首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the innate immune system by bacterial DNA and DNA of other invertebrates represents a pathogen recognition mechanism. In this study we investigated macrophage responses to DNA from the intestinal protozoan parasite Entamoeba histolytica. E. histolytica genomic DNA was purified from log-phase trophozoites and tested with the mouse macrophage cell line RAW 264.7. RAW cells treated with E. histolytica DNA demonstrated an increase in levels of tumor necrosis factor alpha (TNF-α) mRNA and protein production. TNF-α production was blocked by pretreatment with chloroquine or monensin. In fact, an NF-κB luciferase reporter assay in HEK cells transfected with human TLR9 demonstrated that E. histolytica DNA signaled through Toll-like receptor 9 (TLR9) in a manner similar to that seen with CpG-ODN. Immunofluorescence assays confirmed NF-κB activation in RAW cells, as seen by nuclear translocation of the p65 subunit. Western blot analysis demonstrated mitogen-activated protein kinase activation by E. histolytica DNA. E. histolytica DNA effects were abolished in MYD88−/− mouse-derived macrophages. In the context of disease, immunization with E. histolytica DNA protected gerbils from an E. histolytica challenge infection. Taken together, these results demonstrate that E. histolytica DNA is recognized by TLR9 to activate macrophages and may provide an innate defense mechanism characterized by the induction of the inflammatory mediator TNF-α.  相似文献   

2.
The role of Toll-like receptor 9 (TLR9) in antifungal responses in the immunodeficient and allergic host is unclear. We investigated the role of TLR9 in murine models of invasive aspergillosis and fungal asthma. Neutrophil-depleted TLR9 wild-type (TLR9(+/+)) and TLR9-deficient (TLR9(-/-)) mice were challenged with resting or swollen Aspergillus fumigatus conidia and monitored for survival and lung inflammatory responses. The absence of TLR9 delayed, but did not prevent, mortality in immunodeficient mice challenged with resting or swollen conidia compared to TLR9(+/+) mice. In a fungal asthma model, TLR9(+/+) and TLR9(-/-) mice were sensitized to soluble A. fumigatus antigens and challenged with resting or swollen A. fumigatus conidia, and both groups of mice were analyzed prior to and at days 7, 14, and 28 after the conidium challenge. When challenged with resting conidia, TLR9(-/-) mice exhibited significantly lower airway hyper-responsiveness compared to the TLR9(+/+) groups. In contrast, A. fumigatus-sensitized TLR9(-/-) mice exhibited pulmonary fungal growth at days 14 and 28 after challenge with swollen conidia, a finding never observed in their allergic wild-type counterparts. Increased fungal growth in allergic TLR9(-/-) mice correlated with markedly decreased dectin-1 expression in whole lung samples and isolated dendritic cell populations. Further, whole lung levels of interleukin-17 were lower in allergic TLR9(-/-) mice compared to similar TLR9(+/+) mice. Together, these data suggest that TLR9 modulates pulmonary antifungal immune responses to swollen conidia, possibly through the regulation of dectin-1 expression.  相似文献   

3.
Increased concentrations of DNA-containing immune complexes in the serum are associated with systemic autoimmune diseases such as lupus. Stimulation of Toll-like receptor 9 (TLR9) by DNA is important in the activation of plasmacytoid dendritic cells and B cells. Here we show that HMGB1, a nuclear DNA-binding protein released from necrotic cells, was an essential component of DNA-containing immune complexes that stimulated cytokine production through a TLR9-MyD88 pathway involving the multivalent receptor RAGE. Moreover, binding of HMGB1 to class A CpG oligodeoxynucleotides considerably augmented cytokine production by means of TLR9 and RAGE. Our data demonstrate a mechanism by which HMGB1 and RAGE activate plasmacytoid dendritic cells and B cells in response to DNA and contribute to autoimmune pathogenesis.  相似文献   

