首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
目的 研究直线加速器去掉均整器后6 MV光子束的剂量学特性,并与有均整器的情况下比较,为临床应用提供依据。方法 采集瓦里安Trilogy 6 MV光子束在有均整器(FF)(用6X FF表示)和去掉均整器(FFF)(用6X FFF表示)后的剂量学数据,比较两者百分深度剂量(PDD)、离轴剂量分布(Profile)、表面相对剂量(PDD1 mm)、射野外相对剂量、总输出因子(Scp)。结果 6X FF的最大剂量深度(dmax)在3 cm×3 cm至15 cm×15 cm射野时为1.4 cm,在20 cm×20 cm射野后变为1.2 cm,30 cm×30 cm后变为1.0 cm,而6X FFF的dmax为1.2 cm且不随射野大小变化。在大于dmax后,同一深度6X FFF的PDD比6X FF的小,但两者差距随射野和深度变化不明显,在3 cm×3 cm射野5 cm深度处6X FFF的PDD比6X FF的小2.4,在40 cm×40 cm射野30 cm深度处6X FFF的PDD比6X...  相似文献   

2.
目的:利用蒙特卡罗方法研究医用直线加速器产生的6 MV-X射线在有均整器和无均整器状态下,光子能谱和空间分布的差异。方法:使用Geant4蒙特卡罗模拟程序计算医用加速器射野大小分别为5 cm×5 cm、10 cm×10 cm、15 cm×15 cm和20 cm×20 cm的6 MV-X射线在具备均整器和移除均整器条件下,初始光子的能谱和空间分布。结果:均整器移除后光子能谱光子注量变大,且随着射野的增大,射野内光子通量比值都明显减小,而且平均能量明显降低。此外,均整器的移除改变光子的相对分布,射野外光子数在整个相空间平面内光子中所占份额明显减少,而且与射野大小有关,5cm×5 cm时减少6.00%,10 cm×10 cm时减少4.42%,15 cm×15 cm时减少3.48%,20 cm×20 cm时减少2.28%,这表明移除均整器对于尺寸较小的射野意义重大。结论:均整器的移除可以优化射野的能谱分布,特别是对于调强放射治疗无均整器模式成为更有益模式。但是,由于均整器移除后导致的高剂量率在提高治疗增益的同时也带来了治疗风险,因此需要更进一步的研究和论证。  相似文献   

3.
目的:用蒙特卡罗方法计算Varian Trilogy加速器无均整器条件下6MVX射线能谱。分析均整器对能谱的影响。方法:先用BEAMnrc分别模拟计算Varian Trilogy加速器6MV射线在具备均整器和无均整器条件下,方野边长分别为4cm、6cm、8cm、10cm、20cm和40cm时的相空间文件。以相空间文件为输入用BEAMDP分析光子能谱。结果:无均整器条件下光子注量增大,在光子能谱峰值附近最明显.射野边长为4cm时去掉均整器后光子注量增加的最多为6.284倍,随着射野增大增加倍数减小,射野边长为40cm时最小为2.398倍.无均整器条件下光子谱峰值能量降低,光子谱整体左移,平均能量明显减小。结论:去除均整器后,加速器的输出光子能谱发生较大变化。随之剂量特性发生改变,临床上可能产生一定的获益或未知情况,尚需要进一步的研究支持。  相似文献   

4.
目的:探讨电子射野影像系统(EPID)在加速器辐射野与灯光野一致性测量中的应用。方法:使用Varian 600CD医用电子直线加速器,6MV X射线能量,使用水平尺,确认机架位于0°,准直器0°,提前校准照射野中心和投影十字线,将厂家自带的金属点十字影子板插在加速器机头上,金属点十字影子板上两金点之间在SSD=100cm处的投影距离为1cm,调整机头十字线与金属十字线投影重合;打开EPID测量板,在SSD=100cm条件下,灯光野分别开到标准野(10×10)cm,(15×15)cm,(20×20)cm,(25×25)cm,剂量率100MU/M,曝光5MU;得到各标准野的辐射野,两金属点之间标准距离1cm,使用测量软件分别分别测量辐射野各方向距离。结果:辐射野各方向偏差较小,均小于±2mm。结论:EPID射野影像检测方式适合于临床质控检验,可用于加速器辐射野与灯光野一致性的质控测量,减少工作量。  相似文献   

