首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
External globus pallidus (GPe) neurons express abundant metabotropic glutamate receptor 1 (mGluR1) in their somata and dendrites and receive glutamatergic inputs mainly from the subthalamic nucleus. We investigated whether synaptically released glutamate could activate mGluR1s using whole cell and cell-attached recordings in rat brain slice preparations. Repetitive internal capsule stimulation evoked EPSPs followed by a slow depolarizing response (sDEPO) lasting 10-20 s. Bath application of both GABA(A) and GABA(B) receptor antagonists increased the amplitude of sDEPOs. A mixture of AMPA/kainate and N-methyl-d-aspartate receptor antagonists did not alter sDEPOs. The induction of sDEPOs was only partially mediated by mGluR1 because mGluR1 antagonists reduced but failed to completely block the responses. Voltage-clamp recordings revealed that slow inward currents sensitive to mGluR1 antagonist were larger at -60 than at -100 mV, whereas the currents insensitive to mGluR1 antagonist were larger at -100 than at -60 mV. In cell-attached recordings, repetitive internal capsule stimulation evoked long-lasting excitations in GPe neurons, which were also partially suppressed by mGluR1 antagonists. Application of a glutamate uptake inhibitor or an mGluR1 agonist significantly increased the spontaneous firing rate but decreased the excitations to repetitive stimulation. These results suggest that synaptically released glutamate can activate mGluR1, contributing to the induction of long-lasting excitation in GPe neurons and that background mGluR1 activation suppresses the slow mGluR1 responses. Thus mGluR1 may play important roles in the control of GPe neuronal activity.  相似文献   

2.
Jin XT  Smith Y 《Neuroscience》2007,149(2):338-349
The globus pallidus (GP) plays a central integrative role in the basal ganglia circuitry. It receives strong GABAergic inputs from the striatum (Str) and significant glutamatergic afferents from the subthalamic nucleus (STN). The change in firing rate and pattern of GP neurons is a cardinal feature of Parkinson's disease pathophysiology. Kainate receptor (KAR) GluR6/7 subunit immunoreactivity is expressed presynaptically in GABAergic striatopallidal terminals which provides a substrate for regulation of GABAergic transmission in GP. To test this hypothesis, we recorded GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in the GP following electrical stimulation of the Str. Following blockade of AMPA and N-methyl-d-aspartate receptors with selective antagonists, bath application of kainate (KA) (0.3-3 microM) reduced significantly the amplitude of evoked IPSCs. This inhibition was associated with a significant increase in paired-pulse facilitation ratio and a reduction of the frequency, but not amplitude, of miniature inhibitory postsynaptic currents (mIPSCs), suggesting a presynaptic site of KA action. The KA effects on striatopallidal GABAergic transmission were blocked by the G-protein inhibitor, N-ethylmaleimide (NEM), or protein kinase C (PKC) inhibitor calphostin C. Our results demonstrate that KAR activation inhibits GABAergic transmission through a presynaptic G protein-coupled, PKC-dependent metabotropic mechanism in the rat GP. These findings open up the possibility for the development of KA-mediated pharmacotherapies aimed at decreasing the excessive and abnormally regulated inhibition of GP neurons in Parkinson's disease.  相似文献   

3.
Degeneration of dopaminergic nigrostriatal neurons in primate models of Parkinson's disease (PD) leads to an overactivity of excitatory glutamatergic projections from the subthalamic nucleus (STN) to the output nuclei of the basal ganglia resulting in rigidity and akinesia. The selective alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonist 6-nitro-sulfamoyl-benzo-quinoxaline-dione (NBQX) and the competitive N-methyl-D-aspartate (NMDA) antagonist 3-carboxy-piperazin-propyl phosphonic acid (CPP) ameliorate parkinsonian symptomatology when co-administered with threshold doses of L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets and induce rotations in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra (SN). Here we report that in the 6-OHDA-lesioned rat NBQX and CPP induce contralateral rotations when combined with threshold doses of the direct dopamine agonists lisuride or apomorphine. AMPA antagonists and competitive NMDA antagonists may therefore be suitable as adjuvants for the treatment of PD.  相似文献   

