首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the ATM gene are responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T). Many different mutations have been identified using various techniques, with detection efficiencies ranging from 57 to 85%. In this study, we employed short tandem repeat (STR) haplotypes to enhance mutation identification in 55 unrelated A-T families of Iberian origin (20 Spanish, 17 Brazilian, and 18 Hispanic-American); we were able to identify 95% of the expected mutations. Allelic sizes were standardized based on a reference sample (CEPH 1347-2). Subsequent mutation screening was performed by PTT, SSCP, and DHPLC, and abnormal regions were sequenced. Many STR haplotypes were found within each population and six haplotypes were observed across several of these populations. Single nucleotide polymorphism (SNP) haplotypes further suggested that most of these common mutations are ancestrally related, and not hot spots. However, two mutations (8977C>T and 8264_8268delATAAG) may indeed be recurring mutational events. Common haplotypes were present in 13 of 20 Spanish A-T families (65%), in 11 of 17 Brazilian A-T families (65%), and, in contrast, in only eight of 18 Hispanic-American families (44%). Three mutations were identified that would be missed by conventional screening strategies. In all, 62 different mutations (28 not previously reported) were identified and their associated haplotypes defined, thereby establishing a new database for Iberian A-T families, and extending the spectrum of worldwide ATM mutations.  相似文献   

2.
ATM has been identified as a gene that is responsible for ataxia telangiectasia (AT), a pleiotropic disorder of autosomal recessive inheritance. While many mutations of this gene in AT patients of various ethnicities have been reported, data on Japanese patients are scarce. In this report, we present the results of a thorough survey of ATM mutations in 14 unrelated AT patients, with an emphasis on Japanese subjects. We used a hierarchical strategy in which we extensively analyzed the entire coding region of the cDNA. In the first stage, point mutations were sought by PCR-SSCP in short patches. In the second and third stages, the products of medium- and long-patch PCR, each covering the entire region, were examined by agarose gel electrophoresis to search for length changes. We found a total of 15 mutations (including 12 new) and 4 polymorphisms. Abnormal splicing of ATM was frequent among Japanese, and no hotspot was obvious, suggesting no strong founder effects in this ethnic group. Eleven patients carried either one homozygous or two compound heterozygous mutations, one patient carried only one detectable heterozygous mutation, and no mutation was found in two patients. Overall, mutations were found in at least 75% of the different ATM alleles examined. Possible reasons for the inability to detect mutations in some patients are discussed. Hum Mutat 12:186–195, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Mutations in the ATM gene are responsible for the autosomal recessive disorder, ataxia telangiectasia (A-T). Mutations in different ethnic groups are distributed along the entire length of the large, 66 exon ATM gene. In this study, A-T patients from 16 Russian families were assessed for immunological status and ATM haplotype analysis, and screened for ATM mutations. Haplotype analysis was performed to enhance the efficiency of mutation detection. Mutations predicted to cause disease were identified in 19 of 32 alleles (59%), including a truncating mutation (c.5932G>T) that was identified in 8/32 (25%) alleles both by haplotype analysis and mutation screening. This mutation has been found in low abundance in other European A-T cohorts suggesting that this founder-effect mutation may be of Russian origin. The abundance of this mutation may allow for large-scale screening of cancer patients to help clarify the role of ATM in breast and other cancers. Nine of the remaining mutations were previously unreported, and add to the multitude of unique mutations found throughout the gene.  相似文献   

4.
Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, immune defects and predisposition to malignancies. A-T is caused by biallelic inactivation of the ATM gene, in most cases by frameshift or nonsense mutations. More rarely, ATM missense mutations with unknown consequences on ATM function are found, making definitive diagnosis more challenging. In this study, a series of 15 missense mutations, including 11 not previously reported, were identified in 16 patients with clinical diagnosis of A-T belonging to 14 families and 1 patient with atypical clinical features. ATM function was evaluated in patient lymphoblastoid cell lines by measuring H2AX and KAP1 phosphorylation in response to ionizing radiation, confirming the A-T diagnosis for 16 cases. In accordance with previous studies, we showed that missense mutations associated with A-T often lead to ATM protein underexpression (15 out of 16 cases). In addition, we demonstrated that most missense mutations lead to an abnormal cytoplasmic localization of ATM, correlated with its decreased expression. This new finding highlights ATM mislocalization as a new mechanism of ATM dysfunction, which may lead to therapeutic strategies for missense mutation associated A-T.  相似文献   

