首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chronic treatment with dopamine (DA) D1 and D2 receptor antagonists were evaluated in eightcebus apella monkeys with mild oral dyskinesia after previous haloperidol treatment. SCH 23390 (D1 antagonist) was given daily to investigate the direct behavioural effect during long-term treatment and the subsequent supersensitivity to DA agonists. Raclopride (D2 antagonist) was investigated for comparison. All drugs were given subcutaneously. SCH 23390 and raclopride induced dystonic syndromes, catalepsy, sedation and reduced locomotor activity. The monkeys developed marked tolerance to the dystonic effect of SCH 23390, while they showed increased sensibility to the dystonic effect of raclopride. Baseline oral dyskinesia (24 h after injection) remained unchanged during D1 antagonist treatment, while it increased during D2 antagonist treatment. SCH 23390 induced supersensitivity to the oral dyskinesia- and grooming-inducing effects of SKF 81297 (D1 agonist) after 9 weeks, while the subsequent treatment with raclopride induced supersensitivity to the reactivity- and stereotypy-inducing effects of quinpirole (D2 receptor agonist) after 3 weeks. Because of the possibility of a carry-over effect (SKF 81297-induced oral hyperkinesia and grooming), other changes in raclopride-induced behaviours cannot be ruled out. The development of tolerance to the dystonic effect of SCH 23390 and the unchanged baseline oral dyskinesia during SCH 23390 treatment indicate an advantageous profile of side effects of DA D1 receptor blockade.  相似文献   

2.
When given subcutaneously in gradually increasing doses, up to 1 mg/kg, NNC 756, a dopamine (DA) D-1 antagonist, failed to produce dystonia in eight drug-naive Cebus monkeys. In contrast, raclopride, a DA D-2 antagonist, produced dystonia at low doses (0.010-0.015 mg/kg). Following pre-treatment with raclopride, NNC 756 also induced dystonia at low doses (0.015-0.025 mg/kg), but continued treatment caused tolerance, and increasing doses of NNC 756 could be administered without induction of dystonia. NNC 756 induced a dose-dependent parkinsonism (slow, stiff movements and tremor), and more sedation than raclopride. After treatment for 14 weeks, withdrawal of raclopride (0.01 mg/kg) led to mild oral dyskinesia (tardive dyskinesia), while withdrawal of NNC 756 (1.0 mg/kg) led to a special grooming syndrome, but no dyskinesia. Withdrawal of raclopride as well as NNC 756 led to behavioural D-1 and D-2 dopamine supersensitivity in the form of increased dyskinesia (including grooming after NNC 756) induced by D-1 agonist (SKF 81297) and increased arousal induced by D-2 agonist (quinpirole). These results indicate that D-1 antagonists such as NNC 756 elicit fewer extrapyramidal symptoms (both acute and tardive) than D-2 antagonists such as raclopride, although extremely high doses may cause a special grooming withdrawal syndrome.  相似文献   

3.
The present report investigated several parametric and pharmacological aspects of the enhanced self-grooming behavior of rats following systemic administration of the selective D1 dopamine (DA) receptor agonist SKF 38393. The amount of time that rats spent grooming themselves was measured continuously for 30 min following drug administration to provide a quantitative measure of the drug-induced behavior. SKF 38393 increased the amount of grooming in a dose-dependent manner (0.5–16 mg/kg, SC). The onset of this effect required at least 5 min and it persisted for at least 60 min. The ability of SKF 38393 to enhance grooming was shared by R-SKF 38393, but not S-SKF 38393, consistent with the affinities of these enantiomers for the D1 DA receptor. Unlike SKF 38393, the peripheral D1 agonist fenoldopam (SKF 82526) failed to cause an increased grooming response, suggesting a central site of action for elicitation of this behavior. The SKF 38393-induced increase in grooming was competitively antagonized by the D1 selective antagonist SCH 23390 (0.5 mg/kg, SC). Although the D2 DA receptor-selective antagonist eticlopride reduced SKF 38393-elicited grooming, this antagonism appeared to be of a physiological rather than pharmacological nature. When eticlopride was coadministered with the non-selective (mixed) D1/D2 agonist apomorphine, an increase in grooming behavior similar to that produced by SKF 38393 was observed. Inactivation of D1 and D2 DA receptors produced by pretreatment with the irreversible antagonistN-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ), at a dose which reduces D1 and D2 receptor density by 50% (8.0 mg/kg, IP), reduced SKF 38393-induced grooming by approximately 50%. Prior protection of D1 receptors by SCH 23390 completely prevented the effect of EEDQ whereas prior protection of D2 receptors by eticlopride did not. These results demonstrate that enhanced grooming behavior elicited by dopamine agonists in rats, when measured as the amount of time spent grooming, provides a reliable, quantifiable index of selective D1 DA receptor activation in the CNS. In addition, this behavior does not appear to require concurrent stimulation of D2 DA receptors by endogenous DA.  相似文献   