4.
Wilson CL  Puntis M  Lacey MG 《Neuroscience》2004,123(1):187-200
In Parkinson's disease the neurones of the subthalamic nucleus show increased synchrony and oscillatory burst discharge, thought to reflect a breakdown of parallel processing in basal ganglia circuitry. To understand better the mechanisms underlying this transition, we sought to mimic this change in firing pattern within sagittal slices of rat midbrain. The firing patterns of up to four simultaneously extracellularly recorded subthalamic nucleus (STN) neurones were analysed using burst and oscillation detection programs, and correlated activity between pairs of neurones assessed. In control conditions all but 11 of 488 (2%) neurones fired in a predominantly tonic pattern (with mean oscillation frequency >3 Hz), with no significantly cross-correlated activity in any of 393 pairs of neurones. The glutamate antagonists DL-2-amino-phosphonopentanoic acid (APV), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-methyl-2-(phenylethynyl)pyridine (MPEP) did not change the firing rate or pattern of these cells, providing no evidence for a role of glutamatergic collaterals within the STN under these conditions. The GABA(A) receptor antagonist bicuculline and GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl]phenylmethyl phosphinic acid (CGP 55845) were also without effect on firing rate or pattern in these cells, suggesting that there was no active input from other GABAergic basal ganglia nuclei in this slice. The dopamine receptor antagonist haloperidol caused no significant change to firing rate or pattern of firing in these cells, suggesting that there was no active dopaminergic input in this slice. Excitations of STN neurones by muscarine, (+)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), N-methyl-D-aspartic acid (NMDA) or dopamine were all unaccompanied by a change in firing pattern or any significant correlated activity between STN neurone pairs. Burst firing could be induced in STN neurones with either the potassium channel blocker tetraethylammonium (TEA; 10 mM; in 100/138 [72%] of cells) or with a combination of NMDA and the calcium-activated potassium channel blocker apamin (in 101/216 [47%] of cells). Burst firing in TEA was unchanged by CNOX and APV, MPEP, CGP55845, haloperidol, dopamine, and ACPD, although muscarine produced a significant increase in oscillation frequency. Burst firing in NMDA and apamin was unchanged by CNQX and APV, dopamine, muscarine and ACPD, although bicuculline caused a significant increase in oscillation frequency. Such burst firing was not accompanied by synchrony in any condition, either alone, or during application of excitatory agents or glutamate or GABA antagonists. As the bursting seen here was unaccompanied by the synchronous activity that has often been observed (pathologically) in vivo, it probably reflects solely intrinsic STN neuronal properties, rather than network activity. No functional role was found for glutamatergic collaterals within the STN, either when cells are firing tonically or burst firing. The circuitry needed to produce synchrony in the STN is most likely not intrinsic to the STN itself, but requires connections with other basal ganglia nuclei, and/or the cortex, which are not present in this preparation.  相似文献   

5.
Oscillations with periods in the multisecond range have previously been recorded in basal ganglia neurons of awake paralyzed rats, and in these animals were shown to be increased by systemic dopaminergic stimulation, but not altered by depletion of the nigrostriatal dopamine supply. To determine whether oscillations with frequencies below 0.5 Hz also exist in the primate basal ganglia, the spontaneous neuronal activity in the subthalamic nucleus (STN) and in the external and internal segments of the globus pallidus (GPe and GPi, respectively) was recorded with standard extracellular recording methods in two animals before and after treatment with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Oscillations with mean periods around 80 s were identified in 30% percent of GPe neurons, 36% of STN neurons, and 48% of GPi neurons. After recording in the normal state, the animals were rendered parkinsonian by intracarotid application of MPTP. This treatment resulted in a 30% reduction of the average discharge rate in GPe, a 47% increase of the average discharge rate in STN, and a 15% increase of the average discharge rate in GPi. However, there were no changes in the proportion of cells with slow oscillatory discharge. The oscillation frequencies were slightly increased in STN but remained unchanged in GPe and GPi. The results demonstrate that multisecond oscillations commonly occur in primate basal ganglia neurons and are unchanged by treatment with MPTP. The oscillations may have roles in fundamental functions of the basal ganglia-thalamocortical network, such as the regulation of the state of arousal.  相似文献   

