首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using in situ hybridization histochemistry neuropeptide Y (NPY) mRNA expression was investigated after intraperitoneal injection of kainic acid (KA) and after local application of KA or quinolinic acid into the dentate gyrus of the rat. Enhanced concentrations of NPY mRNA were observed in interneurons of the hilus, including presumptive fusiform neurons and pyramidal-shaped basket cells already 4 hours after initiation of limbic seizures by KA (10 mg/kg, i.p.). IncreaseD NPY expression persisted in neurons resistant to seizure-induced cell death (6–48 h after i.p. KA). Exceptionally high hybridization signals were found in interneurons of the hilus and the CA1 and CA3 sectors 8 months after KA-induced limbic seizures. In the granule cell layer only a transient but pronounced increase in NPY mRNA was observed 12–24 h after injection. Only moderate changes were observed in this cell layer at later intervals. Anticonvulsant treatment with thiopental, after a brief period of generalized seizures, prevented the increase in NPY mRNA in granule cells but not in interneurons. No change in NPY message was found also in granule cells of rats which responded with mild “wet dog shake” behvior but not with motor seizures to KA injection. Local injections of low doses of KA (0.05–0.2 nmol) or quinolinic acid (6.5–100 nmol) into the dentate gyrus of the hippocampus under deep thiopental anesthesia, after 24 h, resulted in increased concentrations of NPY message in interneurons of the ipsilateral, but not of the contralateral hilus and not in granule cells. Higher doses of the excitatory amino acid analogs caused partial neurodegeneration at the injection site, but enhanced NPY expression in interneurons of the contralateral dentate. Only the highest dose of quinolinic acid (100 nmol), resulting in general neuronal cell loss at the injection area, induced enhanced NPY mRNA expression also in granule cells of the contralateral dentate gyrus. The experiments suggest different mechanisms for NPY mRNA expression in interneurons and in granule cells of the dentate gyrus. Whereas in the stratum granulosum NPY mRNA expression was only observed after generalized limbic seizures, in hilar interneurons it was augmented by only moderate neuronal stimulation or directly by KA. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The mRNAs for two forms of glutamic acid decarboxylase (GAD65 and GAD67) were localized in the rat hippocampal formation by nonradioactive in situ hybridization methods with digoxigeninlabeled cRNA probes. Some neurons in all layers of the hippocampus and dentate gyrus were readily labeled for each GAD mRNA, and the patterns of labeling for GAD65 and GAD67 mRNAs were very similar. All major groups of previously described GAD-and GABA-containing neurons appeared to be labeled for each GAD mRNA. Such findings suggest that most GABA neurons in the hippocampal formation contain both GAD mRNAs. When the labeling of neurons in the hippocampal formation and cerebral cortex was compared in the same sections, the intensity of neuronal labeling for GAD67 mRNA was generally similar in the two regions. However, the intensity of labeling for GAD65 mRNA was generally stronger for many neurons in the hippocampal formation than for most neurons in the cerebral cortex. Neurons in the hilus of the dentate gyrus were particularly well labeled for GAD65. The nonradioactive labeling for the GAD mRNAs was confined to the cytoplasm of neuronal cell bodies, and this allowed a clear visualization of the relative number and location of labeled neurons. Several distinct patterns of GAD mRNA-containing neurons were observed among different regions of the hippocampal formation. In the hilus of the dentate gyrus, GAD mRNA-containing neurons were numerous in the regions deep to the granule cell layer as well as in more central parts of the hilus. Within CA3, the densities (quantities) of labeled neurons varied among the regions. In the inner or hilar segment of CA3, the density of labeled neurons was often lower than that in the outer part of CA3 where numerous labeled neurons were distributed throughout all layers. In CA1, GAD mRNA-labeled neurons were distributed in a relatively laminar pattern with the highest density in stratum pyramidale and moderate densities in stratum oriens and at the interface between strata radiatum and lacunosum-moleculare. Lower densities were found within the latter two layers. The prominent localization of the two GAD mRNAs in the hippocampal formation suggests that dual system for GABA synthesis is necessary for normal GABAergic function in this brain region. Most putative GABA neurons contain relatively high levels of GAD67 mRNA as might be expected if this GAD form is responsible for the synthesis of GABA for metabolic and baseline synaptic function. The relatively high levels of GAD65 mRNA in many hippocampal neurons, particularly those of the dentate hilus, may indicate that these neurons have a well-developed reserve system for GAD and GABA synthesis. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The gamma-aminobutyric acid (GABAergic) system of the hippocampal formation of Macaca fascicularis monkeys was studied immunohistochemically with a monoclonal antibody to GABA and with nonisotopic in situ hybridization with cRNA probes for glutamic acid decarboxylase 65 (GAD65) and GAD67. The highest densities of labeled cells were observed in the presubiculum, parasubiculum, entorhinal cortex, and subiculum, whereas the CA3 field and the dentate gyrus had the lowest densities of positive neurons. Within the dentate gyrus, most of the GABAergic neurons were located in the polymorphic layer and in the deep portion of the granule cell layer. GABAergic terminals were densest in the outer two-thirds of the molecular layer. GABAergic neurons were seen throughout all layers of the hippocampus. Terminal labeling was highest in the stratum lacunosum-moleculare. A higher terminal labeling was observed in the subiculum than in CA1 and was particularly prominent in layer II of the presubiculum. A bundle of GABAergic fibers was visible deep to the cell layers of the presubiculum and subiculum. This bundle could be followed into the angular bundle ipsilaterally and was continuous with stained fibers in the dorsal hippocampal commissure. This pattern of labeling is reminiscent of the presubicular projections to the contralateral entorhinal cortex. GABAergic cells were observed in all layers of the entorhinal cortex although the density was higher in layers II and III than in layers V and VI. The in situ hybridization preparations largely confirmed the distribution of GABAergic neurons in all fields of the hippocampal formation.  相似文献   