4.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis in immunocompromised patients. Recently, we reported that Toll-like receptor 9 (TLR9) is involved in host defense against C. neoformans: specifically, it detects the pathogen's DNA. In the present study, we aimed to elucidate the mechanisms underlying TLR9-mediated activation of innate immune responses by using the URA5 gene, which encodes a virulent component of this fungal pathogen. A PCR-amplified 345-bp URA5 gene fragment induced interleukin-12 p40 (IL-12p40) production by bone marrow-derived dendritic cells (BM-DCs) in a TLR9-dependent manner. Similar activity was detected in the 5' 129-bp DNA fragment of URA5 and in a synthesized oligodeoxynucleotide (ODN) with the same sequence. Shorter ODN fragments, which contained GTCGGT or GACGAT but had only 24 or 21 bases, induced IL-12p40 production and CD40 expression by BM-DCs, but this activity vanished when the CG sequence was replaced by GC or when a phosphorothioate modification was introduced. IL-12p40 production caused by active ODN was strikingly enhanced by treatment with DOTAP, a cationic lipid that increases the uptake of DNA by BM-DCs, though DOTAP failed to induce IL-12p40 production by inactive ODN and did not affect the activity of an ODN-containing canonical CpG motif. There was no apparent difference in intracellular trafficking between active and inactive ODNs. Finally, an extremely high dose of inactive ODN suppressed IL-12p40 production by BM-DCs that had been stimulated with active ODN. These results suggest that the C. neoformans URA5 gene activates BM-DCs through a TLR9-mediated signaling pathway, using a mechanism possibly independent of the canonical CpG motif.  相似文献   

5.
Moresco EM  Beutler B 《Immunity》2011,34(4):453-455
Foreign DNA activates the innate immune response through Toll-like receptor 9 (TLR9). In this issue of Immunity, Park et?al. (2011) present evidence that granulin is a cofactor for TLR9 activation, delivering CpG-oligodeoxynucleotides to TLR9 in endolysosomes.  相似文献   

6.
Synthetic oligodeoxynucleotides (ODN) expressing non-methylated "CpG motifs" patterned after those present in bacterial DNA have characteristic immunomodulatory effects. CpG DNA is recognized as a pathogen-associated molecular pattern, and triggers a rapid innate immune response. CpG ODN are being harnessed for a variety of therapeutic uses, including as immune adjuvants, for cancer therapy, as anti-allergens, and as immunoprotective agents. The signal transduction pathway mediated by the engagement of CpG DNA with Toll-like receptor 9 (TLR9) is shared with other members of the TLR family. Recent studies demonstrate that formation and maturation of CpG DNA-containing endosomes are regulated by phosphatidylinositol 3 kinases and the Ras-associated GTP-binding protein, Rab5, which are essential for the initiation of TLR9-mediated signaling.  相似文献   

7.
Wang Y  Zhou J  Liu B 《Immunology letters》2007,114(2):73-80
Due to differential content of CpG motifs in genomic DNA of organisms like bacteria and mammals, CpG-containing DNA delivers a danger or immunostimulatory signal that is recognized by Toll-like receptor 9 in mammalian cells. Here we show that genomic DNA from several plants promote proliferation and CD69 expression as well as activate NFkappaB and JNK pathways in murine B lymphocytes. Plant DNA synergize with specific antigen in activating B cells in a dose-dependent manner. Using a computational method we compared the usage of CpG motif related sequences in DNA of plants, bacteria, mammals or other species. It was found that the CpG motif suppression is much less significant in plant DNA than in mammalian genomes. These computation results partially explain the immunostimulatory activity of plant DNA observed in biological experiments, and lead to the hypothesis that plants respond to plant pathogens by recognizing CpG motifs in the pathogens' genomic DNA. Collectively this work provides new evidence for further understanding the interactions between plants and the human immune system or homeostasis, and between plants and their pathogens. The hypothesis that CpG dependent immunomodulation is a feature of plant DNA that contributes to plant nutrition or food/pollen allergy is also discussed.  相似文献   

8.
Oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides mimic the immune stimulatory activity of bacterial DNA in vertebrates and are recognized by Toll-like receptor 9 (TLR9). It is also possible to detect immune activation with certain phosphorothioate sequences that lack CpG motifs. These ODN are less potent than CpG ODN and the mechanism by which they stimulate mammalian leucocytes is not understood. We here provide several lines of evidence demonstrating that the effects induced by non-CpG ODN are mediated by TLR9. First, non-CpG ODN could not stimulate cytokine secretion from the splenocytes of TLR9-deficient (TLR9(-/-)) mice. Second, immunization of TLR9(+/+) but not TLR9(-/-) mice with non-CpG ODN enhanced antigen-specific antibody responses, although these were T helper type 2 (Th2)-biased. Third, reactivity to non-CpG ODN could be reconstituted by transfection of human TLR9 into non-responsive cells. In addition, we define a new efficient immune stimulatory motif aside from the CpG dinucleotide that consists of a 5'-TC dinucleotide in a thymidine-rich background. Non-CpG ODN containing this motif induced activation of human B cells, but lacked stimulation of Th1-like cytokines and chemokines. Our study indicates that TLR9 can mediate either efficient Th1- or Th2-dominated effects depending on whether it is stimulated by CpG or certain non-CpG ODN.  相似文献   