6.
According to traditional models of the basal ganglia-thalamocortical network of connections, dopamine exerts D2-like receptor (D2LR)-mediated effects through actions on striatal neurons that give rise to the "indirect" pathway, secondarily affecting the activity in the internal and external pallidal segments (GPi and GPe, respectively) and the substantia nigra pars reticulata (SNr). However, accumulating evidence from the rodent literature suggests that D2LR activation also directly influences synaptic transmission in these nuclei. To further examine this issue in primates, we combined in vivo electrophysiological recordings and local intracerebral microinjections of drugs with electron microscopic immunocytochemistry to study D2LR-mediated modulation of neuronal activities in GPe, GPi, and SNr of normal and MPTP-treated (parkinsonian) monkeys. D2LR activation with quinpirole increased firing in most GPe neurons, likely due to a reduction of striatopallidal GABAergic inputs. In contrast, local application of quinpirole reduced firing in GPi and SNr, possibly through D2LR-mediated effects on glutamatergic inputs. Injections of the D2LR antagonist sulpiride resulted in effects opposite to those of quinpirole in GPe and GPi. D2 receptor immunoreactivity was most prevalent in putative striatal-like GABAergic terminals and unmyelinated axons in GPe, GPi, and SNr, but a significant proportion of immunoreactive boutons also displayed ultrastructural features of glutamatergic terminals. Postsynaptic labeling was minimal in all nuclei. The D2LR-mediated effects and pattern of distribution of D2 receptor immunoreactivity were maintained in the parkinsonian state. Thus, in addition to their preferential effects on indirect pathway striatal neurons, extrastriatal D2LR activation in GPi and SNr also influences direct pathway elements in the primate basal ganglia under normal and parkinsonian conditions.  相似文献   

7.
Wittmann M  Hubert GW  Smith Y  Conn PJ 《Neuroscience》2001,105(4):881-889
The substantia nigra pars reticulata is a primary output nucleus of the basal ganglia motor circuit and is controlled by a fine balance between excitatory and inhibitory inputs. The major excitatory input to GABAergic neurons in the substantia nigra arises from glutamatergic neurons in the subthalamic nucleus, whereas inhibitory inputs arise mainly from the striatum and the globus pallidus. Anatomical studies revealed that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the basal ganglia. Interestingly, mRNA for group I mGluRs are abundant in neurons of the subthalamic nucleus and the substantia nigra pars reticulata. Thus, it is possible that group I mGluRs play a role in the modulation of glutamatergic synaptic transmission at excitatory subthalamonigral synapses. To test this hypothesis, we investigated the effects of group I mGluR activation on excitatory synaptic transmission in putative GABAergic neurons in the substantia nigra pars reticulata using the whole cell patch clamp recording approach in slices of rat midbrain. We report that activation of group I mGluRs by the selective agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM) decreases synaptic transmission at excitatory synapses in the substantia nigra pars reticulata. This effect is selectively mediated by presynaptic activation of the group I mGluR subtype, mGluR1. Consistent with these data, electron microscopic immunocytochemical studies demonstrate the localization of mGluR1a at presynaptic sites in the rat substantia nigra pars reticulata.From this finding that group I mGluRs modulate the major excitatory inputs to GABAergic neurons in the substantia nigra pars reticulata we suggest that these receptors may play an important role in basal ganglia functions. Studying this effect, therefore, provides new insights into the modulatory role of glutamate in basal ganglia output nuclei in physiological and pathophysiological conditions.  相似文献   