4.
Deafferentation is known to induce axonal sprouting in adult brain, but the signals that direct this response are not understood. To evaluate the possible roles of insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) in central axonal sprouting, the present study used in situ hybridization to evaluate IGF-1 and bFGF mRNA expression in entorhinal deafferented rat hippocampus. Alternate tissue sections were processed for Fink-Heimer impregnation of axonal degeneration, Bandeiraea simplicifolia (BS-1) labeling of microglia, and glial fibrillary acidic protein immunocytochemistry. In control hippocampus, IGF-1 mRNA was localized to a few neurons, with no labeled cells in the dentate gyrus molecular layer; bFGF cRNA hybridization was diffuse in dendritic fields but was dense in CA2 stratum pyramidale. Both mRNA species were increased by deafferentation. The distribution of elevated IGF-1 mRNA corresponded precisely to fields of axonal degeneration and was greatest in the dentate gyrus outer molecular layer and stratum lacunosum moleculare. In these fields, IGF-1 mRNA was elevated by 2 days, reached maximal levels at 4 days, and declined by 10 days postlesion. Double labeling revealed that the majority of IGF-1 cRNA-labeled cells were microglia. In deafferented hippocampus, bFGF mRNA was broadly increased across fields both containing and lacking axonal degeneration. In the dentate, bFGF mRNA levels peaked at 5 days postlesion and remained elevated through 14 days. These results demonstrate that reactive microglia within deafferented hippocampal. Laminae express IGF-1 mRNA just prior to and during the period of reactive axonal growth and suggest that IGF-1 plays a role in directing the sprouting of spared afferents into these fields. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Kainic acid (KA)-induced degeneration of CA3 pyramidal neurons leads to synaptic reorganization and hyperexcitability in both dentate gyrus and CA1 region of the hippocampus. We hypothesize that the substrate for hippocampal inhibitory circuitry incurs significant and permanent alterations following degeneration of CA3 pyramidal neurons. We quantified changes in interneuron density (N(v)) in all strata of the dentate gyrus and the CA1 and CA3 subfields of adult rats at 1, 4, and 6 months following intracerebroventricular (icv) KA administration, using glutamic acid decarboxylase-67 (GAD-67) immunocytochemistry. At 1 month postlesion, GAD-67-positive interneuron density was significantly reduced in all strata of every hippocampal region except stratum pyramidale of CA1. The reduction in GAD-67-positive interneuron density either persisted or exacerbated at 4 and 6 months postlesion in every stratum of all hippocampal regions. Further, the soma of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield showed significant hypertrophy. Thus, both permanent reductions in the density of GAD-67-positive interneurons in all hippocampal regions and somatic hypertrophy of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield occur following icv KA. In contrast, the density of interneurons visualized with Nissl in CA1 and CA3 regions was nearly equivalent to that in the intact hippocampus at all postlesion time points. Collectively, these results suggest that persistent reductions in GAD-67-positive interneuron density observed throughout the hippocampus following CA3 lesion are largely due to a permanent loss of GAD-67 expression in a significant fraction of interneurons, rather than widespread degeneration of interneurons. Nevertheless, a persistent decrease in interneuron activity, as evidenced by permanent down-regulation of GAD-67 in a major fraction of interneurons, would likely enhance the degree of hyperexcitability in the CA3-lesioned hippocampus.  相似文献   

