首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Long-Evans rats sustained injections of 5,7-dihydroxytryptamine (5,7-DHT) into the fimbria-fornix and the cingular bundle or/and intraseptal injections of 192 IgG-saporin to induce serotonergic or/and cholinergic hippocampal denervations; Sham-operated rats served as controls. Four to ten weeks after lesioning, we measured (i). the electrically evoked release of acetylcholine ([3H]ACh), noradrenaline ([3H]NA) and serotonin ([3H]5-HT) in hippocampal slices in the presence of drugs acting on auto- or heteroreceptors, (ii). the nicotine-evoked release of NA and (iii). the choline acetyltransferase (ChAT) activity and the concentration of monoamines in homogenates. Saporin lesions reduced the accumulation of [3H]choline, the release of [3H]ACh and the ChAT activity, but increased the concentration of NA and facilitated the release of [3H]NA evoked by nicotine. 5,7-DHT lesions reduced the accumulation and the release of [3H]5-HT, the concentration of 5-HT, and also facilitated the release of [3H]NA evoked by nicotine. Accumulation and electrically evoked release of [3H]NA were not altered by either lesion. The combination of both toxins resulted in an addition of their particular effects. The 5-HT(1B) receptor agonist, CP 93129, and the muscarinic agonist, oxotremorine, reduced the release of [3H]ACh in control and 5,7-DHT-lesioned rats; in rats injected with saporin, their effects could not be measured reliably. CP 93129 and the alpha(2)-adrenoceptor agonist, UK 14304, reduced the release of [3H]5-HT in all groups by about 65%. In conclusion: (i). selective neurotoxins can be combined to enable controlled and selective damage of hippocampal transmitter systems; (ii). 5-HT exerts an inhibitory influence on the nicotine-evoked release of NA, but partial serotonergic lesions do not influence the release of ACh at a presynaptic level and (iii). presynaptic modulatory mechanisms involving auto- and heteroreceptors may be conserved on fibres spared by the lesions.  相似文献   

2.
5,7-Dihydroxytryptamine (5,7-DHT) is unique as a serotonin (5-HT) neurotoxin in that i.p. injection of neonatal rats increases concentrations of 5-HT in brainstem while depleting 5-HT in cortex, hippocampus and spinal cord. To study the mechanism of this effect we measured the 5-HT transporter or uptake site, a presynaptic marker, using [3H]paroxetine binding. There were significant regional differences in Bmax of vehicle-injected rats: brainstem, diencephalon > striatum, cortex, spinal cord > hippocampus, cerebellum. There were also regional differences in the ontogeny of bindings sites: at postnatal day 7, [3H]paroxetine sites were 39% of adult levels in cortex compared to 63% in brainstem. Thirty days after 100 mg/kg 5,7-DHT i.p., Bmax of [3H]paroxetine binding was significantly increased in brainstem (+67%) and diencephalon (+136%), whereas it decreased in cortex (-59%), hippocampus (-94%) and spinal cord (-99%), striatum (-41%) and cerebellum (-37%). KD remained unaltered. In dose-response studies (0-200 mg/kg), 50 mg/kg was the threshold dose for Bmax effects and 200 mg/kg was lethal. In weekly time-course studies, changes were apparent 1 week after 5,7-DHT lesions. Binding site increases in diencephalon and brainstem were not maximal until 3 weeks after injection, whereas percent decreases in cortical sites remained unchanged at each week studied. Lesion effects on the ontogeny of [3H]paroxetine binding sites were region-dependent: cortical sites continued to increase with age but spinal sites did not. There was no significant recovery in spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The role of the hippocampal 5-hydroxytryptamine (5-HT) terminals in the control of locomotor activity was investigated by lesioning 5-HT axons in the fimbria with 5,7-dihydroxytryptamine (5,7-DHT). Rats pretreated with desimipramine (10 mg/kg, i.p.) received microinjections of 5,7-DHT (0, 1, 3, 5 or 10 μg in 0.4 μl ascorbic Ringer's solution) into the fornix-fimbria. On the fourteenth to twenty-first nights after operation, nocturnal locomotor activity was measured in photocell cages. Twenty-eight to thirty days after operation degeneration of 5-HT terminals was assessed by measuring in vitro [3H]5-HT re-uptake in slices of dorsal hippocampus, ventral hippocampus and the septum.Groups injected with 5,7-DHT showed hyperactivity in the night period and increased decrements of activity between tests, both of which were related to the dose of neurotoxin. A reduction of [3H]5-HT re-uptake was found in dorsal hippocampus which was related to the dose of 5,7-DHT, but ventral hippocampal and septal [3H]5-HT re-uptake were not systematically reduced. For each rat, levels of dorsal and ventral hippocampal [3H]5-HT re-uptake were negatively correlated with the mean nocturnal activity from the 7 nights of testing. Levels of dorsal, but not ventral hippocampal [3H]5-HT re-uptake were negatively correlated with the mean nightly decrement of activity. No correlations were found between septal [3H]5-HT and these activity measures. These results, indicate that the increase in nocturnal locomotor activity caused by generalized depletion of 5-HT in the brain may be due to disruption of hippocampal 5-HT terminals supplied by the fornix-fimbria.  相似文献   