8.
Previous studies from this laboratory have shown that many neurons in the basal ganglia have multisecond (<0.5 Hz) periodicities in firing rate in awake rats. The frequency and regularity of these oscillations are significantly increased by systemically injected dopamine (DA) agonists. Because oscillatory activity should have greater functional impact if shared by many neurons, the level of correlation of multisecond oscillations was assessed by recording pairs of neurons in the globus pallidus and substantia nigra pars reticulata in the same hemisphere, or pairs of globus pallidus neurons in opposite hemispheres in awake, immobilized rats. Cross-correlation (90-180 s lags) and spectral analysis were used to characterize correlated oscillations. Thirty-eight percent of pairs recorded in baseline (n=50) demonstrated correlated multisecond oscillations. Phase relationships were near 0 or 180 degrees. DA agonist injection significantly increased the incidence of correlation (intra- and interhemispheric) to 94% (n=17). After DA agonist injection, phase relationships of globus pallidus/substantia nigra neuron pairs were exclusively concentrated near 180 degrees, and phases of interhemispheric pairs of globus pallidus neurons were concentrated near 0 degrees. After subthalamic nucleus lesion (n=8), the incidence of correlated multisecond oscillations (or of multisecond oscillations per se) was not changed, although the consistent phase relationship between the globus pallidus and substantia nigra pars reticulata was disrupted. Subthalamic lesion also blocked apomorphine-induced decreases in oscillatory period and increases in oscillation amplitude, and significantly attenuated apomorphine-induced changes in mean firing rate. The data demonstrate that multisecond oscillations in the basal ganglia can be correlated between nuclei, and that DA receptor activation increases the level of correlation and organizes internuclear phase relationships at these multisecond time scales. While the subthalamic nucleus is not necessary for generating or transmitting these slow oscillations, it is involved in DA agonist-induced modulation of mean firing rate, oscillatory period, and internuclear phase relationship. These data further support a role for DA in modulating coherent oscillatory activity in the basal ganglia, and for the subthalamic nucleus in shaping the effects of DA receptor stimulation on basal ganglia output.  相似文献   

9.
Reciprocally connected glutamatergic subthalamic and GABAergic globus pallidus neurons have recently been proposed to act as a generator of low-frequency oscillatory activity in Parkinson's disease. To determine whether GABA(A) receptor-mediated synaptic potentials could theoretically generate rebound burst firing in subthalamic neurons, a feature that is central to the proposed oscillatory mechanism, we determined the equilibrium potential of GABA(A) current (E(GABA(A))) and the degree of hyperpolarization required for rebound firing using perforated-patch recording. In the majority of neurons that fired rebounds, E(GABA(A)) was equal to or more hyperpolarized than the hyperpolarization required for rebound burst firing. These data suggest that synchronous activity of pallidal inputs could underlie rhythmic bursting activity of subthalamic neurons in Parkinson's disease.  相似文献   

10.
Li DP  Yang Q  Pan HM  Pan HL 《The Journal of physiology》2008,586(6):1637-1647
Increased sympathetic outflow plays an important role in the pathogenesis of hypertension. Glutamatergic inputs in the paraventricular nucleus (PVN) of the hypothalamus maintain resting sympathetic vasomotor tone in spontaneously hypertensive rats (SHR). In this study, we determined the synaptic and cellular mechanisms of increased glutamatergic inputs to PVN presympathetic neurons in SHR. The spinally projecting PVN neurons were retrogradely labelled by fluorescent microspheres injected into the intermediolateral cell column of the spinal cord. Blockade of NMDA and non-NMDA receptors significantly decreased the firing activity of labelled PVN neurons in brain slices in SHR, but not in normotensive Wistar–Kyoto rats (WKY). The basal frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs, respectively) of labelled PVN neurons was significantly greater in SHR than in WKY. But the frequency of neither sEPSCs nor mEPSCs stimulated by 4-aminopyridine or capsaicin differed significantly between WKY and SHR. Furthermore, the amplitude of postsynaptic NMDA currents elicited by either electrical stimulation or puff application in labelled PVN neurons was significantly higher in SHRs than in WKY. However, the evoked AMPA current amplitude in PVN neurons was similar in WKY and SHR. This study provides new evidence of how the glutamatergic synaptic inputs to PVN presympathetic neurons are increased and how they contribute to the elevated firing activity of these neurons in SHR. The augmented glutamatergic tone in the PVN is maintained by an increase in presynaptic glutamate release and an up-regulation of postsynaptic NMDA receptor function in SHR.  相似文献   

