首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Potential mechanisms of estrogen quinone carcinogenesis   总被引:3,自引:0,他引:3  
  相似文献   

3.
Montero AJ  Jassem J 《Drugs》2011,71(11):1385-1396
The vulnerability of some cancer cells to oxidative signals is a therapeutic target for the rational design of new anticancer agents. In addition to their well characterized effects on cell division, many cytotoxic anticancer agents can induce oxidative stress by modulating levels of reactive oxygen species (ROS) such as the superoxide anion radical, hydrogen peroxide and hydroxyl radicals. Tumour cells are particularly sensitive to oxidative stress as they typically have persistently higher levels of ROS than normal cells due to the dysregulation of redox balance that develops in cancer cells in response to increased intracellular production of ROS or depletion of antioxidant proteins. In addition, excess ROS levels potentially contribute to oncogenesis by the mediation of oxidative DNA damage. There are several anticancer agents in development that target cellular redox regulation. The overall cellular redox state is regulated by three systems that modulate cellular redox status by counteracting free radicals and ROS, or by reversing the formation of disulfides; two of these are dependent on glutathione and the third on thioredoxin. Drugs targeting S-glutathionylation have direct anticancer effects via cell signalling pathways and inhibition of DNA repair, and have an impact on a wide range of signalling pathways. Of these agents, NOV-002 and canfosfamide have been assessed in phase III trials, while a number of others are undergoing evaluation in early phase clinical trials. Alternatively, agents including PX-12, dimesna and motexafin gadolinium are being developed to target thioredoxin, which is overexpressed in many human tumours, and this overexpression is associated with aggressive tumour growth and poorer clinical outcomes. Finally, arsenic derivatives have demonstrated antitumour activity including antiproliferative and apoptogenic effects on cancer cells by pro-oxidant mechanisms, and the induction of high levels of oxidative stress and apoptosis by an as yet undefined mechanism. In this article we review anticancer drugs currently in development that target cellular redox activity to treat cancer.  相似文献   

4.
Quinones may be toxic by a number of mechanisms, including oxidative stress caused by redox cycling and arylation. This study has compared the cytotoxicity of four quinones, with differing abilities to arylate cellular nucleophiles and redox cycle, in relation to their effects on cellular pyridine nucleotides and ATP levels in rat hepatocytes. Non-toxic concentrations (50 microM) of menadione (redox cycles and arylates), 2-hydroxy-1,4-naphthoquinone (neither arylates nor redox cycles via a one electron reduction) and 2,3-dimethoxy-1,4-naphthoquinone (a pure redox cycler) all caused markedly similar changes in cellular pyridine nucleotides. An initial decrease in NAD+ was accompanied by a small, transient increase in NADP+ and followed by a larger, prolonged increased in NADPH and total NADP+ + NADPH. At toxic concentrations (200 microM), the quinones caused an extensive depletion of NAD(H), an increase in levels of NADP+ and an initial rise in total NADP+ + NADPH, prior to a decrease in ATP levels and cell death. Nucleotide changes were not observed with non-toxic (20 microM) or toxic (100 microM) concentrations of p-benzoquinone (a pure arylator) and ATP loss accompanied or followed cell death. A novel mechanism for the activation of 2-hydroxy-1,4-naphthoquinone has been implicated. Our findings also suggest that a primary event in the response of the cell to redox cycling quinones is to bring about an interconversion of pyridine nucleotides, possibly mediated by an NAD+ reduction, in an attempt to combat the effects of oxidative stress.  相似文献   

