首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rats treated with a sublethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 15 μg/kg) exhibited reduced feed intake and loss of body weight for the first 3 weeks after treatment. During the next 10 weeks, TCDD-treated rats maintained their body weight at a lower nearly constant percentage of that of control rats fed ad libitum. At no time did rats treated with TCDD exhibit hyperphagia which would have returned their weight to a normal level. Control rats pair-fed to TCDD-treated rats for more than 7 weeks displayed compensatory hyperphagia when permitted to feed ad libitum and their weight recovered to a near-normal level. The lower level of body weight in TCDD-treated animals was apparently due to a reduction in the regulation level or “set-point” for body weight. The following findings in TCDD-treated and control rats fed ad libitum supported this idea. First, when the reduced weight of the TCDD group was challenged by changes in the caloric density or palatability of the diet, TCDD-treated rats exhibited adjustments in feed intake and body weight that were essentially identical to those of control rats. Second, when body weight was manipulated by feeding a high-calorie diet or by restricting feed intake, both TCDD-treated and control rats quickly returned to weight levels from which they had been displaced. Third, carcass analyses conducted 7 weeks after treatment revealed that TCDD-treated rats had lower absolute amounts of body fat, protein, and water. However, when these constituents were expressed as percentages of total body weight no remarkable differences from the control were observed. Fourth, when TCDD-treated rats were induced to overeat and restore body weight to the same levei as control rats fed ad libitum, TCDD-treated animals did not reassume a normal body composition but became obese. Obesity was also observed when control rats were induced to overeat. Thus, TCDD-treated rats regulate their body weight in the same fashion as control rats but at a weight regulation level or set-point that is markedly reduced.  相似文献   

2.
Hypophagia-lnduced Weight Loss in Mice, Rats, and Guinea PigsTreated with 2,3,7,8-Tetrachlorodibenzo-p-dioxin. KELLING, C.K, CHRISTIAN, B. J., INHORN, S. L., AND PETERSON, R. E. (1985).Fundam. Appl. Toxicol. 5, 700–712. C57BL/6 mice treatedwith 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 360 µ/kg)displayed a significant reduction in feed intake and body weightuntil just before death, when they developed ascites and subcutaneousedema. This caused body weight of the mice that died to suddenlyincrease during the terminal stage of toxicity. TCDD-treatedmice that survived did not develop ascites or edema, and maintaineda body weight that was slightly less than that of pair-fed mice.Cumulative lethality in TCDD-treated mice (69%) was greaterthan that of pair-fed controls (14%). In guinea pigs treatedwith TCDD (2 µ/kg) both the time course and magnitudeof hypophagja were closely associated with weight loss. Pair-fedguinea pigs did not lose quite as much weight as TCDD-treatedanimals because their total body water content was higher. Waterintake in pair-fed guinea pigs was greater than that of TCDD-treatedanimals. The time course and magnitude of lethality tended tobe similar in TCDD-treated guinea pigs (81%) and pair-fed controls(64%). In Fischer F-344 rats treated with TCDD (100 µg/kg)body weight loss was associated with a reduction in both feedand water intake. The time course and magnitude of weight lossin TCDD-treated and pair-fed rats was essentially identical.Lethality was higher in TCDD-treated rats (95%) than pair-fedcontrol animals (48%). Taken together, these findings suggestthat hypophagia is responsible for the loss of adipose and leantissue in mice, guinea pigs, and rats treated with a LD70–95dose of TCDD. Under these dosage conditions, weight loss contributesmore to the lethality of guinea pigs than to that of FischerF-344 rats or C57BL/6 mice  相似文献   