11.
Current models of basal ganglia function predict that dopamine agonist-induced motor activation is mediated by decreases in basal ganglia output. This study examines the relationship between dopamine agonist effects on firing rate in basal ganglia output nuclei and rotational behavior in rats with nigrostriatal lesions. Extracellular single-unit activity ipsilateral to the lesion was recorded in awake, locally-anesthetized rats. Separate rats were used for behavioral experiments. Low i.v. doses of D1 agonists (SKF 38393, SKF 81297, SKF 82958) were effective in producing rotation, yet did not change average firing rate in the substantia nigra pars reticulata or entopeduncular nucleus. At these doses, firing rate effects differed from neuron to neuron, and included increases, decreases, and no change. Higher i.v. doses of D1 agonists were effective in causing both rotation and a net decrease in rate of substantia nigra pars reticulata neurons. A low s.c. dose of the D1/D2 agonist apomorphine (0.05 mg/kg) produced both rotation and a robust average decrease in firing rate in the substantia nigra pars reticulata, yet the onset of the net firing rate decrease (at 13-16 min) was greatly delayed compared to the onset of rotation (at 3 min). Immunostaining for the immediate-early gene Fos indicated that a low i.v. dose of SKF 38393 (that produced rotation but not a net decrease in firing rate in basal ganglia output nuclei) induced Fos-like immunoreactivity in the striatum and subthalamic nucleus, suggesting an activation of both inhibitory and excitatory afferents to the substantia nigra and entopeduncular nucleus. In addition, D1 agonist-induced Fos expression in the striatum and subthalamic nucleus was equivalent in freely-moving and awake, locally-anesthetized rats. The results show that decreases in firing rate in basal ganglia output nuclei are not necessary for dopamine agonist-induced motor activation. Motor-activating actions of dopamine agonists may be mediated by firing rate decreases in a small subpopulation of output nucleus neurons, or may be mediated by other features of firing activity besides rate in these nuclei such as oscillatory firing pattern or interneuronal firing synchrony. Also, the results suggest that dopamine receptors in both the striatum and at extrastriatal sites (especially the subthalamic nucleus) are likely to be involved in dopamine agonist influences on firing rates in the substantia nigra pars reticulata and entopeduncular nucleus.  相似文献   

12.
The reciprocal connections between the globus pallidus (GP) and other basal ganglia (BG) nuclei indicate that the GP plays a significant role in controlling the neuronal activity of the entire BG; in turn, the activity of GP neurons is controlled by several major inputs that involve the striatum. Here, we determined the relative contributions of the selective (chemical) or massive (electrical) activation of the striatal GABAergic transmission to the GP spiking activity. In vivo extracelullar single-unit recordings were performed in the GP of ketamine-anesthetized rats. Both chemical and electrical stimulation of the striatum caused a significant GP spike rate reduction; however, chemical stimulation of the striatum produced a complete firing arrest on most GP neurons, something not seen with electrical stimulation. In addition, chemical stimulation of the striatum with NMDA evoked a significant long-lasting post-inhibitory spike rate increase, an effect that was not seen under glutamate infusion or electrical stimulation. Furthermore, the selective intrapallidal blockade of AMPA/kainate glutamate receptors facilitates the inhibitory effect of intrastriatal electrical stimulation. Our results suggest a differential effect of electrical or chemical stimulation of the striatum on the spiking activity of GP neurons, which involves the activation of intrapallidal AMPA/kainate receptors and striatal en passant fibers.  相似文献   

13.
The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABAB receptors. Stimulation of the GABAB receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 μM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABAB receptor agonist baclofen (100 and 200 μM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABAB receptor stimulation seems to be behaviorally relevant. Electronic Publication  相似文献   