5.
目的:探讨臂架或准直器角度的改变对均整(FF)与非均整(FFF)两种模式的射线剂量的影响。方法:选用Versa HD直线加速器配备的6 MV/10 MV光子束FF/FFF模式4档能量在设定好九点位置的10 cm×10 cm标准射野内进行实验。首先,借助IMF等中心夹具将Mapcheck2固定于治疗机机头,并用Mapcheck2测量相同臂架与准直器角度条件下4种光子束输出的平面剂量值;其次,用Mapcheck2测量在相同臂架角度、不同准直器角度与相同准直器角度、不同臂架角度两种条件下4种光子束的中心轴剂量值;最后,固定准直器为0°,设立两组臂架对穿射野(0°与180°,90°与270°)。拆除Mapcheck2,采用固体水和FC65-G电离室建立一个测量模体来测量4种光子束在两组等中心对穿野的剂量。运用SPSS统计软件对该实验收集到的数据进行对比分析。结果:在相同臂架与准直器角度条件下,4种光子束辐照9个点的平面剂量之间均存在明显统计学差异(P6 MV FF =0.020, P6 MV FFF=0.017, P10 MV FF =0.030, P10 MV FFF=0.016);而不同臂架角度或不同准直器角度条件下,4种能量光子束的中心轴点剂量值均无统计学差异。在0°与180°的对穿野,4种能量光子束的输出剂量存在统计学差异(P6 MV FF =0.001, P6 MV FFF=0.002, P10 MV FF =0.003, P10 MV FFF=0.001),而在90°与270°的对穿野无统计学差异。结论:Versa HD直线加速器拥有优良的机械等中心性能。在实际工作时,臂架和准直器的旋转,均不影响光子束的中心轴剂量的准确输出。在FF模式下,射线能量越高,受治疗床影响越小;FFF模式射线由于射线质软,能量越高,更易受到治疗床的衰减作用,在实际中应引起重视。  相似文献   

6.
目的:研究Varian Edge均整(FF)和非均整(FFF)模式下6 MV和10 MV光子线能谱并对比其差异。方法:利用蒙特卡洛程序软件包EGSnrc/Beamnrc建立Varian Edge 6 MV FF和FFF、10 MV FF和FFF的加速器模型,模拟所对应的相空间文件,而后以相空间作为输入源,利用DOSXYZnrc计算其在水体模中的剂量分布,并与三维水箱的测量数据比对,当模拟值与测量值之间的差异在1%之内时,利用Beamdp分析此时的相空间文件,得到对应的光子线能谱,并比较相互之间的差异。结果:模拟的百分深度剂量曲线和离轴比曲线与测量值之间的差异在1%之内。相对于FF模式,FFF模式的能谱"软化",其中6 MV FFF的平均能量从1.587 MeV下降至1.172 MeV,低能(能量≤1 MeV)光子所占的份额由41.06%上升至60.04%;而10 MV FFF的平均能量从2.796 MeV下降至1.956 MeV,低能光子所占的份额由21.22%上升至44.63%。同一射野内FFF模式的能谱随离轴距离的改变较小,同时每初始粒子所引起的能量注量是FF模式的2~4倍,射野内的能量注量分布变得不均匀,非平坦度F上升;分析不同射野下的能谱发现FFF模式的机头散射较少。结论:本研究结果对理解FFF模式下光子线的物理特性提供了非常好的参考价值。  相似文献   