5.
Heterozygous carriers of ATM (ataxia telangiectasia mutated gene) mutations have increased risk of breast cancer (BC). We have estimated the prevalence of mutations in the ATM gene among Spanish patients with early-onset BC. Forty-three patients diagnosed with BC before the age of 46 years, and negative for BRCA1 and BRCA2 mutations, were analysed for the presence of ATM mutations. A total of 34 ATM sequence variants were detected: 1 deleterious mutation, 10 unclassified variants and 23 polymorphisms. One patient (2.3%) carried the ATM deleterious mutation (3802delG that causes ataxia telangiectasia in the homozygous state) and 13 patients carried the 10 ATM unclassified variants. The truncating mutation 3802delG and eight of the rare variants were not detected in a control group of 150 individuals. Different bioinformatic sequence analysis tools were used to evaluate the effects of the unclassified ATM changes on RNA splicing and function protein. This in silico analysis predicted that the missense variants 7653 T>C and 8156 G>A could alter the splicing by disrupting an exonic splicing enhancer motif and the 3763 T>G, 6314 G>C, and 8156 G>A variants would affect the ATM protein function. These are the initial results concerning the prevalence of germline mutations in the ATM gene among BC cases in a Spanish population, and they suggest that ATM mutations can confer increased susceptibility to early-onset BC.  相似文献   

6.
Ataxia telangiectasia gene mutations in leukaemia and lymphoma   总被引:10,自引:0,他引:10       下载免费PDF全文
Ataxia telangiectasia (AT) is a rare multisystem, autosomal, recessive disease characterised by neuronal degeneration, genome instability, and an increased risk of cancer. Approximately 10% of AT homozygotes develop cancer, mostly of the lymphoid system. Lymphoid malignancies in patients with AT are of both B cell and T cell origin, and include Hodgkin's lymphoma, non-Hodgkin's lymphoma, and several forms of leukaemia. The AT locus was mapped to the chromosomal region 11q22-23 using genetic linkage analysis in the late 1980s and the causative gene was identified by positional cloning several years later. The ATM gene encodes a large protein that belongs to a family of kinases possessing a highly conserved C-terminal kinase domain related to the phosphatidylinositol 3-kinase domain. Members of this kinase family have been shown to function in DNA repair and cell cycle checkpoint control following DNA damage. Recent studies indicate that ATM is activated primarily in response to double strand breaks and may be considered a caretaker of the genome. Most mutations in ATM result in truncation and destabilisation of the protein, but certain missense and splicing errors have been shown to produce a less severe phenotype. AT heterozygotes have a slightly increased risk of breast cancer. Atm deficient mice exhibit many of the symptoms found in patients with AT and have a high frequency of thymic lymphoma. The association between mutation of the ATM gene and a high incidence of lymphoid malignancy in patients with AT, together with the development of lymphoma in Atm deficient mice, supports the proposal that inactivation of the ATM gene may be of importance in the pathogenesis of sporadic lymphoid malignancy. Loss of heterozygosity at 11q22-23 (the location of the ATM gene) is a common event in lymphoid malignancy. Frequent inactivating mutations of the ATM gene have been reported in patients with rare sporadic T cell prolymphocytic leukaemia (T-PLL), B cell chronic lymphocytic leukaemia (B-CLL), and most recently, mantle cell lymphoma (MCL). In contrast to the ATM mutation pattern in AT, the most frequent nucleotide changes in these sporadic lymphoid malignancies were missense mutations. The presence of inactivating mutations, together with the deletion of the normal copy of the ATM gene in some patients with T-PLL, B-CLL, and MCL, establishes somatic inactivation of the ATM gene in the pathogenesis of lymphoid malignancies, and strongly suggests that ATM functions as a tumour suppressor. The presence of missense mutations in the germline of patients with B-CLL has been reported, suggesting that some patients with B-CLL may be constitutional AT heterozygotes. The putative hereditary predisposition of B-CLL, although intriguing, warrants further investigation.  相似文献   