4.
The benzazepines NNC 687 and NNC 756 have in animal studies been described as selective D1-dopamine receptor antagonists. Both compounds have been labeled with11C for examination by positron emission tomography (PET). In the present study central receptor binding was studied in monkeys and healthy men. After IV injection of both radioligands in Cynomolgus monkeys radioactivity accumulated markedly in the striatum, a region with a high density of D1-dopamine receptors. This striatal uptake was displaced by high doses of the selective D1-antagonist SCH 23390 (2 mg/kg) but not by the 5HT2-antagonist ketanserin (1.5 mg/kg) or the selective D2-antagonist raclopride (3 mg/kg). The cortical uptake after injection of [11C]NNC 687 was not reduced in displacement experiments with ketanserin. The cortical uptake of [11C]NNC 756 was reduced in displacement and protection experiments with ketanserin by 24–28% (1.5 mg/kg), whereas no reduction could be demonstrated on striatal uptake. In healthy males both compounds accumulated markedly in the striatum. For [11C]NNC 687 the ratio of radioactivity in the putamen to cerebellum was about 1.5. For [11C]NNC 756 the ratio was about 5. This ratio of 5 for [11C]NNC 756 is the highest obtained so far for PET radioligands for the D1-dopamine receptor.  相似文献   

5.
The effects of dopamine D1 and D2 receptor agonists and antagonists were studied in eight Cebus apella monkeys previously treated with haloperidol for two years. SKF 81297 (specific D1 receptor agonist) induced oral hyperkinesia of variable intensity (P less than 0.01): some of the monkeys developed extreme lip smacking, tonque protrusions and licking movements while others developed only slight lip movements. A combined treatment of SKF 81297 with LY 171555 (full D2 receptor agonist) or SCH 23390 (D1 receptor antagonist) inhibited the oral hyperkinesia induced by SKF 81297 (P less than 0.01, P less than 0.02, respectively). Raclopride (D2 receptor antagonist) did not statistically change oral hyperkinesia (P less than 0.2), although five monkeys showed increased oral movements; most of these monkeys had pre-existing hyperkinesia. Treatment with SCH 23390 or raclopride resulted in an identical dystonic/cataleptic syndrome. SKF 81297 inhibited the dystonia induced by SCH 23390, while it did not significantly affect raclopride dystonia. The investigation indicates that oral dyskinesia may be related to an imbalance in D1 receptor and D2 receptor stimulation in favor of D1 receptors. The question now is whether D1 receptor antagonists, which may have antipsychotic potential, will produce tardive dyskinesia after long-term use.  相似文献   