4.
"Denervation supersensitivity" of serotonin (5-HT) receptors has been proposed to explain the behavioral supersensitivity to 5-hydroxytryptophan (5-HTP) which develops after lesions of indoleamine neurons with 5,7-dihydroxytryptamine (5,7-DHT). To examine the possible role of receptor recognition sites and second messenger activity in supersensitivity, we measured regional 5-HT2 receptor ligand binding and 5-HT-stimulated phosphoinositide turnover in adult rats with 5,7-DHT lesions made by intracisternal injection and their saline-treated controls. In [3H]ketanserin binding studies of fresh brain tissue two weeks after 5,7-DHT injection, there were no significant changes in frontal cortex, brainstem, or spinal cord in Bmax, Kd, or nH of 5-HT2 receptors, 5,7-DHT lesions did not affect basal levels of [3H]inositol phosphate (IP) accumulation but significantly increased 5-HT-stimulated [3H]IP accumulation in the brainstem (+27%) and cortex (+23%). Because brainstem rather than cortex is involved in 5-HTP-evoked myoclonus, increased 5-HT-stimulated phosphoinositide hydrolysis in brainstem following 5,7-DHT lesions in the rat may be relevant to serotonergic behavioral supersensitivity.  相似文献   

5.
The binding capacities of the novel antagonist pirenzepine and the agonist carbamylcholine were examined autoradiographically to compare their abilities to reduce the binding of 1-[3H]quinuclidinyl benzilate ([3H]-1-QNB). This technique, which is applicable to any muscarinic ligand, permits a direct comparison between the binding of carbamylcholine and pirenzepine in the same assay. Analysis of the binding curves generated by standard scintillation counting of whole-brain slices indicated that the ligands bound heterogeneously to muscarinic receptors in the brain. Following apposition of slides to tritium-sensitive film, the binding profile for each ligand was examined visually and by microdensitometry. Regional analyses indicated that the agonist carbamylcholine displayed highest potency for thalamic nuclei, lower potency for cortical regions, and the lowest affinity for layers of the hippocampus. The M1-selective ligand pirenzepine displayed the highest potency for the dentate gyrus of the hippocampus, with lower inhibition levels in the cortex, and the lowest levels of inhibition found in the thalamus. The distribution of high affinity agonist sites was found to be distinct from the distribution of high-affinity antagonist binding sites. In a separate assay, the regional inhibition of pirenzepine and scopolamine was compared for the hippocampus and the forebrain. While scopolamine did not distinguish between muscarinic receptor sites in the hippocampus and cortex, pirenzepine inhibited [3H]-1-QNB labeling in the hippocampus significantly greater than in the cerebral cortex, providing additional evidence for the hypothesis that pirenzepine is a selective antagonist.  相似文献   

6.
7.
To delineate the involvement of spinal 5-HT1C receptors in supersensitivity and recovery following neonatal 5,7-DHT lesions, we injected rats on postnatal days 2 and 5 with 5,7-DHT or vehicle by intraperitoneal (IP) or intracisternal (IC) injection. [3H]Mesulergine-labelled sites measured 4 or 14 weeks later exhibited a significant increase (+35% for IP and 27% for IC) in Bmax without changes in Kd or nH. Spinal 5-HT content was significantly reduced (-80 to 89%) by either route of 5,7-DHT injection. These data describe novel upregulation of spinal 5-HT1C receptors in rats with neonatal 5,7-DHT lesions. Spinal 5-HT1C receptor upregulation may contribute to the behavioral supersensitivity to L-5-hydroxytryptophan (L-5-HTP) in rats with 5,7-DHT lesions. It does not explain the behavioral recovery we found previously only after IP 5,7-DHT injection.  相似文献   