9.
Group B streptococcus (GBS), a capsulated gram-positive bacterium, is a major cause of newborn infections. Although the innate immune receptor Toll-like receptor (TLR) 2 has been shown to primarily recognize gram-positive bacterial products, the production of TNF by macrophages treated with heat-killed GBS (HK-GBS) does not depend on TLR2. In this report, we have characterized HK-GBS-induced activation of macrophages derived from wildtype and TLR2-deficient mice. Microarray analysis demonstrated that HK-GBS activation of macrophages induces both TLR2-independent and -dependent signals. While the expression of a major fraction of genes in macrophages induced by HK-GBS does not depend on TLR2, induction of several important molecules involved in host innate immunity such as IL-6, IL-1beta, and lipocalin 2 is severely impaired in the absence of TLR2 signaling. Furthermore, we show that HK-GBS utilizes centrifugation sensitive components to induce rapid activation of TLR2(-/-) macrophages and that HK-GBS-induced activation of macrophages is not mediated through its genomic DNA. Together, our results demonstrate that HK-GBS induces TLR2-dependent antimicrobial gene activation and provide further understanding of the molecular basis of host innate response to GBS infection.  相似文献   

10.
Neutrophils are essential for host defense and detect the presence of invading microorganisms through recognition of pathogen-associated molecular patterns. Among these receptors are Toll-like receptors (TLRs). Neutrophils express all known TLRs except for TLR3. TLR9, localized intracellularly, is to date the best characterized sensor for bacterial DNA, containing short sequences of unmethylated CpG motifs, though TLR9-independent intracellular DNA recognition mechanism(s) may also exist. Bacterial DNA has profound impact on neutrophil functions; it promotes neutrophil trafficking in vivo, induces chemokine expression, regulates expression of adhesion molecules, enhances phagocyte activity, and rescues neutrophils from constitutive apoptosis. TLR9 stimulation results in alterations in cellular redox balance, peroxynitrite formation, activation of the mitogen-activated protein kinase, PI3-kinase, and Jun N-terminal kinase pathways and/or nuclear factor κB and AP-1. These features identify an important role for bacterial DNA and TLR9 signaling in the regulation of neutrophil functions that are critical for optimal expression as well as for resolution of the inflammatory response.  相似文献   

11.
12.
Human B cells and plasmacytoid dendritic cells constitutively express Toll-like receptor (TLR)9 and respond to TLR9 ligands, as evidenced by nuclear factor kappa B translocation and cytokine secretion. However, TLR9 expression on B lymphocytes appears to be dependent upon both the state of activation and differentiation of the B cell population. In the current study, TLR9 mRNA expression was evaluated in transformed human B cell lines and correlated with their response to CpG. Among the B cell lines, the Burkitt lymphoma-derived Namalwa line had the highest level of TLR9 expression, 20-fold greater than spleen. Following incubation with CpG oligonucleotide, Namalwa cells secreted increased amounts of TNF, IL-6, and IL-10 and expressed the costimulator molecules CD40, CD80, and CD86. These functional responses to TLR9 activation occurred with similar EC50 values in the 30- to 60-nM range. These results suggest that the Namalwa Burkitt lymphoma line may serve as a useful cell-based assay for the detection of novel TLR9 agonists as well as a model to further explore the regulation of TLR9 expression and signaling.  相似文献   

13.
14.
The sweetness of the DNA backbone drives Toll-like receptor 9   总被引:1,自引:0,他引:1  
The prevailing paradigm ascribes activation of Toll-like receptor 9 (TLR9) to the detection of CpG-motifs within pathogen derived DNA. However, new work ties natural phospho-diester (PD) DNA recognition by TLR9 to the detection of the DNA sugar backbone 2' deoxyribose. PD 2' deoxyribose homopolymers lacking DNA bases (abasic) are shown to act as TLR9 agonist while abasic phospho-thioate (PS) 2' deoxyribose functions as TLR9 antagonist. Alignment of bases to PD 2' deoxyribose enhanced its TLR9 agonistic function, while only CpG-motifs introduced to inhibitory PS 2' deoxyribose converted the antagonistic activity into powerful agonistic function. These new data thus restrict the CpG-motif dependency of TLR9 activation to the promising group of immunopharmacons that are based on PS modified synthetic DNA. They also show that natural PD DNA drives TLR9 activation sequence-independently as is the case for ds RNA recognizing TLR3 and ss RNA recognizing TLR7 and TLR8. Thus evolutionary pressure might have exiled nucleic acid recognizing TLRs such as TLR9 to endosomes in order to avoid activation by host (self) derived nucleic acids.  相似文献   