6.
Rationale Dopamine D1 receptor agonists and antagonists attenuate reinstatement of cocaine seeking in a non-human primate model of relapse. The mechanisms by which these different classes of D1 receptor drugs produce these similar effects on cocaine seeking are unknown. Objectives This study investigated how D1 receptor agonists and antagonists alter the shape and position of the dose–response function for reinstatement of drug seeking induced by a cocaine prime accompanied by restoration of the cocaine-paired stimulus. Methods Squirrel monkeys were given extensive histories of cocaine self-administration under a second-order fixed-interval, fixed-ratio schedule of i.v. drug injection. Drug seeking was then extinguished by replacing cocaine with vehicle and eliminating the cocaine-paired stimulus. In subsequent test sessions, in which the cocaine-paired stimulus was re-introduced, priming injections of cocaine alone or combined with the different D1 receptor high- and low-efficacy agonists and antagonists (SKF 82958, SKF 81297, SKF 83959, ecopipam; n=3–4 per drug condition) were tested for their ability to reinstate extinguished cocaine seeking. Results Cocaine priming accompanied by the restoration of the cocaine-paired stimulus induced a dose-dependent reinstatement of drug seeking. When combined with cocaine, all D1 receptor agonists and antagonists produced rightward and downward shifts in the cocaine dose–response function. However, combined pretreatment of SKF81297 (agonist) and ecopipam (antagonist) inhibited cocaine seeking less than either drug individually. Conclusions These findings suggest that D1 receptor high- and low-efficacy agonists as well as antagonists attenuate reinstatement of cocaine seeking in part via pharmacologically opposing actions at a common population of D1 receptors.  相似文献   

7.

BACKGROUND AND PURPOSE

Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats.

EXPERIMENTAL APPROACH

Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC.

KEY RESULTS

Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively.

CONCLUSION AND IMPLICATIONS

These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways.  相似文献   

8.
Rhesus monkeys with IV catheters were allowed to self-administer cocaine for 1 h/day. When responding was stable, saline or the D1 dopamine agonist SKF 81297 (SKF; 0.001–0.3 mg/kg/inj) was substituted for cocaine. At least two doses of SKF maintained responding above saline levels in all monkeys. The D1 antagonist SCH 39166 (0.001–0.03 mg/kg, IM) was then administered 30 min before sessions of self-administration of the lowest dose of SKF that maintained behavior (0.01 mg/kg/inj). SKF-maintained responding decreased in a dose-related manner, suggesting antagonism of the reinforcing effect. These results suggest that stimulation of D1 receptors can initiate a reinforcing effect and further implicate D1 receptors in the reinforcing effects of drugs that increase dopamine neurotransmission.  相似文献   

9.
The selective D1 dopamine receptor agonist R-SK & F 38393 (20 mg/kg), but not its S-antipode, stereospecifically promoted episodes of prominent grooming behaviour. Typical stereotyped behaviour, such at that induced by apomorphine, was not seen. Grooming responses to 20 mg/kg R-SK & F 38393 were blocked by 0.1–0.5 mg/kg of the selective D1 antagonist SCH 23390 but not by 1.0–5.0 mg/kg of the selective D2 antagonist metoclopramide, while stereotyped behaviour induced by 0.5 mg/kg apomorphine was blocked by both antagonists. These results are consistent with certain individual dopaminergic behaviours such as grooming being mediated by D1 receptors. Other dopaminergic syndromes may involve complex functional interactions between D1 and D2 receptors.  相似文献   

10.
We have previously reported that two D1 dopamine agonists, SKF 82958 and SKF 77434, are readily self-administered by rats. However, due to the limited selectivities of these agents, it was not possible to attribute their reinforcing effects exclusively to their D1 actions. To assess the relative involvement of D1 and D2 receptors in SKF 82958 reinforcement, rats were pretreated 30 min before self-administration sessions with either the D1-selective antagonist (+)SCH 23390 or the D2-selective antagonist raclopride. The D1 antagonist (+)SCH 23390 (5–20 µg/kg, SC) produced significant, dose-related (compensatory) increases in SKF 82958; in contrast, the D2 antagonist raclopride (25–400 µg/kg, SC) did not significantly increase SKF 82958 self-administration, although raclopride did increase cocaine self-administration. Compensatory increases in self-administration rates are thought to reflect antagonist-induced reductions in drug reinforcement. Hence, we conclude that SKF 82958 self-administration depends on activation of a D1-regulated reinforcement substrate.This work was supported by U.S.P.H.S. grants DA-05107, DA-05379, and DA-07747. All animal procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals (NIH pub. no. 86-23, revised 1985).  相似文献   

