首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to evaluate the feasibility of hydrophilic silica aerogels as drug carriers and to investigate the influence of the aerogels properties on the release rate of poorly water-soluble drugs. Hydrophilic silica aerogels of different densities were loaded with two model drugs, ketoprofen and griseofulvin, by adsorption from their solution in supercritical CO2. It is demonstrated that up to 30 wt% of ketoprofen and 5.4 wt% of griseofulvin can be deposited on hydrophilic aerogels through physical adsorption. The obtained drug-aerogel formulations were characterized by IR- and UV-spectroscopy, X-ray diffraction and scanning electron microscopy. Release kinetics of both drugs were studied in vitro. The release rate of ketoprofen from the drug-aerogel formulation is much faster than that of the corresponding crystalline drugs. The release rate of ketoprofen increases in 500% and that of griseofulvin in 450%, respectively. The reasons for the release enhancement are the enlarged specific surface area of drugs by adsorption on aerogels compared to their crystalline form and the immediate collapse of aerogel network in aqueous media. The dissolution rate of poorly water soluble drugs can be significantly enhanced by adsorption on highly porous hydrophilic silica aerogels.  相似文献   

2.
Indomethacin, lacidipine, nifedipine and tolbutamide are poorly soluble in water and may show dissolution-related low oral bioavailability. This study describes the formulation and characterization of these drugs as glass solutions with the amorphous polymers polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone-co-vinyl acetate by melt extrusion. The extrudates were compared with physical mixtures of drug and polymer. X-ray powder diffraction, thermal analysis, infrared spectroscopy, scanning electron microscopy, HPLC, moisture analysis and dissolution were used to examine the physicochemical properties and chemical stability of the glass solutions prepared by melt extrusion at a 1:1 drug/polymer ratio. Depending on the temperature used, melt extrusion produced amorphous glass solutions, with markedly improved dissolution rates compared with crystalline drug. A significant physico-chemical interaction between drug and polymer was found for all extrudates. This interaction was caused by hydrogen bonding (H-bonding) between the carbonyl group of the pyrrole ring of the polymer and a H-donor group of the drug. Indomethacin also showed evidence of H-bonding when physical mixtures of amorphous drug and PVP were prepared. After storage of the extrudates for 4-8 weeks at 25 degrees C/75% relative humidity (RH) only indomethacin/polymer (1:1) extrudate remained totally amorphous. All extrudates remained amorphous when stored at 25 degrees C/< 10% RH. Differences in the physical stability of drug/polymer extrudates may be due to differences in H-bonding between the components.  相似文献   

3.
The rate of the dissolution of four poorly soluble drugs (EMD 57033, albendazole, danazol and felodipine) was improved by cogrinding them with various excipients (lactose monohydrate, corn starch, polyvinylpyrrolidone, hydroxypropylmethyl cellulose and sodium lauryl sulphate) using a jet-milling technique. Solid state characterization studies by X-ray diffraction and differential scanning calorimetry verified the maintenance of the crystalline state of the active substances after milling. In vitro dissolution of the coground mixtures in biorelevant media was much faster than from micronised drug in the corresponding physical mixtures for all four compounds. Supersaturated solutions were generated in some cases (EMD 50733 and felodipine), but this phenomenon appeared to be drug- and excipient-specific. Cogrinding with lactose monohydrate resulted in fast dissolution with unstable supersaturation for EMD 57033. Cogrinding the same drug with PVP or HPMC produced a more sustained supersaturation. SLS accelerated the dissolution of EMD 50733 but inhibited supersaturation. The results suggest that the cogrinding with selected excipients is a powerful tool to accelerate the dissolution of poorly soluble drugs without converting the drug to the amorphous form or changing the particle size.  相似文献   

4.
A novel in-vitro dissolution system based on the principle of flow-through technique has been designed to evaluate the in-vitro release rate of poorly water-soluble compounds. The flow through apparatus (USP 4) has been coupled with the compendial dissolution apparatus (USP apparatus 2). A bi-phasic dissolution medium is used to achieve sink conditions. The dissolved drug is continuously removed from the aqueous phase into the organic phase of the dissolution medium, mimicking the process of absorption in the systemic circulation. The in vitro release profiles obtained from this dissolution model was able to distinguish the formulation changes of several poorly water-soluble drugs from their dosage forms. For AMG 517, the model drug, excellent rank order correlation has been obtained between the in-vitro release and the in-vivo absorption of the drug from several different dosage forms and their formulations. In addition, for several commercial formulations, the model successfully discriminated between the bioequivalent and non-bioequivalent formulations.  相似文献   

