首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restriction fragment length polymorphism (RFLP) analysis was used to assist epidemiological investigations following the recent introduction of infectious laryngotracheitis virus (ILTV) to commercial poultry flocks in Northern Ireland (NI). A 4.9 kbp PCR product of the ILTV ICP4 gene was generated from each of 16 field isolates of ILTV originating from England, Scotland, NI and the Republic of Ireland (RoI) and of the single vaccine strain currently licenced for use within the United Kingdom. With the exception of isolate PV6/94 from RoI, all field isolates generated RFLP patterns, following digestion with HaeIII, similar to that obtained using the vaccinal strain. Following MspI digestion, NI isolates were indistinguishable from the vaccinal strain and recent English isolates. However, one English and one Scottish isolate, both made prior to the introduction of vaccination, and two isolates from RoI generated a second pattern following digestion with MspI.  相似文献   

2.
Infectious laryngotracheitis (ILT) is an important respiratory disease of chickens and annually causes significant economic losses in the poultry industry world-wide. ILT virus (ILTV) belongs to alphaherpesvirinae and the Gallid herpesvirus 1 species. The transmission of ILTV is via respiratory and ocular routes. Clinical and post-mortem signs of ILT can be separated into two forms according to its virulence. The characteristic of the severe form is bloody mucus in the trachea with high mortality. The mild form causes nasal discharge, conjunctivitis, and reduced weight gain and egg production. Conventional polymerase chain reaction (PCR), nested PCR, real-time PCR, and loop-mediated isothermal amplification were developed to detect ILTV samples from natural or experimentally infected birds. The PCR combined with restriction fragment length polymorphism (RFLP) can separate ILTVs into several genetic groups. These groups can separate vaccine from wild type field viruses. Vaccination is a common method to prevent ILT. However, field isolates and vaccine viruses can establish latent infected carriers. According to PCR-RFLP results, virulent field ILTVs can be derived from modified-live vaccines. Therefore, modified-live vaccine reversion provides a source for ILT outbreaks on chicken farms. Two recently licensed commercial recombinant ILT vaccines are also in use. Other recombinant and gene-deficient vaccine candidates are in the developmental stages. They offer additional hope for the control of this disease. However, in ILT endemic regions, improved biosecurity and management practices are critical for improved ILT control.  相似文献   

3.
Live attenuated vaccines are extensively used worldwide to control the outbreak of infectious laryngotracheitis. Virulent field strains showing close genetic relationship with the infectious laryngotracheitis virus (ILTV) vaccines of chicken embryo origin have been detected in the poultry industry. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, a reliable molecular epidemiological method, of multiple genomic regions was performed. The PCR-RFLP is a time-consuming method that requires considerable amount of intact viral genomic DNA to amplify genomic regions greater than 4?kb. In this study, six variable genomic regions were selected and amplified for sequencing. The multi-allelic PCR-sequence genotyping showed better discrimination power than that of previous PCR-sequencing schemes using single or two target regions. The allelic variation patterns yielded 16 strains of ILTV classified into 14 different genotypes. Three Korean field strains, 550/05/Ko, 0010/05/Ko and 40032/08/Ko, were found to have the same genotype as the commercial vaccine strain, Laryngo Vac (Zoetis, Florham Park, NJ, USA). Three other Korean field strains, 40798/10/Ko, 12/07/Ko, and 30678/14/Ko, showed recombined allelic patterns. The multi-allelic PCR-sequencing method was proved to be an efficient and practical procedure to classify the different strains of ILTV. The method could serve as an alternate diagnostic and differentiating tool for the classification of ILTV, and contribute to understanding of the epidemiology of the disease at a global level.  相似文献   

4.
A novel technique, the reverse restriction fragment length polymorphism (RRFLP) assay, was developed as a means of detecting specific informative polymorphic sites in the infectious laryngotracheitis virus (ILTV) genome. During the RRFLP procedure, DNA is digested with restriction enzymes targeting an informative polymorphic site and then used as template in a real-time polymerase chain reaction (PCR) with primers flanking the informative region. The analysis of the ΔCt values obtained from digested and undigested template DNA provides the genotype of the DNA. In this study, the RRFLP assay was applied as a method to differentiate between the two types of infectious laryngotracheitis virus attenuated live vaccines. Sequence analysis of ILTV vaccines revealed an informative polymorphic site in the 5′-non-coding region of the infected cell protein (ICP4) gene. Unique AvaI and AlwI restriction enzyme sites were identified in the tissue culture origin and chicken embryo origin attenuated vaccines, respectively. These two informative polymorphic sites were used in a RRFLP assay to genotype rapidly and reproducibly ILTV attenuated live vaccines.  相似文献   