7.
目的:研究Varian Edge加速器不同工作状态下射野外辐射剂量水平以及铅防护用品的防护效果。方法:利用实验测量的方法,研究加速器在不同工作能量、不同线束均整状态、使用不同防护用品,测量距射野边缘不同距离及不同深度下辐射剂量水平的变化情况。结果:射野外辐射剂量随距射野边缘距离增加(5~40 cm)近似呈指数规律下降,距射野边缘20 cm范围内低能量射束(6 MV、6 MV FFF)的辐射剂量低于高能射束(10 MV、10 MV FFF)的辐射剂量,且随测量深度增加(1~2 cm)而降低。非均整模式下射野外剂量测量结果低于均整模式射束。在相同能量条件下,铅防护用品的防护效果与线束的均整状态无关。对高能射束的防护效果要优于低能射束且随深度增加防护效果迅速下降。深度为1 cm,射束能量10 MV FFF,距射野边缘5~30 cm条件下,防护效果最强,射野外辐射剂量水平降低50%以上。测量深度为2 cm,射束能量为6 MV FFF,距离射野边缘5~30 cm的条件下,防护效果最差,仅能降低10%以下。结论:在实现临床目标的前提下,治疗过程中若无铅防护用品进行保护,推荐采用低能非均整模式进行计划设计;若使用铅防护用品进行保护,可以采用高能非均整模式射束,此时铅防护用品效果最佳,射野外浅层器官所受剂量最低,可有效降低二次肿瘤发生几率。  相似文献   

8.
目的:探讨利用矩阵电离室对医用直线加速器及放射治疗计划系统进行快速剂量学的检测方法和项目。方法:在矩阵电离室上方放置5cm的固体等效水模,下方放置5cm的反射水模,对标准方野和矩形野测试,测试条件SSD=95cm,SAD=100cm,射野大小分别为2cm、5cm、10cm、15cm、20cm和2cm×10cm、5cm×20cm、20cm×5cm,MU为100cGy;对治疗计划系统的中央挡铅、MLC形成的中央挡铅、不对称射野、MLC末端形状(叶片末端效应)和相对叶片之间的间隙和MLC侧面效应、叶片凹凸槽效应、以及简单模拟调强模型等相关参数进行检测。结果:方野和矩形野的平坦度为100.07%~102.66%,对称性为0.10%~1.49%;光野、射野一致性检测:X方向为-1.5%~0.7%,Y方向为-1.4%~1.0%,平均为-0.47%;对放疗计划系统的检验,主要验证计算值与实际测量值的结果比较,以Gamma值和绝对剂量偏差值(4%)来判断两者的符合性。对于方形野和矩形野Gamma值在92.02%~96.35%,而对于多野光栅的相关检测,在计划系统设置的两个半野(X1=5cm,X2=0cm,Y=10cm和X1=0cm,X2=5cm,Y=10cm)合成实验中,合成区域间隔处有5%的剂量偏差,5个2cm×10cm合成10cm×10cm实验中,在射野连接处误差值最大可达10%;在两个2cm×2cm的方野,间距6cm实验中,第一个射野Gamma值可达96.6%,第二个Gamma值为93.2%。结论:利用矩阵电离室可对医用直线加速器和放疗计划系统实现快速的剂量学检测,对加强两者日常的QA和QC具有重要的意义。  相似文献   

9.
【摘要】目的:探究各项异性算法(AAA)和射野剂量图像预测(PDIP)算法在非均整模式(FFF)容积调强放射治疗计划治疗前验证γ分析中的差异以及计划复杂程度对这种差异的影响,为临床上基于电子射野影像系统(EPID)的剂量预测算法的选择提供依据。方法:选取能量为6 MV FFF的两种测试野和16例头颈部肿瘤治疗计划,利用PDIP和AAA两种算法分别生成预测数据并与EPID实测数据进行γ分析,统计两种算法在不同γ评判标准下的通过率并计算通过率差异(Delta γ)。计算上述病例每个射野的复杂系数,分析不同标准下两种算法的Delta γ与复杂系数的相关性;利用γmean、γsd、γ1和γ通过率共同描述γ分布,并分析其与复杂系数间的相关性。结果:当评判标准为3%/3 mm或2%/2 mm时,不同算法下测试射野的Delta γ较小。当评判标准为1%/1 mm,不同开野的Delta γ变化明显:射野较小时,PDIP算法的通过率低于AAA;当射野增大到(10×10) cm2时,通过率基本一致;当射野继续增大时,PDIP算法的通过率逐渐高于AAA。全部射野的通过率与评判标准的关系类似:在3%/3 mm标准下,两种算法的结果基本一致;随着标准的提高,两种算法的通过率逐渐下降,二者之间的差异也逐渐明显。复杂系数与Delta γ、γmean、γsd和γ1为正相关,与γ通过率为负相关。结论:PDIP算法对于有机械臂支撑的EPID的剂量预测更准确;AAA则适用于无机械臂支撑的EPID或机械臂反散射影响较小的射野。当计划复杂程度或评判标准提高时,两种算法的差异也增大。计划复杂程度对FFF计划验证结果的影响是负面的。上述结果提示临床应针对性地选择计划验证工具来确保治疗的安全有效。  相似文献   