5.
For more than half a century, numerous proposals have been advanced for the mode of action of carcinogens. This review presents a wide array of evidence that implicates oxidative stress (OS) in many aspects of oncology, including: formation of reactive oxygen species (ROS) by the major classes of carcinogens (as well as minor ones), cancer stages, oncogene activation, aging, genetic and infectious illnesses, nutrition, and the role of antioxidants (AOs). Although diverse origins pertain, including both endogenous and exogenous agents, ROS are frequently generated by redox cycling via electron transfer (ET) groups, e.g., quinones (or phenolic precursors), metal complexes (or complexors), aromatic nitro compounds (or reduced products), and conjugated imines (or iminium species). We believe it is not coincidental that these functionalities are often found in carcinogens or their metabolites. The pervasive aspects of DNA binding by ultimate carcinogens, and mutations caused by ROS are treated. Often, ROS are implicated in more conventional rationales, such as oncogenes. A multi-faceted approach to mechanisms appears to be the most logical. The OS unifying theme represents an approach which is able to rationalize the diverse data associated with carcinogenesis. Because this theoretical framework aids in the understanding of cancer initiation, it can serve as a useful tool in combating cancer, particularly in relation to prevention. Significantly, the electron transfer--oxidative stress (ET-OS) scenario can also be applied to many drug categories, toxins, enzymes, and hormones.  相似文献   

6.
7.
Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.  相似文献   

8.
Quinones are believed to induce their toxicity by two main mechanisms: oxygen activation by redox cycling and alkylation of essential macromolecules. The physicochemical parameters that underlie this activity have not been elucidated, although redox potential is believed to play a significant role. In this study, we have evaluated the cytotoxicity, formation of reactive oxygen species (ROS), and the glutathione (GSH) depleting ability of 14 p-benzoquinone congeners in primary rat hepatocyte and PC12 cell cultures. All experiments were performed under identical conditions (37 degrees C, 5% CO2/air) in 96-well plates. The most cytotoxic quinone was found to be tetrachloro-p-benzoquinone (chloranil), and the least toxic was duroquinone or 2,6-di-tert-butyl-p-benzoquinone. The cytotoxic order varied between the cell types, and in particular, the di-substituted methoxy or methyl p-benzoquinones were particularly more cytotoxic towards PC12 cells. We have derived one- and two-parameter quantitative structure-toxicity relationships (QSTRs) which revealed that the most cytotoxic quinones had the highest electron affinity and the smallest volume. Cytotoxicity did not correlate with the lipophilicity of the quinone. Furthermore, we found that p-benzoquinone cytotoxicity correlated well with hepatocyte ROS formation and GSH depletion, whereas in PC12 cells, cytotoxicity did not correlate with ROS formation and somewhat correlated with GSH depletion. Hepatocytes had far greater hydrogen peroxide detoxifying capacity than PC12 cells, but PC12 cells contained more GSH/mg protein. Thus, p-benzoquinone-induced ROS formation was greater towards PC12 cells than with hepatocytes. To our knowledge, this is the first QSTR derived for p-benzoquinone cytotoxicity in these cell types and could form the basis for distinguishing certain cell-specific cytotoxic mechanisms.  相似文献   

9.
Quinones are widespread in our environment, occurring both naturally and as pollutants. Human exposure to them is therefore extensive. Quinones also form an important class of toxic metabolites generated as a result of the metabolism of phenols and related compounds, including phenol itself, 1-naphthol, and diethylstilbestrol. The mechanisms by which quinones exert their toxic effects are complex, but two processes appear to be centrally involved: the direct arylation of sulfhydryls, and the generation of active oxygen species via redox cycling. Certain quinones have been shown to be mutagenic via the formation of active oxygen species and others via their conversion to DNA-binding semiquinone free radicals. Paradoxically, quinones are not only mutagenic and therefore potentially carcinogenic, they are also effective anticancer agents. Classic examples are Adriamycin (doxorubicin hydrochloride) and mitomycin C, but other less complex quinones also show effective antitumor activity. The design of novel quinones that are more selective in their toxicity to human tumor cells and whose mechanism of action is understood seems a promising approach in cancer treatment, especially if host toxicity can be prevented via the use of chemoprotective agents.  相似文献   