5.
A proportion of individuals vaccinated with live attenuated Oka varicella-zoster virus (VZV) vaccine subsequently develop attenuated chicken pox and/or herpes zoster. To determine whether postvaccination varicella infections are caused by vaccine or wild-type virus, a simple method for distinguishing the vaccine strain from wild-type virus is required. We have developed a TaqMan real-time PCR assay to detect and differentiate wild-type virus from Oka vaccine strains of VZV. The assay utilized two fluorogenic, minor groove binding probes targeted to a single nucleotide polymorphism in open reading frame 62 that distinguishes the Oka vaccine from wild-type strains. VZV DNA could be genotyped and quantified within minutes of thermocycling completion due to real-time monitoring of PCR product formation and allelic discrimination analysis. The allelic discrimination assay was performed in parallel with two standard PCR-restriction fragment length polymorphism (RFLP) methods on 136 clinical and laboratory VZV strains from Canada, Australia, and Japan. The TaqMan assay exhibited a genotyping accuracy of 100% and, when compared to both PCR-RFLP methods, was 100 times more sensitive. In addition, the method was technically simpler and more rapid. The TaqMan assay also allows for high-throughput genotyping, making it ideal for epidemiologic study of the live attenuated varicella vaccine.  相似文献   

6.
Isolates of infectious laryngotracheitis virus (ILTV) obtained from field disease outbreaks in Korea from 1982 to 1998 were compared by virulence testing and by examining restriction endonuclease (REN) cleavage patterns of viral DNA. Based on pathogenicity tests, eight of 11 ILTV strains were classified as virulent, because these strains caused 40 to 80% mortality in specific pathogen free chickens, while three strains were classified as low virulence because these did not cause mortality. The REN cleavage patterns of the low virulence strains were identical with those of two reference vaccine strains, which were of chicken embryo origin. However, the DNA cleavage patterns of the virulent strains differed from those of both the low virulence and the vaccine strains. Furthermore, one virulent Korean strain N87278 had REN cleavage patterns that were clearly different from other virulent strains. In the present study, ILTV strains examined could be classified into two groups (virulent and low virulence strains) by pathogenicity testing, and three groups based on their REN cleavage patterns. These results suggest that most outbreaks of infectious laryngotracheitis were not likely to be associated with vaccine strains, but some were associated with viruses indistinguishable from commercial vaccine strains. At least three genetically distinct groupings of ILTV have been involved in outbreaks of infectious laryngotracheitis in Korea.  相似文献   

7.
8.
9.
Uema M  Ohashi K  Wakasa C  Kai C 《Virus research》2005,109(1):59-63
We conducted phylogenetic and restriction fragment length polymorphism (RFLP) analyses of 995 nucleotides within the hemagglutinin (H) gene open reading frame (ORF) of field isolates of 23 canine distemper virus (CDV) strains isolated from domestic dogs in Japan between 1982 and 1998. The phylogenetic analysis showed that Japanese field isolates could be separated into three groups. Eighteen out of the twenty-three strains constituted one cluster consisting of Japanese CDVs, four strains formed a second Japanese CDV group, and only one strain belonged to a group containing foreign CDV strains. By RFLP analysis using SspI, we could distinguish all the Japanese field isolates from the vaccine strains. Thus, the RFLP method is useful for differentiating the infections with field CDV strains from the vaccine strains in clinical cases.  相似文献   

10.
11.
Infectious laryngotracheitis virus (ILTV) continues to cause respiratory disease in Egypt in spite of vaccination. The currently available modified live ILTV vaccines provide good protection but may also induce latent infections and even clinical disease if they spread extensively from bird-to-bird in the field. Four field ILTV isolates, designated ILT-Behera2007, ILT-Giza2007, ILT-Behera2009, and ILT-Behera2010 were isolated from cross-bred broiler chickens. The pathogenicity based on intratracheal pathogenicity index, tracheal lesion score, and mortality index for chicken embryos revealed that ILT-Behera2007, ILT-Behera2009 and ILT-Behera2010 isolates were highly pathogenic whereas ILT-Giza2007 was non-pathogenic. To study the molecular epidemiology of these field isolates, the infected cell protein 4 gene was amplified and sequenced. Phylogenetic analysis revealed that ILT-Behera2007, ILT-Behera2009, and ILT-Behera2010 are chicken embryo origin (CEO) vaccine-related isolates while ILT-Giza2007 is a tissue culture origin vaccine-related isolate. These results suggest that CEO laryngotracheitis vaccine viruses could increase in virulence after bird-to-bird passages causing severe outbreaks in susceptible birds.  相似文献   