14.
The ionotropic glutamate receptors N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are present peripherally in the primary sensory afferent neurons innervating the viscera. Multiple studies have reported roles of glutamate receptors in gastric functions. However, no study has previously shown the direct influence of ionotropic glutamate receptor antagonist on vagal sensory neurons. The objective of this study was to investigate the effects of NMDA and AMPA receptor antagonists on mechanotransduction properties of vagal afferent fibers innervating the rat stomach. Action potentials were recorded from the hyponodal vagus nerve innervating the antrum of the Long-Evans rats. For antral distension (AD), a small latex balloon was inserted into the stomach and positioned in the antrum. The antral contractions were recorded with solid-state probe inserted into the water-filled balloon. Antral units were identified to isovolumic (0.2-1 ml) or isobaric AD (5-60 mm Hg). NMDA and AMPA receptor antagonists were injected in a cumulative fashion (1-100 micromol/kg, i.v.). After the conclusion of experiment, the abdomen was opened and receptive field was mapped by probing the serosa of the stomach. Thirty-two fibers were identified to AD. The receptive fields of 26 fibers were located in the posterior part of the antrum. All fibers exhibited spontaneous firing (mean: 7.00+/-0.97 impulses/s). Twenty fibers exhibited a rhythmic firing that was in phase with antral contractions, whereas 12 fibers exhibited non-rhythmic spontaneous firing unrelated to spontaneous antral contraction. Both groups of fibers exhibited a linear increase in responses to graded isovolumic or isobaric distensions. NMDA (memantine HCl and dizocilpine (MK-801)) and AMPA/kainate (6-cyano-7-nitroquinoxaline 2,3-dione; CNQX) receptor antagonists dose-dependently attenuated the mechanotransduction properties of these fibers to AD. However, competitive NMDA antagonist dl-2-amino-5 phosphopentanoic acid (AP-5) had no effect. The study documents that glutamate receptor antagonists can attenuate responses of gastric vagal sensory afferent fibers innervating the distal stomach, offering insight to potential pharmacological agents in the treatment of gastric disorders.  相似文献   

15.
As a first step in understanding the development of synaptic activation in the locomotor network of the zebrafish, we examined the properties of spontaneous, glutamatergic miniature excitatory postsynaptic currents (mEPSCs). Whole cell patch-clamp recordings were obtained from visually identified hindbrain reticulospinal neurons and spinal motoneurons of curarized zebrafish 1-5 days postfertilization (larvae hatch after the 2nd day of embryogenesis). In the presence of tetrodotoxin (TTX) and blockers of inhibitory receptors (strychnine and picrotoxin), we detected fast glutamatergic mEPSCs that were blocked by the AMPA/kainate receptor-selective antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). At positive voltages or in the absence of Mg(2+), a second, slower component of the mEPSCs was revealed that the N-methyl-D-aspartate (NMDA) receptor-selective antagonist DL-2-amino-5-phosphonovalerate (AP-5) abolished. In the presence of both CNQX and AP-5, all mEPSCs were eliminated. The NMDA component of reticulospinal mEPSCs had a large single-channel conductance estimated to be 48 pS. Larval AMPA/kainate and NMDA components of the mEPSCs decayed with biexponential time courses that changed little during development. At all stages examined, approximately one-half of synapses had only NMDA responses (lacking AMPA/kainate receptors), whereas the remainder of the synapses were composed of a mixture of AMPA/kainate and NMDA receptors. There was an overall increase in the frequency and amplitude of mEPSCs with an NMDA component in reticulospinal (but not motoneurons) during development. These results indicate that glutamate is a prominent excitatory transmitter in the locomotor regions of the developing zebrafish and that it activates either NMDA receptors alone at functionally silent synapses or together with AMPA/kainate receptors.  相似文献   