3.
Abstract: The neurobehavioural effects of a single non-lethal dose (1000 μg/kg intraperitonelly) of 2,3,7,8-tetrachlorodi-benzo-p-dioxin (TCDD) were assessed in young male Han/Wistar rats, highly resistant to acute lethality of TCDD. TCDD decreased body weight significantly compared with ad libitum fed controls. TCDD did not change the behaviour or the motility of rats in the open field test 8 days after the treatment nor did it affect the spontaneous motor activity up to 27 days after the exposure. In the elevated plus-maze test for anxiety, TCDD-treated rats did not differ from either ad libitum fed controls or pair-fed controls. In the 24-hr passive avoidance test, the learning of TCDD-treated rats did not differ significantly from that of ad libitum fed controls or pair-fed controls from 8 hr to 16 days after the treatment. TCDD did not affect the motor coordination or the maintenance of balance on the rotating rod but it impaired them slightly in the elevated horizontal bridge test 16 hr after exposure. It did not affect nociception in the hot plate test 16 hr or 8 days after the injection. The results suggest that a single sublethal dose of TCDD does not alter markedly the general behaviour of Han/Wistar rats, in contrast to its striking effect on feeding behaviour which results in a marked decrease in body weight gain.  相似文献   

4.
《Toxicology letters》1995,78(2):93-100
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on growth factor-coupled activation of nuclear protein kinase C (nPKC) and on the subcellular distribution of PKC activity in rat splenocytes were investigated. Seven days after a single injection of TCDD (50 μg/kg body weight), cytosolic and particulate PKC activity was significantly higher in splenocytes from TCDD-treated rats or pair-fed control rats compared to ad libitum-fed animals. In a separate experiment, purified splenocyte nuclei from TCDD-treated animals and controls were used to study activation of nPKC by growth factors and other trophic agents. Growth factor-stimulated nPKC activation was attenuated in splenic nuclei from TCDD-treated rats compared to vehicle-treated controls. Evidence presented here suggests that the cellular mechanism of TCDD toxicity leading to immunosuppression in rodents may be mediated in part by uncoupling of growth factor receptors linked to PKC activation at the level of the nucleus. However, changes in total splenocyte PKC activity appear to be correlated with hypophagia since cytosolic and particulate PKC levels were elevated in TCDD-treated rats and their pair-fed partners.  相似文献   