6.
目的:探讨电压门控性钠通道在癫痫发病机制中的作用。方法:采用海人酸颞叶癫痫模型,运用原位杂交技术检测不同时点海马DG区、CA1区、CA2区和CA3区SCN2A、SCN3A mRNA的表达。结果:SCN2A和SCN3AmRNA均表达于海马的DG区、CA1、CA2、CA3区。海人酸致痫后3小时在海马各区表达开始增强,6小时明显增强(P<0.05),12小时达到高峰(P<0.01),24小时开始下降,48小时恢复至正常水平。结论:电压门控性钠通道SCN2AmRNA和SCN3A mRNA的表达增加可能参与了颞叶癫痫急性期的发病。  相似文献   

7.
Corticosteroids bind to hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, thereby affecting behaviour and neurochemical transmission. Rat hippocampus has high levels of both receptors and their messenger RNAs (mRNA), but there is little information on receptors in human brain. We used in situ hybridization to determine the distribution of GR and MR mRNA expression in human hippocampus. Frozen sections of human postmortem hippocampus (5 patients, 58-88 years old, without cerebral pathology) were postfixed in paraformaldehyde and hybridized with 35S-UTP-labelled cRNA probes (transcribed in vitro from human cDNA subclones) under stringent conditions. Control included hybridization with sense probes and heterologous cRNA competition studies. GR mRNA was highly expressed in dentate gyrus, CA3 and CA4, but levels were significantly lower in CA1 and CA2. MR mRNA was also very highly expressed in hippocampus, with significantly higher levels in dentate gyrus and CA2, CA3 and CA4 than CA1. Controls confirmed the specificity of hybridization and there was little hybridization of sense probes. High GR and MR mRNA expression is found in both rat and human hippocampus but the subregional distributions clearly differ between the species.  相似文献   