16.
How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. In the present study, by using awake monkeys, the polysynaptic effects of electrical stimulation in the forelimb regions of the primary motor and primary somatosensory cortices on the activity of globus pallidus (GP) neurons, especially mediated by the subthalamic nucleus (STN), have been characterized. Cortical stimulation induced an early, short-latency excitation followed by an inhibition and a late excitation in neurons of both the external and internal segments of the GP. It also induced an early, short-latency excitation followed by a late excitation and an inhibition in STN neurons. The early excitation in STN neurons preceded that in GP neurons. Blockade of STN neuronal activity by muscimol (GABA(A) receptor agonist) injection resulted in abolishment of both the early and late excitations evoked in GP neurons by cortical stimulation. At the same time, the spontaneous discharge rate of GP neurons decreased, pauses between the groups of spikes of GP neurons became prominent, and the firing pattern became regular. Injection of (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) [N-methyl-D-aspartate (NMDA) receptor antagonist], but not 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX (non-NMDA receptor antagonist)], into the STN attenuated the early and late excitations in GP neurons, suggesting that cortico-subthalamic transmission is mediated mainly by NMDA receptors. Interference with the pallido-subthalamic transmission by bicuculline (GABA(A) receptor antagonist) injection into the STN made the inhibition distinct without affecting the early excitation. The present results indicate that the cortico-subthalamo-pallidal pathway conveys powerful excitatory effects from the motor-related cortical areas to the GP with shorter conduction time than the effects conveyed through the striatum.  相似文献   

17.
The activity-dependent induction of immediate-early genes is commonly used to map activated neuronal networks. In a previous analysis of the cortico-basal ganglia circuits, we have shown that a cortical stimulation produces Fos protein expression in the striatum and the subthalamic nucleus, with a pattern which conforms to the anatomical organization of cortical projections [Sgambato V. et al. (1996) Neuroscience 81, 93-112]. In the present study, we examined the effects of a unilateral blockade of the corticostriatal transmission on c-fos and zif 268 messenger RNA expression evoked in the substantia nigra pars reticulata and the subthalamic nucleus following stimulation of the ipsilateral motor cortex. The blockade of the corticostriatal pathway was performed either by an excitotoxic striatal lesion or by an application of the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione within the striatum. After application of the glutamate receptor antagonist, which prevented the cortical stimulation activating the GABAergic striatonigral pathway, the induction of both c-fos and zif 268 messenger RNAs was facilitated in the ipsilateral substantia nigra pars reticulata. In the subthalamic nucleus ipsilateral to the application of 6-cyano7-nitroquinoxaline-2,3-dione, the cellular discharges evoked by stimulation of the cortex were considerably shortened as a result of the blockade of the disinhibitory striato-pallido-subthalamic circuit. However, a strong expression of immediate-early genes was still induced by the cortical stimulation. By contrast, after unilateral kainate lesion of the striatum, the cortical stimulation was no longer able to induce c-fos and zif 268 messenger RNA expression in the ipsilateral subthalamic nucleus and in the substantia nigra pars reticulata bilaterally. The lack of immediate-early gene induction strongly contrasted with the neuronal discharges evoked in these nuclei by the cortical stimulation. Comparison between the cortically evoked neuronal activities and the pattern of immediate-early gene expression suggests that the induction of immediate-early genes in the basal ganglia mainly reflects the level of synaptic activity rather than the frequency of discharge of the postsynaptic neurons. Moreover, the results stress that modifications of immediate-early gene expression observed in the basal ganglia after an acute or a chronic interruption of the corticostriatal transmission are not superimposable.  相似文献   