7.
Due to the large size (150 kb) of the ataxia-telangiectasia mutated (ATM) gene and the existence of over 400 mutations, identifying mutations in patients with ataxia-telangiectasia (A-T) is labor intensive. We compared the SNP and STR haplotypes of A-T patients from varying ethnicities who were carrying common ATM mutations. We used SSCP to determine SNP haplotypes. To our surprise, all of the most common ATM mutations in our large multiethnic cohort were associated with specific SNP haplotypes, whereas the STR haplotypes varied, suggesting that ATM mutations predated STR haplotypes but not SNP haplotypes. We conclude that these frequently observed ATM mutations are not hot spots, but have occurred only once and spread with time to different ethnic populations. More generally, a combination of SNP and STR haplotyping could be used as a screening strategy for identifying mutations in other large genes by first determining the ancestral SNP and STR haplotypes in order to identify specific founder mutations. We estimate this approach will identify approximately 30% of mutations in A-T patients across all ethnic groups.  相似文献   

8.
9.
We characterized microsatellite marker haplotypes and identified mutations in members of 19 ethnically diverse Israeli families affected by Wilson disease (WD). Eighteen unique haplotypes were derived from allelic combinations for four marker loci spanning the WD gene, ATP7B, at chromosome 13q14.3: D13S133, D13S296, D13S301 and D13S295. Most of these haplotypes are population specific and vary among and even within different ethnic groups. Intrafamilial variability of WD haplotypes was observed in two large consanguineous families in which a single origin of WD was expected. In contrast, some WD haplotypes were identified in more than one group. Five novel and four previously described mutations were detected in our sample. The novel mutations include two deletions (845delT and 1639delC) and three missense mutations (E1064A, M645R, and G1213V). Mutations were identified for 11 of the 18 WD haplotypes, suggesting that other mutations may reside in noncoding regions of the ATP7B gene. Identification of all WD mutations will undoubtedly increase our understanding of the normal function of ATP7B as well as lead to more accurate prognosis and genetic counseling. Hum Mutat 11:145–151, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Studies of families of patients with ataxia telangiectasia (A-T) show an increased risk of breast cancer in heterozygous A-T carriers. However, expected increased levels of mutations in the ATM gene among unselected breast cancer patients have not been found to date. Previous methods of mutation detection were biased toward the detection of truncating mutations, and single nucleotide substitutions were likely to have been underreported. In this study, genomic DNA from 43 breast cancer patients and 43 control individuals were scanned for mutations in the entire ATM coding region (exons 4-65) and adjacent intronic splice regions (three megabases total) using detection of virtually all mutation-single-strand conformation polymorphism (SSCP), a modification of SSCP with sufficient redundancy to detect virtually all mutations. Excluding a polymorphism found commonly in cases and controls, there were missense changes in 12 breast cancer patients, one of whom also had a protein truncating mutation, versus six controls (P=0.09). When all structural changes common to the cases and controls were excluded, missense or truncating changes were found in 10 cases compared to two in controls (P=0.013). The background of missense changes in controls is high. There is a trend towards elevation of all structural changes in cases, but the results are not statistically significant. Cohort-specific structural changes are significantly more prevalent in the breast cancer patients. The data are compatible with certain missense mutations in ATM predisposing to breast cancer.  相似文献   

11.
Ataxia‐telangiectasia (A‐T) is an early onset autosomal recessive ataxia associated with characteristic chromosomal aberrations, cell cycle checkpoint defects, cancer susceptibility, and sensitivity to ionizing radiation. We utilized the protein truncation test (PTT), and single strand conformation polymorphism (SSCP) on cDNA, as well as denaturing high performance liquid chromatography (dHPLC) on genomic DNA (gDNA) to screen for mutations in 24 Polish A‐T families. Twenty‐six distinct Short Tandem Repeat (STR) haplotypes were identified. Three founder mutations accounted for 58% of the alleles. Three‐quarters of the families had at least one recurring (shared) mutation, which was somewhat surprising given the low frequency of consanguinity in Poland. STR haplotyping greatly improved the efficiency of mutation detection. We identified 44 of the expected 48 mutations (92%): sixty‐nine percent were nonsense mutations, 23% caused aberrant splicing, and 5% were missense mutations. Four mutations have not been previously described. Two of the Polish mutations have been observed previously in Amish and Mennonite A‐T patients; this is compatible with historical records. Shared mutations shared the same Single Nucleotide Polymorphism (SNP) and STR haplotypes, indicating common ancestries. The Mennonite mutation, 5932 G>T, is common in Russian A‐T families, and the STR haplovariants are the same in both Poland and Russia. Attempts to correlate phenotypes with genotypes were inconclusive due to the limited numbers of patients with identical mutations.  相似文献   

12.