8.
The expression and distribution of the mRNA coding for the growth-associated protein-43 (GAP-43), a putative marker for neuritic growth, for preprosomatostatin and the preproneuropeptide Y (ppNPY) were analysed in the rat hippocampus during the development of hippocampal kindling by an in situ hybridization technique and computer-assisted grain counting in the cell. The levels of GAP-43 mRNA increased significantly in the CA3 pyramidal neurons and hilar polymorphic neurons of the dentate gyrus 2 days after stage 2 of kindling (preconvulsive stage) but not stage 5 (full seizure expression) in the stimulated hippocampus. The distribution of GAP-43 mRNA was the same in the hippocampus of kindled rats as in sham-stimulated animals. Preprosomatostatin mRNA and ppNPY mRNA contents rose significantly in the hilar polymorphic neurons of the dentate gyrus of the stimulated and contralateral hippocampus at both stages of kindling, with the greatest effect at stage 5. In addition, the number of ppNPY mRNA neurons in the fascia dentata was significantly higher in kindled rats than in controls, but there were no differences in the number of preprosomatostatin mRNA-positive cells. Preprosomatostatin and ppNPY mRNAs were also increased in the neurons of the stratum oriens of the CA1 - CA3 subfield of fully kindled animals, whereas at stage 2 only neurons of the CA1 stratum oriens showed a significant increase of preprosomatostatin mRNA. No changes in preprosomatostatin and ppNPY mRNA expression were observed in the various regions of the hippocampus after a single afterdischarge or 1 month after stage 5. These data show that synthesis of somatostatin and neuropeptide Y increases in certain neurons of the hippocampus during the development of hippocampal kindling, and support the suggestion that these peptides are involved in epileptogenesis. Moreover, the increased synthesis of GAP-43 may contribute to the synaptic remodelling of certain hippocampal neurons during kindling.  相似文献   

9.
The distribution of nerve growth factor (NGF), the prototypic neurotrophin, within the basal forebrain and hippocampal formation of young adult monkeys and aged humans was characterized with and affinity purified polyclonal β-NGF antibody raised against mouse β-NGF. In the basal forebrain of both primates, a granular NGF-like immunoreactive (ir) reaction product was observed within neurons of the medial septum, nucleus of the diagonal band, and nucleus basalis of Meynert. NGF-like immunoreactivity exclusively colocalized within p75 NGF receptor (NGFR) containing basal forebrain neurons. The intensity of NGF immunolabeling varied between cell bodies. Many NGF-ir perikarya were highly immunoreactive. In other basal forebrain neurons, NGF-like immunoreactivity was either undetectable or minimally expressed. In the hippocampus of both species, NGF-like immunoreactivity was mainly localized within the hilus of the dentate gyrus and within CA3 and CA2 hippocampal subfields. A marked diminution in NGF-like staining was seen in CA1. Within the hippocampal formation, NGF-like immunoreactivity was heaviest within the neuropil of stratum radiatum, intermediate in stratum oriens, and lightest in stratum pyramidal. NGF-like immunoreactivity was not found within the granule or pyramidal cells of the dentate gyrus and hippocampal formation, respectively. These findings demonstratre the presence of an NGF-like antigen in association with monkey and human magnocellular basal forebrain neurons and within their hippocampal target sites. This lends support to the hypothesis that NGF is internalized from sources located within target regions of the primate cholinergic basal forebrain neurons and is retrogradely transported to these cell bodies where the NGF trophic effect likely occurs.  相似文献   

10.
Fos oncoprotein expression has been shown to be a sensitive marker for sequential neuronal activation in response to a specific stimulus. The present study investigated the effect of the γ-aminobutyric acid (GABA)-A receptor agonist muscimol on kainic acid (KA)-induced limbic seizures and Fos expression in the rat forebrain. One hour after KA injection, a substantial Fos expression was observed in the hippocampal dentate gyrus, whereas only a low level of Fos induction was seen in CA1–3 fields. Six hours post-injection a prominent increase of Fos expression occurred in most forebrain structures, including the whole hippocampus. Following 0.5 mg/kg muscimol treatment a remarkable decrease of Fos expression occurred but only in the caudate putamen and core of the accumbens nucleus. Treatment with 1 mg/kg muscimol led to further significant decreases of Fos expression in CA1–3 pyramidal neurons and the disappearance of Fos induction in the cerebral cortex above the rhinal fissure, reticular thalamic nucleus, claustrum, fundus striati, ventral pallidum, septal nucleus, lateral habenular nucleus, and lateral amygdaloid nucleus. When 2 mg/kg muscimol was injected, animals exhibited 'absence seizures' instead of limbic seizures, and Fos expression in the hippocampus was effectively blocked. These results suggest that a reduction of GABAergic inhibition plays a crucial role not only in limbic seizure genesis in the dentate gyrus, but also in the seizure spread mechanism in many brain structures, among which the hippocampal CA1–3 fields are most markedly involved, less marked in the cerebral cortex and some other structures, and least marked in the caudate putamen and core of the accumbens nucleus.  相似文献   