12.
Five cases of infectious laryngotracheitis (ILT) occurred in the fall of 2004 in the Niagara Peninsula, in Southern Ontario. At about the same time two more cases occurred in Eastern Ontario and one case in South-Western Ontario. We examined, at a molecular level, 10 Ontario ILT virus field isolates from 2004 and early 2005 as well as four ILT vaccine viruses by polymerase chain reaction-restriction fragment length polymorphism analyses of ICP4 and glycoprotein E genes, and partial sequencing of UL47 and glycoprotein G genes. We determined that the five Niagara Peninsula ILT viruses were identical among themselves. They represented an independent cluster of ILT cases and were not related to other cases that occurred during 2004 and early 2005. Viruses isolated during the outbreaks in Eastern and South-Western Ontario could not be differentiated from chicken embryo origin ILT vaccine viruses. Niagara Peninsula isolates were different, at a molecular level, from all four vaccine viruses that were examined and from ILT viruses that had been previously analysed and reported in the literature. Taken together our data indicate that both "wild-type" and vaccine-derived viruses are involved in ILT cases in Ontario.  相似文献   

13.
Summary In order to differentiate recent isolates of avian infectious bronchitis virus (IBV) in Taiwan, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), and direct sequencing methods were used to type 25 IBV Taiwan isolates. Two conserved sequences that flank the hypervariable region I (HVR I) in the N-terminus of S1 protein gene were chosen as primers. Sequences of 228–231 base pairs (bp) were amplified by PCR from 25 Taiwan isolates and 4 reference strains (H120, Conn, JMK, Holte). PCR products were digested with 5 restriction endonucleases,BsoFI,DdeI,MboII,AluI,RsaI, and different IBV isolates were grouped according to their RFLP patterns. The RFLP patterns of the 4 reference strains in this study matched the published sequences in GenBank. Except 1 vaccine strain, the other 24 Taiwan isolates were different from these 4 and 18 other IBV strains whose sequences were published. The data from PCR-RFLP and sequencing of IBV genomes showed that the 24 Taiwan isolates can be divided into 2 distinct groups, I and II. Seven RFLP patterns are identified in group I and only 1 in group II.  相似文献   

14.
Kingsley DH  Keeler CL 《Virology》1999,256(2):213-219
Among the alpha herpesviruses studied to date, the initial stage of wild-type virus attachment involves an interaction between virally encoded structural envelope glycoproteins (predominantly glycoprotein C) and cell surface heparan sulfate proteoglycans. An analysis of the infectious laryngotracheitis virus (ILTV) glycoprotein C and glycoprotein B sequences suggested that these proteins lacked consensus heparin-binding domains. This indicated that ILTV might attach to its host cell in a heparan-independent manner, distinct from other alpha herpesviruses. The infectivity of two ILTV strains, a tissue-culture-adapted vaccine strain and a virulent field challenge strain, were found to be insensitive to the presence of exogenous heparin or chondroitin. Furthermore, infectivity was retained in chicken embryonic liver cells treated with heparinase. However, 4 degrees C attachment studies and penetration studies in the presence of citrate buffer clearly demonstrated that ILTV attaches stably to and effectively penetrates chicken embryonic liver cells. Consequently, ILTV represents an alpha herpesvirus whose initial attachment step does not involve interactions with heparan or chondroitin sulfate containing proteoglycans.  相似文献   

15.
The conservation of flagellin genes from thermophilic Campylobacter spp. strains isolated in Egypt was evaluated by a restriction fragment length polymorphism (RFLP) assay. The flaA and flaB genes were amplified from 59 independent clinical isolates and digested with EcoRI and PstI, and the resulting patterns were compared with each other and with previously described RFLP groups. The results indicate that the isolates fell into 14 groups for flaA and 11 groups for flaB, 9 of which have been described, and that considerable genetic variability exists among isolates belonging to the same LIO serogroup. In most cases, the flaB gene displayed the same RFLP pattern as that of the flaA gene of the same strain, although some variability was observed. The data suggest that more variability of flagellin genes exists within the LIO serogroups common to Campylobacter field isolates from Egypt than has previously been reported for North American isolates.  相似文献   