Introduction

Ataxia telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease. AT is the result of mutations in the AT-mutated (ATM) gene. ATM protein is required for radiation-induced apoptosis and acts before mitochondrial collapse. The tRNA genes are considered one of the hot spots for mutations causing mitochondrial disorders. Due to the important role of ATM in apoptosis and its effect on the cell cycle it might be possible that it has a central role in mtDNA mutations. On the other hand, the tRNALys/Leu gene and also ATPase6 and ATPase8 genes are important for many mitochondrial diseases and many causative mutations have been reported from these genes.

Material and methods

In the present research, we performed mutation screening for these genes in 20 patients who were diagnosed with ataxia telangiectasia by a PCR sequencing method.

Results

The results showed a significant level of mtDNA variations in AT patients. Among 20 patients in this study, 12 patients (60%) were detected with point mutations, among which 8 mutations (40%) belonged to the MT-ATP6 gene. There was probably a second effect of mtDNA mutations in AT disease and mtDNA plays a main role in establishment of AT.

Conclusions

MtDNA mutations might be responsible for the decline of mitochondrial function in AT patients. Mitochondrial investigation can help to understand the mechanism of damage in AT disease.  相似文献   

13.
Ataxia telangiectasia (A-T), an autosomal recessive neuro-immunologic disease with cancer susceptibility, results from ATM gene mutations. Most mutations in A-T patients cause protein truncation. Epidemiologic evidence suggests that ATM gene mutation carriers may be at increased risk for breast cancer, but the protein-truncating mutations that compose the majority of mutations in patients with ataxia telangiectasia are not elevated in women with breast cancer. In this report we present evidence that missense mutations in the ATM gene predispose to breast cancer. The analysis was performed in two phases in a total of 90 women with breast cancer and 90 ethnically similar control individuals. DOVAM-S, a robotically enhanced multiplexed, highly redundant form of SSCP in which virtually all mutations within the input amplicons can be detected, was used to scan all the coding exons and flanking splice junctions. Cohort-specific mutations were significantly elevated in women with breast cancer in phase 1 (43 cases) and phase 2 (47 cases). For the 90 patients and 90 controls, total missense mutations were significantly elevated in cases [OR=2.0; 90% CI=1.01-4.15]. Cohort-specific missense variants displayed an odds ratio of 4.0 (90% CI=1.37-13.5). It is estimated that the attributable risk of mutations in the ATM gene is 13% in this cohort of women with breast cancer.  相似文献   

14.
15.
Epidemiological studies have shown an increased risk of breast cancer in obligate ataxia telangiectasia (A-T) heterozygotes. We analyzed 100 samples from young breast cancer patients for mutations in ataxia-telangiectasia mutated (ATM), the gene responsible for the autosomal recessive condition, A-T, to determine whether A-T heterozygosity predisposes such individuals to develop breast cancer. These patients were selected from families with a moderate or absent family history of breast cancer and included a subset of 16 radiosensitive patients. Forty-four germline sequence variants were detected by fluorescent chemical cleavage of mismatch of RT-PCR products. These included seven rare variants found in nine patients (three described for the first time), but no truncating mutations. Although three variants were detected in the radiosensitive subset, this was not statistically significant compared to the nonradiosensitive group. One variant, G2765S, is likely to be a missense mutation, but the other six variants probably represent rare polymorphisms. However, five of the seven rare germline variants detected showed loss of heterozygosity of the wild-type ATM allele for one or more markers close to the ATM locus in matched tumor DNA. This high rate of somatic inactivation of ATM may indicate either that these rare variants play a role in breast cancer development or alternatively that a neighboring tumor suppressor gene is important for tumorigenesis. We found germline truncating ATM mutations to be rare in these young breast cancer patients and therefore they are unlikely to play a role in the etiology of their disease. Genes Chromosomes Cancer 26:286-294, 1999.  相似文献   