5.
Treatment of male rats (300 to 325 g) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 15 or 50 micrograms/kg) caused dose-dependent reductions in body weight, feed and water intakes, and fecal output. Urine output, however, was not altered by TCDD. Fecal energy loss, as a percentage of daily feed energy intake (kcal/day), was similar in control and TCDD-treated rats as was the percentage of feed energy absorbed by the gastrointestinal tract, i.e., digestible energy. These findings dispel the long-standing proposal that a gross malabsorption syndrome is responsible for weight loss in TCDD-treated rats and place greater emphasis on hypophagia as the reason for weight loss. In support of a central role for hypophagia, it was found that control rats pair-fed to rats treated with a sublethal dose of TCDD (15 micrograms/kg) lost almost the same amount of weight. However, from 15 to 50 days post-treatment, the pair-fed animals consistently maintained their weight at a 10- to 15-g higher level than age-matched TCDD-treated rats. To determine why this weight difference occurs, the efficiency of feed utilization from Day 30 to 45 post-treatment in ad libitum fed control and TCDD-treated rats (15 micrograms/kg) that were maintaining different levels of body weight was compared. First, daily feed intakes of TCDD-treated and control rats were determined from Day 25 to 30 post-treatment. Second, weights of both groups were lowered by reducing feed intake in two successive 5-day periods to 50 and 10% of the respective ad libitum level. Third, on Days 40 to 45, both groups were refed their prereduction level of intake but reduced in proportion to the intervening loss in metabolic tissue mass. At each level of feed energy reduction, weight losses observed in the TCDD-treated and control rats were equivalent. Furthermore, although given only prerestriction amounts of feed that were indexed to their reduced metabolic body size (body wt kg 0.75), both TCDD-treated and control rats gained weight rapidly and at similar rates during the refeeding period. Thus, rats treated with a sublethal dose of TCDD displayed normal efficiency of feed utilization but did so at a subnormal level of weight. That is, just like control rats, TCDD-treated rats increased their efficiency of feed utilization (weight gain/feed intake) but only when their body weight was caused to fall below the lower weight maintenance level determined by the TCDD dose administered.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Changes in body weight, feed intake, hepatic cellularity, and intermediary metabolism were assessed in the mature male (450 g) rat following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) administration. All animals were schedule-fed (8-hr feeding period/24 hr) and treated with a single oral dose of either TCDD (75 micrograms/kg) or vehicle. Blood and tissues were sampled 16 to 18 hr following the end of the feeding period on 2, 4, 6, and 8 days post-treatment. Mature rats treated with TCDD exhibited a slight but progressive reduction in both body weight and feed intake throughout the 8-day experimental period. An increase in liver mass that was apparent at 2 days and plateaued by 4 days after TCDD treatment was associated with a decrease in the concentration of DNA per gram of wet liver. However, the total liver content of DNA in TCDD-treated rats remained similar to pair-fed animals. Thus, TCDD treatment produced liver enlargement in the mature rat that was the result of hepatocellular hypertrophy and not an increase in cell number. Hepatic glycogen content in TCDD-treated rats was threefold higher than their pair-fed counterparts at 2 to 6 days post-treatment, and this augmentation would account, in part, for the hypertrophy of the liver cell found after administration of TCDD. Plasma glucose and lactate concentrations were similar in TCDD-treated and pair-fed rats, suggesting that the Cori cycle remained unaltered following TCDD administration. Likewise, heart and gastrocnemius glycogen concentrations were similar in all experimental groups. Urinary excretion of urea, ammonia, and creatinine was comparable in TCDD-treated rats and their pair-fed counterparts, indicative of a nitrogen balance that was not disturbed by TCDD. Plasma glutamine concentrations in TCDD-treated rats tended to be reduced and were significantly lower at Day 6 post-treatment when compared to those of pair-fed counterparts, suggestive that amino acid release from muscle was not enhanced in TCDD-treated rats. Likewise, plasma concentrations of branched-chain amino acids, which are metabolized to a large extent in muscle, tended to be lower on Day 6 following TCDD treatment. Yet at Day 6 post-treatment, the circulating concentrations of amino acids that are metabolized by the liver were elevated in TCDD-treated animals. TCDD administration also resulted in an increase in total hepatic protein concentration which was evident at 4 days and increased progressively at 6 and 8 days post-treatment. Liver content of phospholipids also increased gradually following administration of TCDD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Treatment of male rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a dose-dependent decrease in body weight, feed intake, resting and total oxygen consumption, and spontaneous motor activity. In animals treated with a nonlethal dose (5 or 15 μg/kg), feed intake and oxygen consumption recover within 3 weeks post-treatment to levels appropriate for the reduced weight of the animals. Rats treated with a lethal dose (50 μg/kg) lose weight continuously after treatment and typically die at a body weight approximately half that of age-matched, control rats. The similar dose and time dependencies for reduction of feed intake and weight suggest that hypophagia is the major factor responsible for weight loss in TCDD-treated rats. To determine if this hypophagia is a primary or secondry effect of TCDD treatment, rats whose body weights were reduced by food restriction prior to treatment (25 μg/kg) were studied. When allowed to feed ad libitum immediately after treatment, these animals exhibited relative hyperphagia and weight gain demonstrating that TCDD did not impair their capacity to feed. This finding suggests that the primary effect of TCDD is not on a system that controls feed intake, but rather on one that regulates body weight. It is proposed, as a heuristic model of the wasting syndrome, that TCDD treatment lowers a “set point” for regulated body weight in the rat in a dose-dependent fashion and that hypophagia serves, as a secondary response, to reduce the animal's weight to the lower regulation level determined by the dose administered.  相似文献   