18.
Most neurons in the external and internal segments of the globus pallidus and the substantia nigra pars reticulata (GPe, GPi, and SNr) are characterized by a high-frequency discharge (HFD) rate (50-80 Hz) that, in most GPe neurons, is also interrupted by pauses. Almost all (approximately 90%) of the synaptic inputs to these HFD neurons are GABAergic and inhibitory. Nevertheless, their responses to behavioral events are usually dominated by increases in discharge rate. Additionally, there are no reports of prolonged bursts in the spontaneous activity of these cells that could reflect their disinhibition by GPe pauses. We recorded the spontaneous activity of 385 GPe, GPi, and SNr HFD neurons during a quiet-wakeful state from two monkeys. We developed three complementary methods to quantify the balance of increases and decreases in the spontaneous discharge of HFD neurons and validated them by simulations. Unlike the behavioral evoked responses, the spontaneous activity of pallidal and SNr neurons is not dominated by increases. Moreover, the activity of basal ganglia neurons does not include bursts that could reflect disinhibition by the spontaneous pauses of GPe neurons. These findings suggest that the discharge increase/decrease balance during a quiet-wakeful state better reflects the inhibitory input of the HFD basal ganglia neurons than during responses to behavioral events; however, the GPe pauses are not echoed by comparable bursts either in the GPe or in the output nuclei. Changes in the excitatory drive of these structures (e.g., during behavioral activity) thus may lead to a remarkable change in this balance.  相似文献   

19.
To investigate the role of basal ganglia in locomotion, a multiple-channel, single-unit recording technique was used to record neural activity simultaneously in the dorsal lateral striatum (STR), globus pallidus (GP), subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) during spontaneous and treadmill locomotion tasks in freely moving rats. Active and quiescent phases appeared alternately in a spontaneous movement session that lasted 60 min. Principal component analysis of the ensemble neural activity from each region revealed a close correlation with spontaneous motor activity. Most of the neurons in these four basal ganglia areas increased their firing rates during the active phase. In the treadmill locomotion task, the firing rates of neurons in all recording areas, especially in the STN, increased significantly during locomotion. In addition, neural responses related to tone cue, initiation and termination of treadmill were observed in a subset of neurons in each basal ganglia region. Detailed video analysis revealed a limb movement related neural firing, predominantly in the STR and the GP, during treadmill walking. However, the proportion of neurons exhibiting limb movement related firing was significantly greater only in the STR. A few neurons in the STR (4.8%) and the GP (3.4%) discharged in an oscillatory pattern during treadmill walking, and the oscillatory frequency was similar to the frequency of the step cycle. This study demonstrates a variety of neural responses in the major basal ganglia regions during spontaneous and forced locomotion. General activation of all major basal ganglia regions during locomotion is more likely to provide a dynamic background for cortical signal processing rather than to directly control precise movements. Implications of these findings in the model of basal ganglia organization are discussed.  相似文献   

20.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by direct retinal ganglion cell projection to the suprachiasmatic nucleus (SCN). This synaptic connection is glutamatergic and the release of glutamate is detected by both N-methyl-D-asparate (NMDA) and amino-methyl proprionic acid/kainate (AMPA/KA) iontotropic glutamate receptors (GluRs). It is well established that NMDA GluRs play a critical role in mediating the effects of light on the circadian system; however, the role of AMPA/KA GluRs has received less attention. In the present study, we sought to better understand the contribution of AMPA/KA-mediated currents in the circadian system based in the SCN. First, whole cell patch-clamp electrophysiological techniques were utilized to measure spontaneous excitatory postsynaptic currents (sEPSCs) from SCN neurons. These currents were widespread in the SCN and not just restricted to the retino-recipient region. The sEPSC frequency and amplitude did not vary with the daily cycle. Similarly, currents evoked by the exogenous application of AMPA onto SCN neurons were widespread within the SCN and did not exhibit a diurnal rhythm in their magnitude. Fluorometric techniques were utilized to estimate AMPA-induced calcium (Ca(2+)) concentration changes in SCN neurons. The resulting data indicate that AMPA-evoked Ca(2+) transients were widespread in the SCN and that there was a daily rhythm in the magnitude of AMPA-induced Ca(2+) transients that peaked during the night. By itself, blocking AMPA/KA GluRs with a receptor blocker decreased the spontaneous firing of some SCN neurons as well as reduced resting Ca(2+) levels, suggesting tonic glutamatergic excitation. Finally, immunohistochemical techniques were used to describe expression of the AMPA-preferring GluR subunits GluR1 and GluR2/3s within the SCN. Overall, our data suggest that glutamatergic synaptic transmission mediated by AMPA/KA GluRs play an important role throughout the SCN synaptic circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号