10.
A number of human teratogens elicit their deleterious effects through mechanisms involving the generation of reactive oxygen species (ROS) and oxidative stress. However, classic definitions of oxidative stress do not fully coincide with basic fundamental principles of teratology. Newer definitions of oxidative stress focus on the targeted redox modification of cysteine/thiol functional groups found in the regulatory domains of critical signaling pathway proteins, suggesting that the targeted disruption of signaling through specific redox couples may account for the specificity of teratogen-induced malformations which previously could not be rationalized. Here, we review examples of teratogens that induce ROS and oxidative injury, describe oxidative stress-related teratogenic mechanisms, and provide rationale for developmental periods of sensitivity and species susceptibility. Understanding how chemicals disrupt redox status, induce oxidative stress leading to dysmorphogenesis becomes important to identify potential teratogens and develop therapeutic interventions for attenuation of harmful chemical effects in utero following exposure.  相似文献   

11.
12.
Oxidative stress and oxidative damage in chemical carcinogenesis   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.  相似文献   

13.
PCBs are industrial chemicals that continue to contaminate our environment. They cause various toxic effects in animals and in exposed human populations. The mechanisms of toxicity, however, are not completely understood. PCBs are metabolized by cytochromes P450 to mono- and dihydroxylated compounds. Dihydroxy-PCBs can potentially be oxidized to the corresponding quinones. We hypothesized that reactive oxygen species (ROS) are produced by redox reactions of PCB metabolites. We tested several synthetic dihydroxy- and quinoid-PCBs with 1-3 chlorines for their potential to produce ROS in vitro and in HL-60 human leukemia cells, and DNA strand breaks in vitro. All dihydroxy-PCBs tested produced superoxide. The quinones generated superoxide only in the presence of GSH, probably during the autoxidation of the glutathione conjugates. We observed increased superoxide production with decreasing halogenation. Incubation of dihydroxy-PCBs or PCB quinones + GSH with plasmid DNA resulted in DNA strand break induction in the presence of Cu(II). Tests with various ROS scavengers indicated that hydroxyl radicals and singlet oxygen are likely involved in this strand break induction. Finally, dihydroxy- and quinoid PCBs also produced ROS in HL-60 cells in a dose- and time-dependent manner. We conclude that dihydroxylated PCBs, and PCB quinones after reaction with GSH, produce superoxide and other ROS both in vitro and in HL-60 cells, and oxidative DNA damage in the form of DNA strand breaks in vitro. The reactions seen in vitro and in cells may well be a predictor of the toxicity of PCBs in animals.  相似文献   

14.
Advances in metal-induced oxidative stress and human disease   总被引:8,自引:0,他引:8  
Jomova K  Valko M 《Toxicology》2011,283(2-3):65-87
Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha-tocopherol (vitamin E), glutathione (GSH), carotenoids, flavonoids, and other antioxidants) are capable of chelating metal ions reducing thus their catalytic activity to form ROS. A novel therapeutic approach to suppress oxidative stress is based on the development of dual function antioxidants comprising not only chelating, but also scavenging components. Parodoxically, two major antioxidant enzymes, superoxide dismutase (SOD) and catalase contain as an integral part of their active sites metal ions to battle against toxic effects of metal-induced free radicals. The aim of this review is to provide an overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals.  相似文献   

15.
The health risks of nanoparticles remain a serious concern given their prevalence from industrial and domestic use. The primary route of titanium dioxide nanoparticle exposure is inhalation. The extent to which nanoparticles contribute to cellular toxicity is known to associate induction of oxidative stress. To investigate this problem further, the effect of titanium dioxide nanoparticles was examined on cell lines representative of alveolo-capillary barrier.The present study showed that all nanoparticle-exposed cell lines displayed ROS generation. Macrophage-like THP-1 and HPMEC-ST1.6R microvascular cells were sensitive to endogenous redox changes and underwent apoptosis, but not alveolar epithelial A549 cells. Genotoxic potential of titanium dioxide nanoparticles was investigated using the activation of γH2AX, activation of DNA repair proteins and cell cycle arrest. In the sensitive cell lines, DNA damage was persistent and activation of DNA repair pathways was observed. Moreover, western blot analysis showed that specific pathways associated with cellular stress response were activated concomitantly with DNA repair or apoptosis.Nanoparticles-induced oxidative stress is finally signal transducer for further physiological effects including genotoxicity and cytotoxicity. Within activated pathways, HSP27 and SAPK/JNK proteins appeared as potential biomarkers of intracellular stress and of sensitivity to endogenous redox changes, respectively, enabling to predict cell behavior.  相似文献   

