples to 95% in samples from donors >10 years of age. There was a significant, but only 2-fold increase in median CYP2B6 expression after the neonatal period (birth to 30 days postnatal) although protein levels varied over 25-fold in both age groups. The median CYP2B6 level in samples over 30 postnatal days to 17 years of age (1.3 pmol/mg microsomal protein) was lower than previously reported adult levels (2.2-22 pmol/mg microsomal protein), however, this likely relates to the median age of these samples, i.e., 10.3 months. CYP2B6 expression did not vary significantly by gender. Furthermore, CYP2B6 levels did not correlate with CYP3A4, CYP3A5.1 or CYP3A7 activity, consistent with different mechanisms controlling the ontogeny and constitutive expression of these enzymes and the lack of significant induction in the pediatric samples.  相似文献   

15.
药物代谢酶细胞色素P450 2D6的遗传多态性研究进展   总被引:1,自引:0,他引:1  
CYP2D6是肝脏中重要的药物代谢酶,其代谢的药物占临床应用药物的20%~25%.其遗传多态性对依赖CYP2D6代谢的药物具有重要的影响.本文综述了CYP2D6在遗传多态性方面的研究进展及其临床意义.  相似文献   

16.
Purpose Hydroxylation of the antidepressant and smoking deterrent drug bupropion is a clinically important bioactivation and elimination pathway. Bupropion hydroxylation is catalyzed selectively by cytochrome P4502B6 (CYP2B6). CYP2B6-catalyzed bupropion hydroxylation has been used as an in vitro and in vivo phenotypic probe for CYP2B6 activity and CYP2B6 drug interactions. Bupropion is chiral, used clinically as a racemate, and disposition is stereoselective. Nevertheless, it is unknown whether CYP2B6-catalyzed bupropion hydroxylation is stereoselective. Methods Hydroxylation of racemic bupropion by recombinant CYP2B6 and human liver microsomes was evaluated using a stereoselective assay. Results At therapeutic concentrations, hydroxylation of (S)-bupropion was threefold and 1.5-greater than (R)-bupropion, respectively, by recombinant CYP2B6 and human liver microsomes. In vitro intrinsic clearances were likewise different for bupropion enantiomers. Conclusions Stereoselective bupropion hydroxylation may have implications for the therapeutic efficacy of bupropion as an antidepressant or smoking cessation therapy, and for the use of bupropion as an in vivo phenotypic probe for CYP2B6 activity.  相似文献   

17.
CYP2D6基因与药物代谢   总被引:2,自引:0,他引:2  
细胞色素P 45 0 (CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用 ,CYP2D6基因位于 2 2号常染色体上为隐性遗传 ,CYP2D6基因呈多态性约有 70余种等位基因变异型 ,也存在特异人群差别 ,因而导致所编码的酶活性不同 ,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用。  相似文献   

18.
Aim  The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency syndrome. Method  The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19 (mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype. Results  In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for other Asian populations. CYP2C19 genotypes were associated to the S-4′-OH-mephenytoin/S-mephenytoin ratio quantified in plasma 4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the α-OH-metroprolol/metoprolol ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes. Conclusions  The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner.  相似文献   

19.
We investigated the influence of genetic, cadmium exposure and smoking status, on cytochrome P450-mediated nicotine metabolism (CYP2A6) in 182 Thai subjects after receiving 2 mg of nicotine gum chewing for 30 min. The urinary excretion of cotinine was normally distributed over a 2 h period (logarithmically transformed). Individuals with urinary cotinine levels in the ranges of 0.01–0.21, and 0.52–94.99 μg/2 h were categorized as poor metabolizes (PMs: 6.5%), and extensive metabolizers (EMs: 93.5%), respectively. The majority of EMs (45%) carried homozygous wild-type genotypes (CYP2A6*1A/*1A, CYP2A6*1A/*1B and CYP2A6*1B/*1B), whereas only 1% of PMs carried these genotypes. Markedly higher frequencies of EMs were also observed in all heterozygous defective genotypes including the null genotype (*4C/*4C; 1 subject).A weak but significant positive correlation was observed between total amounts of urinary cadmium excretion and total cotinine excretion over 2 h. Our study shows generally good agreement between CYP2A6 genotypes and phenotypes. Smokers accumulated about 3–4-fold higher mean total amounts of 2-h urinary cadmium excretion (127.5 ± 218.2 ng/2 h) than that of non-smokers (40.5 ± 78.4 ng/2 h). Among the smokers (n = 16), homologous wild-type genotype *1/*1 was significantly the predominant genotype (6/16) compared with other defective allele including *4C/*4C. In addition, 2 h urinary excretion of cotinine in smokers of all genotypes was significantly higher than non-smokers. The proportion of smokers who smoked more than 5 cigarettes/day was significantly higher in EMs in all CYP2A6 genotypes (n = 14) than in PMs (n = 0).  相似文献   

20.
Male and female of F344 rats were treated per os with nicardipine (Nic) and nifedipine (Nif), and changes in the levels of mRNA and protein of hepatic cytochrome P450 (P450) enzymes, CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP3A9, and CYP3A18 were examined. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by CYP2B and CYP3A subfamily enzymes, respectively, were measured. Analyses of RT-PCR and Western blotting revealed that Nic and Nif induced predominantly CYP3A and CYP2B enzymes, respectively. As for the gene activation of CYP2B enzymes, especially CYP2B1, Nif showed high capacity in both sexes of rats, whereas Nic did a definite capacity in the males but little in the females. Gene activations of CYP3A1, CYP3A2, and CYP3A18 by Nic occurred in both sexes of rats, although that of CYP3A9 did only in the male rats. Although gene activations of CYP3A1 and CYP3A2 by Nif were observed in both sexes of rats, a slight activation of the CYP3A9 gene occurred only in female rats, and the CYP3A18 gene activation, in neither male nor female rats. Thus, changes in levels of the mRNA or protein of CYP2B and CYP3A enzymes, especially CYP2B1 and CYP3A2, were closely correlated with those in hepatic PROD and nifedipine oxidation activities, respectively. The present findings demonstrate for the first time the sex difference in the Nic- and Nif-mediated induction of hepatic P450 enzymes in rats and further indicate that Nic and Nif show different specificities and sex dependencies in the induction of hepatic P450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号