11.
The distribution of Ca2+-binding protein, parvalbumin (PV), containing neurons and their colocalization with glutamic acid decarboxylase (GAD) were studied in the rat hippocampus and dentate gyrus using immunohistochemistry. PV immunoreactive (PV-I) perikarya were concentrated in the granule cell layer and hilus in the dentate gyrus and in the stratum pyramidale and stratum oriens in the CA3 and CA1 regions of the hippocampus. They were rare in the molecular layer of the dentate gyrus, in the stratum radiatum and in the stratum lacunosum-moleculare of the hippocampus. PV-I axon terminals were restricted to the granule cell layer, the stratum pyramidale and the immediately adjoining zones of these layers. Almost all PV-I neurons were also GAD immunoreactive (GAD-I), whereas only about 20% of GAD-I neurons also contained PV. The percentages of GAD-I neurons which were also immunoreactive for PV were dependent on the layer in which they were found; i.e. 40-50% in the stratum pyramidale, 20-30% in the dentate granule cell layer and in the stratum oriens of the CA3 and CA1 regions, 15-20% in the hilus and in the stratum lucidum of CA3 region and only 1-4% in the dentate molecular layer and in the stratum radiatum and the stratum lacunosum-moleculare of the CA3 and CA1 regions. PV-I neurons are a particular subpopulation of GABAergic neurons in the hippocampal formation. Based on their morphology and laminar distribution, they probably include basket cells and axo-axonic cells.  相似文献   

12.
Glial cell line derived neurotrophic factor (GDNF) is a potent survival factor for several types of neurons. GDNF binds with high affinity to GDNF-family receptor alpha-1 (GFR alpha-1). This receptor is expressed in different areas of the brain, including the hippocampus and dentate gyrus. By using in situ hybridization and immunohistochemistry, we found that 19% to 37% of glutamic acid decarboxylase (GAD) expressing neurons co-expressed GFR alpha-1 in the hippocampus. GFR alpha-1/GAD co-expression was found mainly in the stratum (s) pyramidale (29-37%) and s. oriens (20-25%). Further characterization of GFR alpha-1 expressing interneurons, based on their calcium-binding protein immunoreactivity, demonstrated that many parvalbumin (PV) immunoreactive neurons express GFR alpha-1 in the s. pyramidale of CA1 (72%), CA2 (70%) and CA3 (70%) subfields of the hippocampus. GFR alpha-1/PV double labeled neurons were also detected in the s. oriens of CA1 (52%), CA2 (27%) and CA3 (36%) subfields. The expression of GFR alpha-1 in principal neurons and in a specific sub-population of GABAergic neurons (PV-containing neurons) suggest that GDNF might modulate, in a selective manner, functions of the entire adult hippocampus.  相似文献   

13.
14.
颞叶癫痫神经元型钙粘素mRNA表达研究   总被引:1,自引:1,他引:0  
目的研究匹罗卡品诱导的颞叶癫痫神经元型钙粘素的表达变化.方法用氯化锂加匹罗卡品诱导SD大鼠颞叶癫痫模型,特异性探针原位杂交检测神经元型钙粘素mRNA表达.结果对照组动物神经元型钙粘素mRNA在皮层和海马各区均有表达,给药后4 h和12 h神经元型钙粘素mRNA在CA1、CA3和齿状回均表达下降,24 h开始恢复,注药后3 d神经元型钙粘素mRNA表达显著高于对照组,7 d表达最高.结论神经元型钙粘素mRNA在颞叶癫痫表达呈双相变化.  相似文献   