5.
Permeability is an underlying parameter to control drug absorption. For highly water-soluble drugs, the high correlation between their permeability and fraction absorbed in humans is reported. In the present study, to predict the absorbability of poorly water-soluble drugs in humans, a new experimental method of the permeation study was proposed and subjected to examination. Firstly, using the in vitro chamber method modified to contain 5% (final concentration) dimethyl sulufoxide (DMSO) in both compartments of the chamber (DMSO-MS), the effect of DMSO on membrane integrity was evaluated. Secondly, the correlation between the apparent permeability coefficients (Papp) obtained through DMSO-M or DMSO-MS and fractions absorbed in humans were investigated using 7 poorly water-soluble drugs. Membrane integrity of the rat intestinal tissues was maintained after using DMSO-MS, as with that after using the conventional in vitro chamber method. Papp of two paracellular markers obtained through DMSO-MS was not different from that obtained through the conventional chamber method. In the permeation study of the P-glycoprotein substrate, Papp from both mucosal to serosal and serosal to mucosal sides obtained through DMSO-MS was not significantly different from that obtained through the conventional chamber method. The correlation between Papp obtained through DMSO-MS and Fa which was expressed by the equation of Fa=1-exp (-Pappx1.38x10(5)) (r2=0.980), was more favorable than the correlation between Papp obtained through DMSO-M and Fa which was expressed by the equation of Fa=1-exp (-Pappx2.12x10(5)) (r2=0.875). These results showed that DMSO-MS was a useful method for predicting the absorbability of poorly water-soluble drugs.  相似文献   

6.
7.
A novel technique for the production of nano- and micro-particulate formulations of poorly water-soluble drugs has been developed. This technique involves the use of static mixer elements to provide fast precipitation by continuous turbulent mixing of two liquid flows, an aqueous phase and an organic phase, respectively. The objective of this study was to develop the mixer technique by investigating the influence of the element number on the particle size of the resulting dispersions. Four model active pharmaceutical ingredients (APIs) with a variety of polymers, lipids or surfactants underwent intensive mixing and the final suspensions showed a narrow size distribution. Parameters such as the flow rate and the temperature of the precipitated organic-aqueous phases were also significant in the reduction of particle size. Further development of the mixing technique led to reproducible and stable formulations with minimal excipient amounts. These formulations were spray- or freeze-dried to improve stability.  相似文献   

8.
For many new chemical entities (NCE) of very low solubility oral bioavailability enhancement by micronisation is not sufficient, the next step taken was nanonisation. The production of drug nanocrystals by bottom up techniques (precipitation) is briefly described, main focus is given on particle diminution by high pressure homogenisation. Homogenisation can be performed in water (DissoCubes) or alternatively in non-aqueous media or water-reduced media (Nanopure). There is also a combination process of precipitation followed by a second high energy step, e.g. homogenisation (NANOEDGE). The result is a suspension of drug nanocrystals in a liquid, the so-called nanosuspension. Presented are the physical background of the diminution process, effects of production parameters (power density, number of homogenisation cycles) on crystal size, clinical batch production and scaling up of the production. As an important point the transfer of the liquid nanosuspensions to patient convenient oral dosage forms such as tablets and capsules is described.  相似文献   

9.
10.
Spray drying techniques have been applied to improve the solubility and dissolution rate of poorly water-soluble salicylic acid. Spray drying of the acid dispersed in acacia solutions resulted in as much as a 50% improvement in the solubility of the product. Solubility improvement was closely related not only to the concentration of acacia but also the amount of amorphous material in the spray-dried products. The heat of solution was inversely related to these parameters. The dissolution rate of spray-dried product was almost instantaneous being about 60 times faster than that of the original powder. A great improvement in the wettability of the spray-dried material seemed to be mainly responsible for the increase of dissolution rate.  相似文献   