8.
Young adult male Sprague-Dawley rats treated with a LD95 dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibited a progressive reduction in feed intake and body weight until death occurred 15 to 32 days post-treatment. The time course and magnitude of weight loss and lethality of pair-fed control rats were essentially identical to that of TCDD-treated rats with each pair-fed control animal dying within 3 days of its TCDD-treated partner. Body composition analysis of the dead animals revealed that the total amounts of protein, fat, water, and ash in the carcasses of TCDD-treated and pair-fed control rats were each reduced to a similar extent. The temporal pattern of daily feed intake in TCDD-treated and pair-fed control rats (3 meals/day) or (1 meal/day) did not influence the results. Studies conducted at LD25-62 doses of TCDD in male Sprague-Dawley rats of different ages--weanling (90 g), young adult (275 g), and mature (450 g)--showed that the severity of the wasting syndrome in all age groups was greatest for animals that died. Also, young adult rats treated with a LD25 dose of TCDD that died displayed the same degree of hypophagia and weight loss prior to death as rats administered a LD95 dose. Histopathology of the liver and gastrointestinal tract was compared in TCDD-treated (LD95 dose) and pair-fed control rats killed 1 day before they otherwise would have died. Hepatocytes of TCDD-treated rats were enlarged relative to those of pair-fed control rats and contained nuclei that varied in size and number. Pair-fed control rats exhibited atrophy of the liver cords due to a decrease in the cytoplasmic volume of their hepatocytes. The stomach and small intestine of TCDD-treated rats were histologically similar to those of ad libitum-fed controls. In contrast, the glandular mucosa of the stomach of pair-fed control rats was ulcerated and the intestinal mucosa was atrophied. Stomach ulcers were the source of clotted blood found throughout the gastrointestinal tract of pair-fed control rats but not that of TCDD-treated animals. These findings demonstrate that hypophagia-induced weight loss is one of perhaps several responses that contribute to the death of TCDD-treated rats. That other responses are also involved is suggested by differences between pair-fed control and TCDD-treated rats in the weight and histopathology of certain organs. In addition, gastrointestinal blood loss contributes to the death of pair-fed control rats but not TCDD-treated animals.  相似文献   

9.
Hypophagia is a common characteristic of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and may be responsible for some of the toxic manifestations. Pair-feeding has been used in control animals to compensate for the hypophagia, but relatively few studies have assessed biochemical changes associated with pair-feeding versus weight loss induced by TCDD. Rats were treated with TCDD and killed 7 days post-treatment while pair-fed animals received an amount of diet equivalent to TCDD-treated partner animals. Ad libitum-fed rats were also used. No correlations were seen in altered calcium and iron homeostasis between pair-feeding and TCDD administration relative to ad libitum-fed animals. Pair-feeding resulted in greater alterations than TCDD administration in the subcellular distribution of iron in mitochondria, microsomes and cytosol. Pair-feeding also resulted in greater accumulation of calcium in mitochondria and microsomes in pair-fed as compared to TCDD-treated animals. Greater lipid peroxidation was observed in whole liver and nuclei of rats receiving TCDD relative to pair-fed animals. A significantly greater incidence of DNA single strand breaks occurred in hepatic nuclei of TCDD-treated animals as compared to pair-fed and ad libitum-fed animals. Significantly greater inhibition of hepatic glutathione peroxidase activity and thymic involution were observed in TCDD treated animals as compared to the pair-fed group. Although some similarities existed between TCDD-treated animals and pair-fed rats, the overall biochemical changes which were observed following TCDD administration cannot be attributed to weight loss associated with hypophagia.  相似文献   

10.
Male Sprague-Dawley rats were fed either a high-fat (HF) or a high-carbohydrate (HC) diet and subsequently injected with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (125 micrograms/kg) or vehicle (pair-fed controls). In all TCDD-treated animals, a reduction in caloric intake was evident as early as 1 day after dosage. Respiratory quotients (RQ) were determined at 5-day intervals. Their pattern for the HC-fed but not for the HF-fed TCDD-treated rats was different from that of the corresponding pair-fed controls. After an initial parallel decrease the RQ values remained low for TCDD-treated rats whereas they increased again for pair-fed controls. Serum total thyroxine (T4) was significantly lower in TCDD-treated animals and this reduction was not influenced by the composition of the diet. Serum triiodothyronine (T3) was neither altered by diet nor by TCDD. Thymic atrophy was as severe in pair-fed as in TCDD-treated rats fed the HC diet but not in rats fed the HF diet. Our results suggest that TCDD-treated rats are in a different mode of metabolism from pair-fed rats and that this difference is related to gluconeogenesis.  相似文献   