10.
目的:在全身放射治疗条件下,测量直线加速器空气中射线场均匀性,水模体内剂量分布情况,以及不同规格水模体的百分深度剂量值。方法:将加速器的源皮距(SSD)延长至450 cm,机架头旋转为90°,准直器开到最大,治疗头旋转为45°,形成菱形射野,使用剂量测量仪:PTW-UNIDOS,电离室:PTW 30001,测量Varian Clinac 2100C直线加速器的剂量值。结果与结论:加速器在空气中射线场剂量:T方向上总的平均值为5.147,绝对误差为5.8%,归一后相对误差达到;G方向上总的平均值为5.124,绝对误差为5.1%,归一后相对误差达到;此加速器的射线场均匀性可以用于全身放射治疗。水模体内剂量分布情况,在10 cm深度处,平均剂量值为8.960,归一数据中的绝对误差为;在20 cm深度处,平均剂量为6.381,从归一数据中的绝对误差为。  相似文献   

11.
Pre-existing methods for photon beam spectral reconstruction are briefly reviewed. An alternative reconstruction method by scatter analysis for linear accelerators is introduced. The method consists in irradiating a small plastic phantom at standard 100 cm SSD and inferring primary beam energy spectral information based on the measurement with a standard Farmer chamber of scatter around the phantom at several specific scatter angles: a scatter curve is measured which is indicative of the primary spectrum at hand. A Monte Carlo code is used to simulate the scatter measurement set-up and predict the relative magnitude of scatter measurements for mono-energetic primary beams. Based on mono-energetic primary scatter data, measured scatter curves are analysed and the spectrum unfolded as the sum of mono-energetic individual energy bins using the Schiff bremsstrahlung model. The method is applied to an Elekta/SL18 6 MV photon beam. The reconstructed spectrum matches the Monte Carlo calculated spectrum for the same beam within 6.2% (average error when spectra are compared bin by bin). Depth dose values calculated for the reconstructed spectrum agree with physically measured depth dose data to within 1%. Scatter analysis is preliminarily shown to have potential as a practical spectral reconstruction method requiring few measurements under standard 100 cm SSD and feasible in any radiotherapy department using a phantom and a Farmer chamber.  相似文献   

12.
The 18 MV photon beam characteristics of a Therac 20 Medical Linear Accelerator manufactured by Atomic Energy of Canada Ltd, are presented. Tissue phantom ratios (TRP's) and percent depth dose data are given; for a 10 x 10 cm field, the percent depth dose at a depth of 10 cm is 78.5 (SSD 100 cm). The relative dose factors (RDF'S) are given and are analyzed to elucidate the relative contributions from phantom scatter, collimator scatter, and backscatter from the top of the collimators into the monitor chambers. The effect of field size and depth on the penumbra is described. Crossplots of the beam at a depth of 5 cm indicate that the flattening filter could be improved; there are hot spots of 108% near the corners of 40 x 40 fields.  相似文献   

13.
Several studies have shown that removal of the flattening filter from the treatment head of a clinical accelerator increases the dose rate and changes the lateral profile in radiation therapy with photons. However, the multileaf collimator (MLC) used to shape the field was not taken into consideration in these studies. We therefore investigated the effect of the MLC on flattened and unflattened beams. To do this, we performed measurements on a Varian Clinac 21EX and MCNPX Monte Carlo simulations to analyze the physical properties of the photon beam. We compared lateral profiles, depth dose curves, MLC leakages, and total scatter factors for two energies (6 and 18 MV) of MLC-shaped fields and jaw-shaped fields. Our study showed that flattening filter-free beams shaped by a MLC differ from the jaw-shaped beams. Similar differences were also observed for flattened beams. Although both collimating methods produced identical depth dose curves, the penumbra size and the MLC leakage were reduced in the softer, unflattened beam and the total scatter factors showed a smaller field size dependence.  相似文献   