15.
Co-localization of calretinin immunoreactivity and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity was studied in the rat hippocampus and dentate gyrus. Neurons co-expressing both markers (CR/NADPH-d) were observed throughout the hippocampus and dentate gyrus. However, they were more abundant in the stratum pyramidale and radiatum of CA3, stratum pyramidale of CA1, and in the juxtagranular zone of the hilus. The NADPH-d activity appeared in 37% of the calretinin immunoreactive neurons in CA3, 42% in CA1, and 36% in the dentate gyrus, whereas calretinin immunoreactivity occurred in 41% of the NADPH-d positive neurons in the hippocampus, and 16% in the dentate gyrus. The morphology and location of the double marked cells could not be used as a characteristic of the co-localizing neurons. The heavily stained NADPH-d neurons occurring mainly in CA1 do not show calretinin immunoreactivity. NADPH-d fiber swellings could be observed in close apposition to calretinin immunoreactive neurons and dendrites, suggesting synaptic contacts. It has been reported that calretinin immunoreactivity and NADPH-d activity co-localize infrequently in other areas such as the neocortex, striatum, hypothalamus and tegmental nucleus. The relatively high proportion of double marked cells found in the hippocampus and dentate gyrus could be indicative of the importance of the CR/NADPH-d interneurons in the circuitries of these areas.  相似文献   

16.
Despite ready induction of severe limbic status epilepticus by systemic kainic acid (KA) in infant rats, excitotoxic neuronal injury has not been observed. The mechanisms of this resistance of the immature hippocampus to excitotoxicity are unknown. Acid fuchsin stain has been used as a marker of irreversibly injured neurons in the adult brain. We speculated that the dye might map reversibly injured neurons in the infant. Subsequent to KA-induced status epilepticus in 11-day-old rats, acid fuchsin stain was evident in the hippocampal CA3, CA1, dentate gyrus and hilus by 24 h, peaked at 48 h and disappeared by 6 days, without evidence for neuronal loss. Acid fuchsin may be a useful tool for delineating the distribution of reversibly injured immature neurons in experimental seizure paradigms.  相似文献   

17.
The present study evaluates the relative roles of seizure activity and spreading depression in upregulating glial fibrillary acidic protein (GFAP) mRNA expression. Stimulating electrodes were placed bilaterally in the angular bundle, and recording electrodes were placed bilaterally in the dentate gyrus of adult rats. Intense electrographic seizures were induced by delivering stimulus trains through one stimulating electrode. In some cases, spreading depression accompanied the seizures, while in other cases the seizures occured in the absence of spreading depression. Animals were killed 24 h following the last stimulus train, and the forebrains were prepared for quantitative in situ hybridization. Seizure activity and spreading depression led to significant increases in GFAP mRNA levels in the hippocampal formation. Seizure activity alone (without spreading depression) induced a 4-fold increase in GFAP mRNA levels in the hilus and molecular layer of the dentate gyrus and in stratum lacunosum-moleculare of the hippocampus. When seizure activity was accompanied by spreading depression, there was a 10-fold increase in GFAP mRNA levels in these same regions. Regional differences within the hippocampal formation in glial cell response were evident. While GFAP mRNA levels in stratum lacunosum-moleculare of the hippocampus were upregulated by seizure activity and spreading depression, levels in hippocampal stratum radiatum of the hippocampus remained unchanged. The results suggest that abnormal neuronal activity can influence glial cell gene expression and that spreading depression is a stronger signal than seizure activity in upregulating GFAP mRNA levels.  相似文献   