11.
Recently, acutely toxic doses of the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been reported to affect the hepatic distribution of essential metals in the rat. However, the reduced food intake by TCDD was not taken into account. Therefore, metal concentrations were determined in different rat tissues at the end of a toxicity study with TCDD in which a pair-fed control group was introduced. Male Sprague-Dawley ats received a single i.p. injection of corn oil/acetone with or without TCDD at 125 g/kg. Controls and TCDD-treated rats were fed ad libitum; additionally, pair-fed controls received the amount of food consumed by their TCDD-treated partners 1 day before. Twenty-one days after dosing rats were killed and samples of liver, kidney and jejunum were taken for the analysis of Ca, Cu, Fe, Mg, Mn, and Zn. After acid digestion of the tissues metals were determined by atomic emission spectrometry (AES). The most outstanding effect of TCDD treatment was an increase of the copper levels in the kidney (4-fold, versus pair-fed controls) and in the liver (>2-fold, versus pair-fed controls). Other metals were mainly affected by the reduced food intake only. Since Cu represents a trace metal the homeostasis of which depends on its biliary excretion and since TCDD is known to impair biliary flow and excretion, an impaired biliary excretion of Cu by TCDD is suggested as the causal mechanism.Supported by the Bayerisches Staatsministeriuni für Landesentwicklung und Umweltfragen  相似文献   

12.
Lipid peroxidation has been shown to be enhanced following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but its role in TCDD toxicity is unclear. The present study was undertaken to further elucidate the relations between lipid peroxidation and TCDD lethality. A time course and dose-response experiment in Long-Evans (L-E; LD50 ca. 10 μg/kg) and Han/Wistar (H/W; LD50 > 3000 μg/kg) rats showed that hepatic lipid peroxidation, measured as the amount of thiobarbituric acid-reactive substances (TBA-RS), was induced by TCDD dose-dependently in L-E, but not in H/W rats. Hepatic glutathione peroxidase activity was suppressed in much the same manner in both strains. Lipid peroxidation correlated with body weight loss in L-E rats alone. When 500 μg/kg of TCDD was given to L-E rats, lipid peroxidation increased about 3-fold on Day 11 in the liver, while no change was seen in cardiac or renal TBA-RS. The pair-fed controls did not survive the 11-day test period and exhibited gastrointestinal hemorrhages. At 6 days, liver atrophy and elevated (over 2-fold) TBA-RS values were recorded in pair-fed controls but not in their TCDD-treated counterparts. TCDD decreased hepatic glutathione peroxidase activity by almost 50% at 6 days, while pair-feeding was without effect. Liver morphology was different between TCDD-treated and pair-fed rats. Moreover, the livers of TCDD-treated L-E rats contained much higher concentrations of probably peripheral fat-derived fatty acids than did the livers of pair-fed or ad libitum control rats. Restricted feeding over 6 days induced hepatic lipid peroxidation more in H/W than in L-E rats. Endotoxin increased liver TBA levels similarly in both strains having an additive effect with high doses of TCDD in H/W rats. Added as a 0.5% concentration in chow, butylated hydroxyanisole (BHA), but not ethoxyquin, tended to increase survival rate and time in L-E rats exposed to 20 μg/kg of TCDD; at 50 μg/kg the only survivor was again in the BHA group. However, neither antioxidant had any effect on initial body weight loss. It is concluded that lipid peroxidation mainly arises as a secondary phenomenon in TCDD toxicity, is not the cause of the typical histopathological liver lesion, but may contribute to lethality.  相似文献   