11.
The partitioning of poorly soluble drugs into an aqueous micellar phase was exploited using an in vitro lipid digestion model, simulating the events taking place during digestion of acylglycerols in the duodenum. The aqueous micellar phase was isolated after ultracentrifugation of samples obtained at different degrees of triacylglycerol hydrolysis. Flupentixol, 1'-[4-[1-(4-fluorophenyl)-1-H-indol-3-yl]-1-butyl]spiro[iso-benzofuran-1(3H), 4' piperidine] (LU 28-179) and probucol were studied. The effect of the alkyl chain length of the triacylglycerol was studied using a medium-chain triacylglycerol (MCT) and a long-chain triacylglycerol (LCT), respectively. In general, an oil solution was used as the lipid source in the model. Samples were analysed in regard to micellar size, lipid composition and drug concentration. During lipolysis, the content of lipolytic products in the aqueous micellar phase increased. The micellar size (R(H) approximately 3 nm) only increased when long-chain lipolytic products were incorporated in the mixed micelles (R(H) approximately 7.8 nm). Flupentixol was quickly transferred to the mixed micelles due to high solubility in this phase (100% released). A tendency towards higher solubilisation of LU 28-179, when it was administered in the LCT (approximately 24% released) compared to when it was administered in the MCT (approximately 15% released) at 70% hydrolysis, and a lagphase was observed. There was no difference in the solubilisation of probucol using MCT or LCT ( approximately 20% released), respectively. Differences in the physicochemical properties of the drugs resulted in differences in their distribution between the phases arising during lipolysis.  相似文献   

12.
INTRODUCTION: The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. AREAS COVERED: This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. EXPERT OPINION: Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.  相似文献   

13.
Introduction: The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest.

Areas covered: This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles.

Expert opinion: Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.  相似文献   

14.
The applicability of cross-linked hydrogels in forming solid molecular dispersions to enhance the delivery of poorly soluble drugs has not been fully explored. The purpose of this study is to characterize physicochemical parameters affecting the formation of solid molecular dispersions of poorly water-soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels and to investigate the effect of storage humidity levels on their physical stability. Samples were prepared by an equilibrium solvent loading process, using diclofenac sodium, piroxicam and naproxen as model drugs. These were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), as well as changes in the physical state during storage under different humidity conditions. The results show that a threshold drug loading level of about 30% exists in these solid molecular dispersions, above which amorphous to crystalline transition may occur. At any given drug loading, the onset of such change in physical state is accelerated at higher relative humidity levels during storage. The presence of hydrogen bonding between the polymer and the drug, as reflected in the observed FTIR band shifts, improves the compatibility between the drug and the polymer. This, together with a decreased mobility in the glassy polymer, helps to retard the crystallization event below the loading threshold. An increase in dissolution rate is also observed from the polymeric solid molecular dispersion as compared with that of the crystalline pure drug. These physicochemical results indicate that solid molecular dispersions based on PHEMA hydrogels can effectively enhance the dissolution and therefore should be potentially useful in improving the oral bioavailability of poorly water-soluble drugs.  相似文献   

15.
Potassium chloride release from a number of compressed hydrophilic polymer tablets is investigated with a view to designing a simple zero-order release system. The approach used is based on incorporation of low levels of effervescent mixtures within the table matrix. Supporting work on related polymeric systems is also discussed.  相似文献   

16.
17.
INTRODUCTION: In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. AREAS COVERED: Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. EXPERT OPINION: The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.  相似文献   

18.
19.
The intestinal absorption of glucose- and galactose-conjugated compounds was studied in the everted sac of the rat small intestine. The absorption clearance of p-nitrophenyl beta-D-glucopyranoside (p-NPglc) at 250 microM in the mucosal side (4.45 +/- 0.34 microL/min/cm, mean +/- SE, N = 4), calculated by dividing the absorption rate by the drug concentration, was significantly decreased (0.476 +/- 0.036 microL/min/cm) in the presence of 1 mM phloridzin, an inhibitor of glucose transport, and in the absence of Na+, a cosubstrate of the glucose transport carrier (0.424 +/- 0.018 microL/min/cm). The absorption clearance of p-NPglc was decreased as its concentration increased. In the same experiment, the absorption clearance of p-nitrophenyl beta-D-galactopyranoside (1.99 +/- 0.23 microL/min/cm) was also significantly decreased in the presence of phloridzin and in the absence of Na+. However, the absorption clearance of p-nitrophenyl beta-D-mannopyranoside (0.811 +/- 0.013 microL/min/cm) was low and not significantly decreased in the presence of phloridzin (P greater than 0.1). Furthermore, the absorption clearance of beta-naphthyl beta-D-glucopyranoside and beta-naphthyl beta-D-galactopyranoside was also significantly decreased in the presence of phloridzin (P less than 0.001). These results indicated that the glucose and galactose moieties provided these compounds with a new route by way of the glucose transport carrier for intestinal absorption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号