8.
A high density of opioid receptor-like 1 (ORL1) receptor (also referred to as NOP receptor) is found in limbic areas and in regions containing monoamines, which are implicated in emotional activity and physiopathology of depression and anxiety. We aimed at defining precisely the localization of ORL1 receptors in dorsal raphe nucleus, by means of a lesion strategy and autoradiographic studies. In control rats, [3H]nociceptin and nociceptin-stimulated [35S]GTPgammaS bindings were found to be correlated in several brain regions. We performed in rats a selective destruction of serotoninergic neurons by surgical stereotaxic injection of 5,7-dihydroxytryptamine (5,7-DHT) in dorsal raphe nucleus. This led to a marked decrease in serotonin contents in striata and frontal cortices (about -60%) and in autoradiographic [3H]citalopram binding in posterior regions. In dorsal raphe nucleus, [3H]nociceptin binding was decreased to the same extent as [3H]citalopram binding, whereas it was unchanged in the other regions studied. Nevertheless, in the dorsal raphe, nociceptin-stimulated [35S]GTPgammaS binding was decreased to a lesser extent than [3H]nociceptin binding in 5,7-DHT-lesioned rats. The ratio between nociceptin-stimulated [35S]GTPgammaS binding and [3H]nociceptin binding was significantly increased in 5,7-DHT-lesioned rats compared with controls in this region. These data demonstrate 1) that ORL1 receptors are located on serotoninergic neurons in the dorsal raphe nucleus and 2) that, after a lesion, the functionality of remaining ORL1 receptors appears to be up-regulated, which could correspond to a compensatory mechanism.  相似文献   

9.
C T Fischette  B Nock  K Renner 《Brain research》1987,421(1-2):263-279
The effects of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), on serotonin1 (5-HT1) and 5-HT2 receptors were investigated using the high degree of resolution provided by quantitative autoradiography in an effort to determine the synaptic location of these receptors. 5,7-DHT treatment resulted in a decrease in 5-HT1 binding in the dentate gyrus and CA3c/4 of the anterior hippocampus and in the dorsal raphe nucleus, whereas no changes were observed in the posterior hippocampus nor in many other brain structures. 5-HT2 receptors exhibited no changes in any brain area examined in response to 5,7-DHT treatment, despite over 90% serotonin depletion in most of the forebrain nuclei examined. The results indicate that at least some of the 5-HT1 sites labelled by [3H]5-HT in the hippocampus and dorsal raphe nucleus are presynaptic, whereas 5-HT2 receptors are probably postsynaptic. In addition, the distribution profiles of 5-HT1 and 5-HT2 binding sites were compared in the rat central nervous system at various anatomical levels. 5-HT1 binding sites were identified using [3H]5-HT, while 5-HT2 binding sites were labelled with [3H]ketanserin. Both receptor subtypes displayed distinctly different localization patterns, which, in most cases was the inverse of the other pattern. In the brainstem it is significant that 5-HT2 receptors are concentrated in the facial nucleus and the motor nucleus of the trigeminal nerve, areas known to influence head and facial movement. The serotonin-mediated head-shake response occurs when 5-HT2 receptors are activated. In contrast, 5-HT1 receptors are distributed throughout the brainstem and in specific portions of the spinal cord. These areas are thought to control the serotonin behavioral syndrome and this behavior is 5-HT1A-mediated. All raphe nuclei were devoid of 5-HT2 receptors; only 5-HT1 receptor were found in these nuclei. Correlations with serotonin terminal distribution patterns are discussed. The pattern of 5-HT2 receptor distribution was also compared with the pattern of alpha 1 receptors, using [3H]prazosin in order to determine whether [3H]ketanserin significantly labels alpha 1 receptors. Although some similarities exist, overlap of binding did not occur in other nuclei, indicating that alpha 1 contamination of this system is probably negligible.  相似文献   

10.
This study utilized a multidisciplinary approach to examine injury-induced compensatory responses in the aging hippocampal serotonin transporter (5-HTT), a membrane protein implicated in a variety of neurodegenerative disorders. Age-dependent cellular, anatomical, and physiological changes of the 5-HTT were evaluated in female Fischer 344 rats (2 and 17 months) following denervation of the serotonergic afferents (fimbria-fornix and cingulum bundle) to the dorsal hippocampus using the neurotoxicant 5,7-dihydroxytryptamine (5,7-DHT). Seven days following 5,7-DHT administration, a uniform loss of the hippocampal 5-HTT immunoreactivity was observed in both age groups. However, at 21 days 5-HTT immunoreactivity in young 5,7-DHT-treated animals was similar to control levels, indicative of recovery, while older animals exposed to 5,7-DHT did not show recovery of hippocampal 5-HTT expression. 5-HTT binding site density, as determined by quantitative autoradiography ([3H]citalopram), supported the immunohistochemical results by demonstrating a recovery of 5-HTT binding sites in young, but not old animals, at 21 days following the lesion (P < 0.001). Furthermore, cellular electrophysiological function of hippocampal CA1 pyramidal neurons in 3- and 18-month-old F344 rats at 21 days following 5,7-DHT or vehicle treatment were assessed using in vivo microiontophoretic application of serotonin (5-HT). Independent of changes in sensitivity to the inhibitory effects of 5-HT application, the time to recovery of cell firing following application of 5-HT was significantly increased in the 18-month 5,7-DHT group compared to the 18-month vehicle and 3-month 5,7-DHT groups (60 and 59% increases, respectively; P < 0.05). Overall, these series of studies comprise a model which can be used to identify cellular events underlying both the formation of injury-induced compensatory processes in younger animals and the lack thereof with advancing age.  相似文献   