13.
The effect of a usually lethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 125 g/kg) was studied on the conversion of14C-alanine into14C-glucose in male Sprague-Dawley rats by established procedures (determination of plasma alanine and blood glucose by enzymatic assays and isolation of14C-alanine and14C-glucose from whole blood by column chromatography). TCDD-treated rats converted significantly (p < 0.05) less14C-alanine into14C-glucose than did their pair-fed or ad libitum-fed counterparts, indicating reduced gluconeogenesis as a result of TCDD treatment. This finding suggests that reduced gluconeogenesis in TCDD-treated rats contributed to the progressively developing, severe hypoglycemia observed in these animals. Corticosterone, a key hormone in gluconeogenesis, provides partial protection from TCDD-induced toxicity in hypophysectomized rats. Therefore, the conversion of14C-alanine into14C-glucose was also determined in hypophysectomized rats dosed with TCDD (125 g/kg) and given corticosterone (25 g/ ml in drinking water). These rats also converted significantly (p <0.05) less14C-alanine into14C-glucose than did their pair-fed counterparts. However, in contrast to non-hypophysectomized TCDD-treated rats, these rats maintained marginal normoglycemia even at 64 days after dosing with TCDD, which suggests that the partial protective effect of corticosterone in hypophysectomized, TCDD-treated rats is unrelated to its effect on gluconeogenesis. The protection provided by corticosterone supplementation in TCDD toxicity is more likely due to reduced peripheral utilization of glucose enabling the animals to maintain marginal normoglycemia.Presented in part at the 27th Annual Meeting of the Society of Toxicology, Dallas, TX, 1988  相似文献   

14.
Male Sprague-Dawley rats were injected with either 125 micrograms 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)/kg or vehicle (pair-fed and ad libitum-fed controls). Transfer of water, electrolytes and D-glucose as well as fats of a tracer dose of the non-metabolizable radioactive marker 3-O-methyl-D-[U-14C]glucose was studied in isolated perfused jejunal segments 1, 2, 7, and 21 d after treatment (TCDD-treated and pair-fed control rats) and after 26 d in ad libitum-fed controls. TCDD-treated rats demonstrated reduced feed consumption and loss of body weight. Active intestinal absorption of glucose was significantly inhibited 30 and 22% compared to pair-fed controls, respectively 2 and 7 d after TCDD treatment. After 21 d the inhibition (14%) was less significant. There were no differences in glucose transfer between severely starved pair-fed controls (body weights 370 +/- 26 g) and ad libitum-fed rats (body weights 512 +/- 15 g). Water absorption and transfer of sodium and calcium was not influenced by TCDD treatment. However, a significant increase of potassium transfer was observed in parallel with impaired glucose absorption. The uptake of 3-O-methylglucose into mucosal tissue was not impaired, whereas the transfer to the serosal side was significantly inhibited by 30-60% compared to pair-fed as well as ad libitum-fed animals from day 2 until the end of the experiment. These results suggest that TCDD is involved in an inhibition of glucose transport at the basolateral membrane.  相似文献   

15.
Reduced gluconeogenesis due to decreased activity of key gluconeogenic enzymes in liver, together with feed refusal, has been suggested to play an important role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced lethality in rats. This study was carried out to further analyse the toxicological significance of reduced gluconeogenesis by comparing dose-responses and time-courses of effects of TCDD on the activity of phosphoenolpyruvate carboxykinase (PEPCK) in liver, liver glycogen concentration as well as plasma concentrations of glucose and amino acids in both genders of TCDD-sensitive Long-Evans (L-E) rats and TCDD-resistant Han/Wistar (H/W) rats. A dose-dependent decrease in PEPCK activity was observed in H/W rats, but in L-E rats the activity was not decreased. However, TCDD impaired the strong increase in liver PEPCK activity observed in pair-fed controls of the L-E strain. Liver glycogen concentrations were severely decreased in L-E rats and moderately in H/W rats. This effect seems to be secondary to reduced feed intake, since a similar decrease was seen in pair-fed controls. Decreases in plasma glucose concentrations were also more profound in L-E rats than in H/W rats, but pair-fed controls were generally less affected. Circulating concentrations of amino acids were markedly increased in TCDD-treated L-E rats, which is likely to reflect increased mobilization of amino acids and their decreased metabolism in liver. Reduction of liver PEPCK activity cannot account for the sensitivity difference of these two strains of rats in terms of mortality. Nevertheless, the response of both strains of TCDD-treated rats regarding gluconeogenesis is different from that seen in pair-fed controls and suggesting that impairment of this pathway contributes to the development of the wasting syndrome. Received: 29 March 1999 / Accepted: 17 May 1999  相似文献   