16.
Oxidative stress is a condition caused by the high intracellular concentrations of reactive oxygen species (ROS) that includes superoxide anion radicals, hydroxyl radicals and hydrogen peroxide. Nanoparticles could cause rapid generation of free radicals by redox reactions. ROS can react directly with membrane lipids, proteins and DNA and are normally scavenged by antioxidants that are capable of neutralizing; however, elevated concentrations of ROS in bacterial cells can result in oxidative stress. The aim of this work was contribute to the knowledge of action mechanism of silver nanoparticles (Ag-NPs) and their relation to the generation of oxidative stress in bacteria. We demonstrated that Ag-NPs generated oxidative stress in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa mediated by the increment of ROS and this increase correlated with a better antimicrobial activity. On the other hand, we showed that the oxidative stress caused by the Ag-NPs biosynthesized was associated to a variation in the level of reactive nitrogen intermediates (RNI). Oxidative stress in bacteria can result from disruption of the electronic transport chain due to the high affinity of Ag-NPs for the cell membrane. This imbalance in the oxidative stress was evidentiated by a macromolecular oxidation at level of DNA, lipids and proteins in E. coli exposed to Ag-NPs. The formation of ROS and RNI by Ag-NPs may also be considered to explain the bacterial death.  相似文献   

17.
Role of oxidative stress in alcohol-induced liver injury   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are highly reactive molecules that are naturally generated in small amounts during the body’s metabolic reactions and can react with and damage complex cellular molecules such as lipids, proteins, or DNA. Acute and chronic ethanol treatments increase the production of ROS, lower cellular antioxidant levels, and enhance oxidative stress in many tissues, especially the liver. Ethanol-induced oxidative stress plays a major role in the mechanisms by which ethanol produces liver injury. Many pathways play a key role in how ethanol induces oxidative stress. This review summarizes some of the leading pathways and discusses the evidence for their contribution to alcohol-induced liver injury. Special emphasis is placed on CYP2E1, which is induced by alcohol and is reactive in metabolizing and activating many hepatotoxins, including ethanol, to reactive products, and in generating ROS.  相似文献   

18.
A number of xenobiotics require redox reactions to form the reactive intermediates involved in the ultimate toxic events (e.g., adduct formation). The same mechanisms lead to the formation of reactive oxygen species (ROS), which can themselves exert direct toxicity including, e.g., DNA oxidative damage or glutathione depletion. The occurence of both mechanistic features in xenobiotic activation and toxicity may raise some difficulties in ascertaining the respective roles of reactive intermediates versus ROS-related mechnisms. An example is provided by the toxicity mechanisms of mitomycin C (MMC) and diepoxybutane (DEB), which are commonly referred to as 'cross-linkers'. Their toxic actions, however, are well-known to be modulated via redox parameters, such as oxygen tension, antioxidants levels, or thioredoxin overexpression. The diagnostic assessment of Fanconi's anaemia (FA) relies on MMC and DEB sensitivity, which is usually referred to as 'cross-linker sensitivity'; thus the redox-dependent toxicities of MMC and DEB may have direct implications for the definition of FA phenotype. Another major aspect in ROS formation relies on the extensive evidence pointing to the requirement for oxidative, as well as nitrosative activities in triggering a number of key events in cell division and differentiation, and in early embryogenesis. In turn, antioxidants that may prevent ROS-associated cellular damage in adult cells may prove to exert adverse or fatal outcomes when administered in early life stages. The overall information available on xenobiotic redox biotransformation and on the physiopathological roles of ROS points to the need of addressing ad hoc studies that should take into account the multiplicity of mechanistic events involved.  相似文献   

19.
20.
Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 microM and 10 microM As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 microM MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer to produce the effect, but with more substantial harm to the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号