18.
In the developing central nervous system, a src-related protein-tyrosine kinase fyn participates in the myelination process, neuronal growth, and cytoskeletal organization. In adults, fyn has been implicated in learning and memory formation. To test if fyn expression is modulated by neuronal activity, we performed quantitative in situ hybridization (ISH) using brain sections of the adult rats that had undergone either kainic acid (KA)-induced seizures or neuronal deafferentation (entorhinal cortex lesion, ECL). In the KA model, a few hours after seizure activities, fyn mRNA was elevated in the dentate gyrus (DG) (+45%), cerebral cortex layer III (+35%), and piriform cortex (+25%). Conversely, fyn mRNA consistently decreased in the hippocampal neurons after transection of the major axonal inputs from the entorhinal cortex. Although fyn expression in the brain has been allegedly limited to neurons and oligodendrocytes, we provide in this study the first evidence that fyn mRNA is highly expressed in the astrocytes involved in reactive gliosis. In the KA model, the occurrence of fyn-overexpressing astrocytes increased with the progress of neuronal damage in the CA1 and CA3 regions of the hippocampus. In contrast, fyn-overexpressing astrocytes were not observed in the granular cell layer of dentate gyrus (DG), where neurons were not damaged. Likewise, in the ECL model, the most drastic change in fyn mRNA expression took place at the reactive astrocytes near the stab wound sites, where fyn mRNA levels were doubled 4-10 d after the lesion. Collectively, our data suggest that (i) an early induction of fyn mRNA in neurons is linked to neuronal activity, and (ii) the delayed induction of fyn mRNA in reactive astrocytes near the damaged cells may play novel signaling roles during glial response.  相似文献   

19.
Glial cell line derived neurotrophic factor (GDNF) is a potent survival factor for several types of neurons. GDNF binds with high affinity to GDNF-family receptor α-1 (GFRα-1). This receptor is expressed in different areas of the brain, including the hippocampus and dentate gyrus. By using in situ hybridization and immunohistochemistry, we found that 19% to 37% of glutamic acid decarboxylase (GAD) expressing neurons co-expressed GFRα-1 in the hippocampus. GFRα-1/GAD co-expression was found mainly in the stratum (s) pyramidale (29–37%) and s. oriens (20–25%). Further characterization of GFRα-1 expressing interneurons, based on their calcium-binding protein immunoreactivity, demonstrated that many parvalbumin (PV) immunoreactive neurons express GFRα-1 in the s. pyramidale of CA1 (72%), CA2 (70%) and CA3 (70%) subfields of the hippocampus. GFRα-1/PV double labeled neurons were also detected in the s. oriens of CA1 (52%), CA2 (27%) and CA3 (36%) subfields. The expression of GFRα-1 in principal neurons and in a specific sub-population of GABAergic neurons (PV-containing neurons) suggest that GDNF might modulate, in a selective manner, functions of the entire adult hippocampus.  相似文献   

20.
目的 :本实验研究大鼠癫痫持续状态动物模型的海马等部位 GABAA受体α1亚单位基因表达和受体一配体结合的变化。方法 :成年雄性大鼠经腹腔内注射 32 0~ 34 0± 5 .87毫克 /公斤毛果芸香碱 (Pilocarpine)以制成癫痫持续状态动物模型 ,能在癫痫持续状态 (定义为在皮质脑电图上显示痫性放电的至少 40分钟的持续性痫性发作 )下存活的大鼠在 1小时和 2小时后处于死 ,分别研究 GABA受体基因表达和放射结合位点 ,用原位杂交方法来测定脑部 m RNA水平 ,用 [3H]flunirazepam标记 GABAA 受体 benzodiazepam结合位点。结果 :动物痫性发作 2小时后海马的 CA1和CA3区域 GABAA受体 α1亚单位 m RNA显著下降 ,但是齿状回的 α1m RNA没有变化。 [3H]flunirazepam标记受体 -配体放射结合在持续 2小时持续痫性发作后可见海马的 CA1及 CA3和齿状回中均见下降 ,1小时的持续痫性发作尚未引起海马区域的任何α1m RNA或 [3H]flunirazepam受体 -配体放射结合的任何改变 ,并用结晶染色 1及 2小时后的大脑海马部位。结论 :本研究结果提示大鼠的癫痫持续状态可诱发海马区 GABAA 受体 α1基因表达的改变和 [3H]flinirazepam受体 -配体结合的下降 ,上述改变可能使大脑更容易形成慢性癫痫病灶  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号