16.
The effects of total parenteral nutrition (TPN) upon the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rats has been studied. At doses of 50 or 100 μg/kg, TPN-fed, TCDD-treated rats demonstrated a weight gain similar to that of TPN-fed controls, but died at Days 13–17 following treatment. Gross examination of moribund animals revealed icterus, thymic atrophy, increased adipose tissue depots, and enlarged livers. The liver weights ranged from two to three times those from TPN-fed control animals. Histologically the livers were severely necrotic. Most cells which were not necrotic were markedly swollen and disorganized. Extensive vacuolization of hepatocytes and cystic areas containing cell debris were also prominent features. Whereas glycogen stores were depleted, the total content of water, lipid, protein, RNA, and DNA in the livers was increased. Alterations in cytochrome P-450-associated monooxygenase activities were also observed. Statistically significant increases in serum iron, bilirubin, alkaline phosphatase, serum glutamic-oxaloacetic transaminase and cholesterol were found in the TPN-fed, TCDD-treated animals. Serum protein, glucose, and triglycerides were significantly decreased except in a few severely moribund animals in which hyperglycemia was observed. The results in the TPN-fed, TCDD-treated rats were compared with TCDD-treated rats fed a chow diet ad libitum. At the same dose of TCDD, the liver damage in the TPN-fed, TCDD-treated rats was histologically more severe.  相似文献   

17.
Lipid peroxidation has been shown to be enhanced following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but its role in TCDD toxicity is unclear. The present study was undertaken to further elucidate the relations between lipid peroxidation and TCDD lethality. A time course and dose-response experiment in Long-Evans (L-E; LD50 ca. 10 micrograms/kg) and Han/Wistar (H/W; LD50 greater than 3000 micrograms/kg) rats showed that hepatic lipid peroxidation, measured as the amount of thiobarbituric acid-reactive substances (TBA-RS), was induced by TCDD dose-dependently in L-E, but not in H/W rats. Hepatic glutathione peroxidase activity was suppressed in much the same manner in both strains. Lipid peroxidation correlated with body weight loss in L-E rats alone. When 500 micrograms/kg of TCDD was given to L-E rats, lipid peroxidation increased about 3-fold on Day 11 in the liver, while no change was seen in cardiac or renal TBA-RS. The pair-fed controls did not survive the 11-day test period and exhibited gastrointestinal hemorrhages. At 6 days, liver atrophy and elevated (over 2-fold) TBA-RS values were recorded in pair-fed controls but not in their TCDD-treated counterparts. TCDD decreased hepatic glutathione peroxidase activity by almost 50% at 6 days, while pair-feeding was without effect. Liver morphology was different between TCDD-treated and pair-fed rats. Moreover, the livers of TCDD-treated L-E rats contained much higher concentrations of probably peripheral fat-derived fatty acids than did the livers of pair-fed or ad libitum control rats. Restricted feeding over 6 days induced hepatic lipid peroxidation more in H/W than in L-E rats. Endotoxin increased liver TBA levels similarly in both strains having an additive effect with high doses of TCDD in H/W rats. Added as a 0.5% concentration in chow, butylated hydroxyanisole (BHA), but not ethoxyquin, tended to increase survival rate and time in L-E rats exposed to 20 micrograms/kg of TCDD; at 50 micrograms/kg the only survivor was again in the BHA group. However, neither antioxidant had any effect on initial body weight loss. It is concluded that lipid peroxidation mainly arises as a secondary phenomenon in TCDD toxicity, is not the cause of the typical histopathological liver lesion, but may contribute to lethality.  相似文献   