15.
16.
Synthetic oligodeoxynucleotides (ODN) containing CpG motifs (CpG-ODN) have been shown to be effective immunoprotective agents in murine models for a variety of viral, intracellular bacterial, and protozoan infections. Until now, the use of CpG-ODN to protect against extracellular bacterial infections has not been reported. The objective of this study was to investigate the effect of CpG-ODN against cellulitis and colibacillosis in broiler chickens, using a well-established model. At 22 days of age, birds received CpG-ODN by either the subcutaneous or intramuscular route. Three days later, a virulent isolate of Escherichia coli was applied to a scratch site on the caudal abdominal skin. Birds were examined for 10 days after the E. coli challenge, and pathological and bacteriological assessments were conducted on all birds. The control group of birds receiving no CpG-ODN((2007)) had a survival rate of 15%. In contrast, groups that received CpG-ODN((2007)), by either subcutaneous or intramuscular injection, had significantly higher survival rates (P < 0.0001). Furthermore, the size of the cellulitis lesion was significantly smaller in groups that received CpG-ODN((2007)) by the subcutaneous route (P < 0.01). A dose of as little as 3.16 micro g of CpG-ODN((2007)), delivered 3 days prior to challenge by either the subcutaneous or intramuscular route, significantly protected birds against E. coli infection (P < 0.01). This study demonstrates that CpG-ODN((2007)) has both local and systemic protective effects in broiler chickens. This is the first time that CpG-ODN((2007)) has been demonstrated to have an immunoprotective effect against an extracellular bacterial infection in any food animal species.  相似文献   

17.
18.
Cytosine-phosphate-guanosine-containing oligodeoxynucleotides (CpG ODN) are important vaccine adjuvants that promote Th1-type immune responses. Cryptococcus neoformans is a serious human pathogen that replicates in the lung but may disseminate systemically leading to meningitis, particularly in immunocompromised individuals. Immunization of susceptible C57BL/6 mice with CpG ODN deviates the immune response from a Th2- toward a Th1-type response following infection with C. neoformans. CpG also induces IL-12, TNF, MCP-1 and macrophage nitric oxide production. CD4(+) and CD8(+) T cells producing IFN-gamma increase in frequency, while those producing IL-5 decrease. More importantly, pulmonary eosinophilia is significantly reduced, an effect that depends on IL-12 and CD8(+) T cells but not NK cells. CpG treatment also reduces the burden of C. neoformans in the lung, an effect that is IL-12-, NK cell- and T cell-independent and probably reflects a direct effect of CpG on pathogen opsonization or an enhancement of macrophage antimicrobial activity. An equivalent beneficial effect is also observed when CpG ODN treatment is delivered during established cryptococcal disease. This is the first study documenting that promotion of lung TLR9 signaling using synthetic agonists enhances host defense. Activation of innate immunity has clear therapeutic potential and may even be beneficial in patients with acquired immune deficiency.  相似文献   

19.
This study was designed to evaluate immunologic differences between aspergilloma (A) and allergic bronchopulmonary aspergillosis (ABPA), comparing the results to atopic and nonatopic control subjects. Humoral studies included skin tests with common inhalant antigens and Aspergillus fumigatus. Total and specific IgE and other immunologlobulin levels and serum precipitins were evaluated against A. fumigatus. Cellular immunity was studied with routine skin testing and phytohemaqglutinin-induced lymphocyte blast transformation. Antigen-induced blast transformation was also carried out with the use of serial dilutions of A. fumigatus. All patients with ABPA were atopic and had marked elevations of IgE. None of the patients were atopic and they had normal IgE levels. Immediate and late skin reactivity to A. fumigatus was low in control and A groups but high in 2 patients with ABPA. IgG antibody against A. fumigatus was generally greater in the ABPA group. Both ABPA and A had serum precipitating antibody against A. fumigatus. The atopic controls had elevated IgE levels and immediate skin test reactivity to A. fumigatus, and one also had weak serum precipitins against A. fumigatus. IgE antibody against A. fumigatus was generally higher in ABPA than A. ABPA and A patients had elevated stimulation indices (SI) to A. fumigatus. No stimulation could be detected with cells from control subjects. This study indicates that both T and B cell sensitization may play a role in the development of or as a response to aspergillus-related pulmonary disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号