11.
Several experiments investigated the involvement of D1 and D2 dopamine receptors in the ventral striatum in the control over behaviour by a conditioned reinforcer using an acquisition of new response procedure. Intra-accumbens infusion of either the D1 receptor antagonist, SCH 23390, or the D2 receptor antagonist, raclopride, completely blocked the potentiative effects of intra-accumbensd-amphetamine on responding with conditioned reinforcement and reduced responding to control levels. SCH 23390 was more potent than raclopride. At higher doses in the absence ofd-amphetamine, both antagonists also blocked the preference for responding on the lever producing the conditioned reinforcer. Intra-accumbens infusions of either the D1 receptor agonist, SKF 38393, or the D2/3 receptor agonist, LY 171555 (quinpirole), selectively potentiated responding on the lever producing the conditioned reinforcer. Various combined infusions of the D1 and D2 agonists in specific low doses had additive, but not synergistic, effects on responding with conditioned reinforcement. None of the drugs affected the drinking of water in deprived subjects when infused intra-accumbens. These results suggest that both D1 and D2 receptors in the nucleus accumbens are involved in mediating the effects of dopamine in potentiating the control over behaviour by conditioned reinforcers.  相似文献   

12.
NNC 756 is a new benzazepine with high affinity and selectivity for D1-dopamine receptors. In a double-blind, placebo controlled, cross-over study, positron emission tomography and the radioligand [11C]SCH 23390 were used to determine central D1-do-pamine receptor occupancy after a single oral dose of 80 mg NNC 756 in three healthy men. NNC 756 induced 75, 66 and 47% occupancy of D1-dopamine receptors in the putamen of at 1.5 h after drug administration and 46, 36 and 24% after 7.5 h. There was a hyperbolic relationship between the occupancy values and the serum concentrations. The Ki value for the hyperbola was 6.4 ng/ml (±SD 1.4). The occupancy at 1.5 h is on the same level as that shown to induce effects in animal models for prediction of antipsychotic effect. Restlessness (akathisia) appeared in two subjects and nausea in one subject at time of peak drug concentration in serum. The oral dose level of 80 mg should be appropriate to investigate the potential antipsychotic effect of NNC 756.  相似文献   

13.
In general, preweanling and adult rats respond similarly when challenged with competitive dopamine (DA) agonists or antagonists. In contrast, results using a noncompetitive antagonist suggest that the D1 and D2 receptor systems of preweanling and adult rats differ in some critical way. To further assess this phenomenon, the behavioral effects of irreversible receptor blockade were assessed across 8 days in NPA (a nonselective DA agonist), quinpirole (a D2 agonist), or SKF 38393 (a D1 agonist) treated 17-day-old rat pups. The irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) did not block the locomotor activity and rearing of NPA- or quinpirole-treated rat pups, nor did EEDQ reduce SKF 38393-induced grooming. Moreover, pretreatment with EEDQ appeared to potentiate the normal increases in locomotor activity and rearing produced by NPA, but only when D2 receptors were not protected by a previous injection of sulpiride (a D2 antagonist). Taken together, these results are consistent with the presence of large reserves of D1 and D2 receptors in the preweanling rat pup.  相似文献   

14.
Rationale The full D1 receptor agonist dihydrexidine (DHX) [(+/−)-trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine hydrochloride] is under clinical development (DAR-100) for Parkinson’s disease and schizophrenia. Despite the clinical development of DHX, very little is known about its discriminative stimulus properties in rats. To more fully characterize the discriminative stimulus properties of DHX, we trained rats to discriminate DHX (3 mg/kg, i.p.) from vehicle. Methods: Substitution tests in rats discriminating DHX (3 mg/kg, i.p.) from vehicle were performed with structurally distinct D1 receptor agonists with both partial and full intrinsic efficacy. In addition, the peripherally restricted D1 agonist, fenoldopam, was evaluated.Results SKF 75670A, ABT-431, dinapsoline, SKF 81297, and SKF 82958 all fully substituted in a dose-dependent manner. The rank order of potency for substitution was SKF 82958<ABT-431<SKF 75670A≤dinapsoline<SKF 81297<DHX. Fenoldopam (10 and 30 mg/kg) did not substitute and was without effect on rates of responding.Conclusions DHX produces prominent dopamine D1 receptor agonist effects in vivo and is likely to produce subjective effects in humans similar to other D1 receptor agonists.  相似文献   