18.
The neurobehavioural effects of a single non-lethal dose (1000 micrograms/kg intraperitoneally) of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were assessed in young male Han/Wistar rats, highly resistant to acute lethality of TCDD. TCDD decreased body weight significantly compared with ad libitum fed controls. TCDD did not change the behaviour or the motility of rats in the open field test 8 days after the treatment nor did it affect the spontaneous motor activity up to 27 days after the exposure. In the elevated plus-maze test for anxiety, TCDD-treated rats did not differ from either ad libitum fed controls or pair-fed controls. In the 24-hr passive avoidance test, the learning of TCDD-treated rats did not differ significantly from that of ad libitum fed controls or pair-fed controls from 8 hr to 16 days after the treatment. TCDD did not affect the motor coordination or the maintenance of balance on the rotating rod but it impaired them slightly in the elevated horizontal bridge test 16 hr after exposure. It did not affect nociception in the hot plate test 16 hr or 8 days after the injection. The results suggest that a single sublethal dose of TCDD does not alter markedly the general behaviour of Han/Wistar rats, in contrast to its striking effect on feeding behaviour which results in a marked decrease in body weight gain.  相似文献   

19.
A single treatment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (50 micrograms/kg) produced two distinct effects on adrenal steroidogenesis in rats 13 days post-treatment. In unstressed rats, the very low corticosterone levels early in the light phase (AM) increased 4-fold relative to ad libitum-fed control (ALC) rats, but the peak level of corticosterone that is seen late in the light phase (PM) decreased up to 40% relative to ALC rats. The AM stimulation was also observed in rats pair-fed to compensate for the diminished feed intake of TCDD-treated animals, indicating that the change results from nutritional deprivation. The PM suppression, however, was not observed in pair-fed rats. In rats given a lower dose of TCDD (15 micrograms/kg), there was no AM stimulation, whereas the suppression of the PM diurnal peak of corticosterone was retained. Plasma adrenocorticotropin (ACTH) levels and adrenal size were not changed by these treatments, indicating that TCDD affects adrenal responsiveness. TCDD did not, however, have a significant effect on corticosterone secretion in rats receiving high doses of ACTH. In control animals, the availability of cholesterol to cytochrome P-450scc limits the rate of steroidogenesis. While the specific content of the cytochrome was unaffected by TCDD, cholesterol turnover by this enzyme appeared to be affected following TCDD treatment, as evidenced by small increases in the mitochondrial levels of free cholesterol, reactive cholesterol, and in the proportion of P-450scc complexed with cholesterol relative to both ad libitum- and pair-fed controls. This accumulation of mitochondrial cholesterol following TCDD treatment is consistent with an inhibition of cholesterol metabolism at cytochrome P-450scc in vivo that is removed upon isolation of the mitochondria. These TCDD-induced increases were enhanced substantially in ACTH-stimulated rats, probably because ACTH enhances cholesterol influx into the mitochondria. Normally, substrate availability is rate limiting in cholesterol side-chain cleavage, and the AM stimulation of steroidogenesis by TCDD may result from such increased cholesterol transfer. The inhibition of cholesterol side-chain cleavage resulting from TCDD treatment may, however, only become rate limiting for corticosterone synthesis when cholesterol transfer is more substantially activated, as for peak PM secretion.  相似文献   

20.
Treatment of adult male guinea pigs with a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 6.2 nmol (2.0 μg)/kg body wt, induces a marked hyperlipidemia characterized by a 19-fold increase in very low density lipoproteins (VLDL) and a 4-fold increase in low-density lipoproteins (LDL) compared to pair-fed control animals. VLDL from TCDD-treated animals were similar in size and electrophoretic mobility to VLDL from pair-fed control animals, but they contained less cholesteryl ester and an altered pattern of C apoproteins on sodium dodecyl sulfate-polyacrylamide gels. LDL from TCDD-treated animals were larger than LDL from pair-fed controls and contained more phospholipid and less protein than LDL from pair-fed control animals. In addition, LDL from TCDD-treated animals contained increased amounts of apoprotein C as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No change in the concentration or properties of serum high-density lipoproteins was observed. Serum free fatty acids, triglycerides, and cholesteryl esters from TCDD-treated animals were enriched in linoleic acid (18:2), a principal fatty acid of adipose tissue. This suggests that mobilization of adipose tissue fatty acids in TCDD-treated animals may lead to increased hepatic lipoprotein production. However, weight-paired control animals did not become hyperlipidemic. Thus, in addition to mobilizing adipose tissue fatty acids, TCDD may alter the relative rates of anabolic and/or catabolic processes controlling serum VLDL and LDL concentrations in the guinea pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号