16.
ATM: from gene to function   总被引:17,自引:3,他引:14  
Rotman  G; Shiloh  Y 《Human molecular genetics》1998,7(10):1555-1563
The identification of ATM , the gene responsible for the pleiotropic recessive disease ataxia telangiectasia, has initiated extensive research to determine the functions of its multifaceted protein product. The ATM protein belongs to a family of protein kinases that share similarities at their C-terminal region with the catalytic domain of phosphatidylinositol 3-kinases. Studies with ataxia telangiectasia (A-T) cells and Atm-deficient mice have shown that ATM is a key regulator of multiple signaling cascades which respond to DNA strand breaks induced by damaging agents or by normal processes, such as meiotic or V(D)J recombination. These responses involve the activation of cell cycle checkpoints, DNA repair and apoptosis. Other roles outside the cell nucleus might be carried out by the cytoplasmic fraction of ATM. In addition, ATM appears to function as a 'caretaker', suppressing tumorigenesis in specific T cell lineages.   相似文献   

17.
The gene for ataxia‐telangiectasia, ATM, spans about 150 kb of genomic DNA. ATM mutations are found along the entire gene, with no evidence of a mutational hot spot. Using DNA as the starting material, we screened the ATM gene in 92 A‐T patients, using an optimized single‐strand conformation polymorphism (SSCP) technique that detected all previously known mutations in the polymerase chain reaction (PCR) segments being analyzed. To expedite screening, we sequentially loaded the SSCP gels with three different sets of PCR products that were pretested to avoid overlapping patterns. Many of the DNA changes we detected were intragenic polymorphisms. Of an expected 177 unknown mutations, we detected ∼70%, mostly protein truncating mutations (that would have been detectable by protein truncation testing if RNA starting material had been available). Mutations have now been defined for every exon of the ATM gene. Herein, we present 35 new mutations and 34 new intragenic polymorphisms or rare variants within the ATM gene. This is the most comprehensive compilation of ATM polymorphisms assembled to date. Defining polymorphic sites as well as mutations in the ATM gene will be of great importance in designing automated methods for detecting mutations. Hum Mutat 14:156–162, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
目的研究中国汉族人共济失调性毛细血管扩张症(ataxiatelangiectasiamutated,ATM)基因的单核苷酸多态和点突变。方法首先用PCR扩增ATM基因第39、61和63外显子的靶片段,然后用单链构象多态性(singlestrandconformationpolymorphism,SSCP)技术进行筛选,选择典型带型经全自动DNA测序证实。结果在ATM基因第39外显子以及第61和63内含子发现6个新的单核苷酸多态,它们分别是第39外显子第5689位和第5691位的A/T多态,第61内含子第 69位的T/G多态、第 94位的A/G多态和第 99位的T/G多态,第63内含子第 17位的G/C多态。在ATM基因第61外显子、第62内含子和第63外显子发现5个新的点突变,它们分别是第61外显子第8618位的T/G颠换、第62内含子第-13位的T/G颠换、第63外显子第8793位的T/G颠换、第8816位和第8848位的G/A转换。证实了ATM基因第39外显子第5557位G/A、第61内含子第 104位T/C和第62内含子第-55位T/C多态在中国汉族人中的存在。结论中国汉族人ATM基因的单核苷酸多态与白人存在较大差异。  相似文献   

19.
20.
Mutations in the ATM gene are responsible for the autosomal recessive syndrome Ataxia Telangiectasia (AT). In a group of 26 classical AT Italian patients studied by protein truncation test (PTT), we identified six new mutations, never reported so far. Mutations -spread over the entire ATM coding sequence with not clear "hot-spot"- are four frameshifts (2192_2193insA, 3110delC, 7150delA, 8368delA), one splice site alteration (8850G>T, causing exon 63 skipping) and one nonsense change (6913C>T, Q2305X). The identification of ATM gene mutations is important for understanding the molecular basis of the disease, and is essential for diagnosis and genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号