15.
The subtype of dopamine (DA) receptors mediating the yawning response to DA agonists was determined in rats. Yawning was elicited both by the mixed D1–D2 agonist apomorphine and by the specific D2 agonist LY 171555, but not by the selective D1 agonist SKF 38393. Both apomorphine- and LY 171555-induced yawning were antagonized not only by the selective D2 antagonist sulpiride but, unexpectedly, also by the selective D1 antagonist SCH 23390. The results suggest that DA receptors mediating the yawning response are of the D2 type, and that these receptors are connected with D1 receptors in such a way that the blockade of the latter results in the functional inactivation of the former.  相似文献   

16.
The neuropeptide cholecystokinin (CCK) has been shown to interact with dopamine in various ways, including attenuation of dopamine D1 receptor-mediated vacuous chewing and grooming. While we have demonstrated a clear role for the CCKA receptor in the attenuation of dopamine D1 agonist-induced vacuous chewing, studies of grooming yielded anomolous results. We examined the effects of selective CCK receptor antagonists on the attenuation of SKF 38393-induced grooming by the CCKB agonist CCK-4. Administration of SKF 38393 (5 mg/kg s.c.) to male Sprague-Dawley rats resulted in a significant increase in grooming which was reduced to control levels by CCK-4 (20 mg/kg i.p.). Pretreatment with either the CCKA receptor antagonist devazepide or the CCKB receptor antagonist L-365,260 significantly attenuated this effect over a range of doses (20, 100, 500 μg/kg i.p.). The suppression of dopamine D1 agonist-induced grooming by CCK-4 does not appear to reflect a non-specific effect of anxiogenesis, as it was unaffected by the anxiolytic diazepam. The CCK receptor antagonists alone were without behavioural effect. Taken together with previous studies in models of anxiety and analgesia, our findings lend further support to the hypothesis that CCK-4 may act at a novel receptor subtype.  相似文献   

17.
In order to relate the effects of pharmacological intervention to neuroleptic induced increases in oral activity rats were treated continuously (7 mg/kg per week) or discontinuously (7 mg/kg per week or 2 mg/kg per week) with haloperidol for 6 months. Only the two intermittently treated groups developed persisting increases in vacuous chewing movements (VCM) following drug withdrawal. Opposed to control animals and continuously treated rats, the discontinuously treated groups demonstrated significant elevation in mouth movements following stimulation with the dopamine (DA) D1 receptor agonist SK&F 38393 (23 mg/kg), whereas they did not response to an acute challenge with the selective DA D1 receptor antagonist NNC-756 (0.1 mg/kg). The DA D2 receptor antagonist raclopride (1 mg/kg) provoked a general fall in VCM; however, this was only significant in rats treated intermittently with haloperidol 7 mg/kg per week and in control rats. Intermittent neuroleptic treatment also increased apomorphine-induced stereotypy. The effect of challenge with the anticholinergic drug scopolamine (0.25 mg/kg) was not related to oral activity; furthermore, the finding of severe agitation in rats tested with the latter drug points to caution in the interpretation of rating of rats treated with anticholinergics. These results support that intermittent ingestion of neuroleptic drugs lead to long-lasting increases in VCM. They also suggest a relation of persisting elevated oral activity to supersensitivity to DA receptor agonists, as opposed to subsensitivity to D1 receptor antagonists.  相似文献   