14.
A detailed Monte Carlo approach has been employed to investigate the sources of electron contamination for the 25-MV photon beam generated by Varian's Clinac-35. Three sources of contamination were examined: (a) the flattening filter and beam monitor chamber, (b) the fixed primary collimators downstream from the monitor chamber and the adjustable photon jaws, and (c) the air volume separating the treatment head from the observation point. Five source-to-surface distances (SSDs) were considered for a single field size, 28 cm in diameter at 80 cm SSD. It was found that for small SSDs (80-100 cm), the dominant sources of electron contamination were the flattening filter and the beam monitor chamber which accounted for 70% of the unwanted electrons. Thirteen percent of the remaining electrons originated in the downstream primary collimators and the photon jaws, and 17% were produced in air. At larger SSDs, the fraction of unwanted electrons originating in air increased. At 400 cm SSD, 61% of the contaminating electrons present in the beam were produced in air, 34% originated in the flattening filter and beam monitor chamber, and 5% were due to interactions in the fixed collimators downstream from the monitor chamber and the adjustable photon jaws. These calculated results are substantiated by recent experiments.  相似文献   

15.
目的:采用三维治疗计划系统(3D-TPS)模拟计算全身照射(TBI)的剂量分布.材料和方法:对于全身照射,设置源皮距(SSD)为380 cm,射野大小为40 cm×40 cm,光栏角度为45°,采用自制大水箱测量了直线加速器8 MV光子线水中的百分深度剂量(PDD)和离轴比(OAR).上述相同照射条件下,在3D-TPS中进行水体模的PDD和OAR的模拟计算并与之测量结果进行对比,确认3D-TPS是否能够模拟计算TBI的剂量分布.采用3D-TPS计算人形体模的TBI剂量分布,采用剂量胶片和热释光测量对计算结果进行了比较和确认.结果:对于水体模中的百分深度量和离轴比,3D-TPS的模拟计算结果与大水箱的测量结果最大误差分别为3%和6%左右.对于人形体模的模拟计算,3D-TPS的模拟计算结果与胶片和热释光的测量结果基本符合.结论:3D-TPS可以较准确地模拟计算全身照射的剂量分布.通过3D-TPS对每个特定病人制作相应补偿块,为更均匀剂量的全身照射治疗提供了可能.  相似文献   

16.
The purpose of this study was to design an improved flattening filter for a Therac 20 medical linear accelerator. Profiles of the 18-MV x-ray beam produced by this accelerator measured along the diagonal of a 40 X 40 cm field at a depth of 5 cm were measured, and it was found that there were regions near the corners of the field where the dose was 109% of the central axis dose. An iterative algorithm for designing flattening filters was developed which required, as input, precise measurements of the following data: the unflattened primary beam profile, the fraction of the beam due to contamination radiation arising from interactions of primary photons with the flattening filter and the collimator assemblies, and the attenuation of the primary photons in water and lead as a function of angle from the central axis of the beam. A new flattening filter was designed and profiles of the beam were measured at a number of depths. These measurements showed that the beam was flattened to within +/- 1% out to 24 cm along the diagonal of a 40 X 40 cm field at a depth of 5 cm.  相似文献   

17.
Basic dosimetric properties of 6 MV and 18 MV photon beams from a Varian Clinac 21EX accelerator operating without the flattening filter have been measured. These include dose rate data, depth dose dependencies and lateral profiles in a water phantom, total scatter factors and transmission factors of a multileaf collimator. The data are reviewed and compared with measurements for the flattened beams. The unflattened beams have the following: a higher dose rate by factors of 2.3 (6 MV) and 5.5 (18 MV) on the central axis; lower out-of-field dose due to reduced head scatter and softer spectra; less variation of the total scatter factor with field size; and less variation of the shape of lateral dose profiles with depth. The findings suggest that with a flattening filter free accelerator better radiation treatments can be developed, with shorter delivery times and lower doses to normal tissues and organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号