16.
In a recent study (Oldoni & García, 2007), some field strains of infectious laryngotracheitis viruses (ILTV) were characterized as genotypically different (group VI) from ILT vaccine strains. The objective of this study was to evaluate the protection elicited by one chicken embryo origin (CEO) and one tissue culture origin (TCO) vaccine against a field isolate from group VI after direct and indirect exposure to ILTV live attenuated vaccines. In phase 1 of the experiment, non-vaccinated chickens were placed into contact with the eye drop vaccinates for a period of four weeks after vaccination. Transmission of the vaccine virus to these in-contact birds was demonstrated by real time PCR and antibody production, although the in-contact birds did not become protected against disease when subsequently challenged in phase 2 of the experiment. This emphasized the importance of uniform vaccination to obtain adequate protection, both to avoid the occurrence of susceptible chickens, and to minimize the potential for reversion to virulence of live-attenuated vaccines. In phase 2, protection against challenge with a group VI field virus was assessed four weeks after vaccination by scoring clinical signs and mortality, and quantifying weight gain. Sentinel birds were added to the groups one day after challenge to assess shedding of challenge virus, using real time PCR and virus isolation, during the period 2 to 12 days post challenge. The results showed that the CEO and TCO eye drop-vaccinated chickens were protected against challenge with the group VI virus, even though it was genetically different from the vaccine strains, and that challenge virus was not transmitted from these protected birds to the sentinels.  相似文献   

17.
Chandra YG  Lee J  Kong BW 《Virus genes》2012,44(3):470-474
This study was conducted to identify unique nucleotide differences in two U.S. chicken embryo origin (CEO) vaccines [LT Blen (GenBank accession: JQ083493) designated as vaccine 1; Laryngo-Vac? (GenBank accession: JQ083494) designated as vaccine 2] of infectious laryngotracheitis virus (ILTV) genomes compared to an Australian Serva vaccine reference ILTV genome sequence [Gallid herpesvirus 1 (GaHV-1); GenBank accession number: HQ630064]. Genomes of the two vaccine ILTV strains were sequenced using Illumina Genome Analyzer 2X of 36 cycles of single-end reads. Results revealed that few nucleotide differences (23 in vaccine 1; 31 in vaccine 2) were found and indicate that the US CEO strains are practically identical to the Australian Serva CEO strain, which is a European-origin vaccine. The sequence differences demonstrated the spectrum of variability among vaccine strains. Only eight amino acid differences were found in ILTV proteins including UL54, UL27, UL28, UL20, UL1, ICP4, and US8 in vaccine 1. Similarly, in vaccine 2, eight amino acid differences were found in UL54, UL27, UL28, UL36, UL1, ICP4, US10, and US8. Further comparison of US CEO vaccines to several ILTV genome sequences revealed that US CEO vaccines are genetically close to both the Serva vaccine and 63140/C/08/BR (GenBank accession: HM188407) and are distinct from the two Australian-origin CEO vaccines, SA2 (GenBank accession: JN596962) and A20 (GenBank accession: JN596963), which showed close similarity to each other. These data demonstrate the potential of high-throughput sequencing technology to yield insight into the sequence variation of different ILTV strains. This information can be used to discriminate between vaccine ILTV strains and further, to identify newly emerging mutant strains of field isolates.  相似文献   

18.
Previous studies in our laboratory using a combination of polymerase chain reaction and restriction fragment length polymorphism have identified at least five different genotypes of infectious laryngotracheitis virus (ILTV). However, the virulence of these classes of ILTV was not investigated. In this study, five groups (16 birds each) of 3-week-old specific pathogen free chickens were inoculated via the intratracheal route with 10(3) median embryo infected dose of five different strains of ILTV. Three further groups of chickens were inoculated similarly with the vaccine strains SA2 and A20 or with sterile phosphate-buffered saline (PBS) for comparison. Four days post-inoculation, clinical signs were monitored for scoring, and eight chickens from each group were subsequently euthanized, weighed and subjected to pathological and histopathological examinations. The remaining birds were monitored for clinical signs and mortality until 21 days post-inoculation. All groups inoculated with ILTV strains showed moderate to severe clinical signs 4 days after inoculation. The strain Q1-96 caused only minimal breathing symptoms with a median score that was not significantly different to that of the group inoculated with PBS, but was significantly different to those of the groups inoculated with other ILTV strains. The strain Q1-96 caused severe photophobia and conjunctivitis with a median score that was significantly higher than those of all other groups except for the group inoculated with the strain N3-04. All ILTV strains caused a significant reduction in weight gain when compared with the group inoculated with PBS. The strain Q1-96 caused an average weigh loss of 14% that was significantly higher than those of other ILTV strains. The strains S2-04 and Q1-96 induced only minor microscopic tracheal lesions while all the other ILTV strains, including the vaccine strains A20 and SA2, induced moderate to severe microscopic tracheal lesions. Median scores for microscopic tracheal lesions were well correlated with the number of viral genomes detected in trachea. The results revealed that there is considerable variation among ILTV strains in their tropism for trachea or conjunctiva. In addition it was revealed that ILTV strains with high affinity for conjunctiva can severely affect weigh gain. The ILTV numbers and microscopic lesions in trachea were not found to be reliable indicators of virulence since they are not necessarily correlated with mortality rate in ILT.  相似文献   

19.
The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号