18.
Selective dopamine D1-receptor antagonists have been shown to exhibit similar effects in animal models for antipsychotic action as the selective D2 antagonists. NNC 01-0687, a benzazepine with selective and high affinity to the D1-receptor, was well tolerated by healthy subjects allocated to double blind, placebo controlled studies. Complaints of moderate restlessness and drowsiness were reported after administration of 25 mg NNC 01-0687, indicating the dose to be the maximum tolerated single dose. The highest multiple dose level of a daily dose of 45 mg NNC 01-0687 administered t.i.d. for 14 days was assessed as safe and well-tolerated with few reports of adverse events. Some alanine amino-transferase (ALT) elevations appeared in both treatment groups (active and placebo) and no evident influence of NNC 01-0687 on the liver function could be derived. No statistically significant or clinically relevant effects were observed in haematological parameters, urinalyses, blood pressure, heart rate, ECG or plasma levels of prolactin, cortisol or growth hormone. The plasma drug concentration curves indicated a fast absorption with tmax at 0.5–1 h and an apparent elimination half-life of 3–4 h. Both AUC and Cmax appeared to be linearly correlated to the dose, indicating linear pharmacokinetics. With similar Cmax and AUC on day 1 and day 10 no accumulation was observed. When administered just after lunch, the Cmax was reduced by 50–60% and the tmax increased to 3 h, but without change of AUC.  相似文献   

19.
Mixed D1/D2 dopamine (DA) antagonists, perphenazine (5 mg/kg) and haloperidol (2 mg/kg) induced catalepsy in rats. SCH 23390 (1 mg/kg), a D1 DA antagonist, also produced catalepsy. Co-administration of perphenazine (0.5 mg/kg) and SCH 23390 (0.1 mg/kg), at low doses, produced a marked increase in cataleptic response. B-HT 920, a D2 agonist, reversed the cataleptogenic effects of perphenazine, haloperidol and SCH 23390. SKF 38893 (5 mg/kg) reduced the cataleptogenic effect of SCH 23390 but failed to reverse haloperidol- or perphenazine-induced catalepsy. SKF 38393 (10 mg/kg), however, protected the animals against perphenazine- induced catalepsy. Combined administration of B-HT 920 (0.1 mg/kg) and SKF 38393 (5 mg/kg) enhanced the protective effect of B-HT 920 in SCH 23390-treated animals but not in animals treated with haloperidol or perphenazine. MK-801 (0.025–0.5 mg/kg), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, reduced the cataleptogenic effects of perphenazine, haloperidol as well as SCH 23390. The anticataleptic action of MK-801 was enhanced by scopolamine (0.1 mg/kg) but not by bromocriptine (1 mg/kg) or clonidine (0.05 mg/kg) in perphenazine-treated rats. Unlike B-HT 920 (0.1 mg/kg), SKF 38393 (5 mg/kg) potentiated the anticataleptic effect of MK-801 (0.01 mg/kg) against SCH 23390-induced catalepsy. The above data suggests D1/D2 interdependence in catalepsy and a modulatory role of D1 and D2 DA receptor stimulation on the anticataleptic effect of MK-801.  相似文献   

20.
The study compares the behavioral profiles induced in rats (N=118) by the D2-dopaminergic receptor agonist quinpirole (0.03 and 0.5 mg/kg), and the D1-agonist SKF38393 (1.25–40 mg/kg), and both agonists administered together. Locomotion and snout contact frequency were reduced by the low but increased by the high dose of quinpirole; SKF38393 also reduced these behaviors and attenuated the effect of the high quinpirole dose. Only the high dose of quinpirole increased the duration of snout contact bouts and the frequency of mouthing; SKF38393 had no effect but in combination with the high dose of quinpirole, it enhanced the performance of these behaviors greatly. The duration of mouthing bouts was not affected by either agonist but was greatly extended when SKF38393 was administered together with the high dose of quinpirole. Grooming was inhibited by both the low and the high dose of quinpirole, and stimulated by the injection of SKF38393 or its addition to the low dose of quinpirole. These findings suggest that snout contact is controlled by modulating the frequency of episodes whereas mouthing is controlled by modulating the duration of episodes. Moreover, although they do not disprove the prevailing notion of D1–D2 receptor synergism, the present data are consistent also with an oppositional model of D1–D2 receptor interaction in the regulation of locomotion, snout contact, mouthing, and grooming in intact animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号