11.
Muscarinic and nicotinic cholinergic receptor distribution was studied by dry-mount autoradiography in brains obtained postmortem from patients with senile dementia of Alzheimer-type (SDAT) and non-neurological controls. Sections were incubated with either [N-methyl-3H]scopolamine, ([3H]NMS) or [125I]α-bungarotoxin, ([125I]α-BTX). No significant difference in the affinity and number of muscarinic and nicotinic receptors was found in hippocampus, frontal, temporal and cingulate cortex between SDAT patients and non-neurological controls. However, some SDAT cases showed diffuse instead of laminar [3H]NMS labeling in cortical regions. The labeling pattern was not affected by the presence of neuritic plaques and neurofibrillary tangles.  相似文献   

12.
The aim of this study was to determine histamine content in the brain and the effect of histamine receptor antagonists on behavior of adult rats lesioned as neonates with the serotonin (5-HT) neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At 3 days after birth Wistar rats were pretreated with desipramine (20 mg/kg ip) before bilateral icv administration of 5,7-DHT (37.5 μg base on each side) or saline—ascorbic (0.1%) vehicle (control). At 10 week levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were determined in frontal cortex, striatum, and hippocampus by an HPLC/ED technique. In the hypothalamus, frontal cortex, hippocampus and medulla oblongata, the level of histamine was analyzed by an immunoenzymatic method. Behavioral observations (locomotion, exploratory-, oral-, and stereotyped activity) were performed, and effects of DA receptor agonists (SKF 38393, apomorphine) and histamine receptor antagonists S(+)chlorpheniramine (H1), cimetidine (H2), and thioperamide (H3) were determined. We confirmed that 5,7-DHT profoundly reduced contents of 5-HT and 5-HIAA in the brain in adulthood. Histamine content was also reduced in all examined brain regions. Moreover, in 5,7-DHT-lesioned rats the locomotor and oral activity responses to thioperamide were altered, and apomorphine-induced stereotype was intensified. From the above, we conclude that an intact central serotoninergic system modulates histamine H3 receptor antagonist effects on the dopaminergic neurons in rats.  相似文献   

13.
Adult rats were subjected to intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT; 150 micro g) and, 15 days later, to intrahippocampal grafts of fetal raphe cell suspensions. About 11 months later, we assessed baseline and electrically evoked release of tritium ([3H]) in hippocampal slices, preloaded with tritiated ([3H])choline or [3H]serotonin (5-HT), in the presence or absence of the 5-HT1B receptor agonist CP-93,129 and the 5-HT receptor antagonist methiothepine. HPLC determinations of monoamine concentrations were also performed. The lesions reduced the concentration of 5-HT (-90%) and the accumulation (-80%) as well as the evoked release (-90%) of [3H]5-HT. They also decreased the inhibitory effects of CP-93,129 on the evoked release of [3H]5-HT. Most interestingly, they facilitated the evoked release of [3H]acetylcholine (+20%). In slices from rats subjected to lesions and grafts, the responsiveness of the serotonergic autoreceptors (presumably located on the terminals of the grafted neurons) and the release of acetylcholine were close to normal. These results confirm that grafts rich in serotonergic neurons may partially compensate for the dramatic effects of 5,7-DHT lesions on serotonergic hippocampal functions. The lesion-induced reduction of the 5-HT1B autoreceptor-mediated inhibition of evoked 5-HT release may be an adaptation enhancing serotonergic transmission in the (few) remaining terminals. The facilitated release of acetylcholine is probably caused by a reduced serotonergic tone on the inhibitory 5-HT1B heteroreceptors of the cholinergic terminals. When related to data in the literature, this facilitation may be of particular interest in terms of transmitter-based strategies developed to tackle cognitive symptoms related to neurodegenerative diseases.  相似文献   

14.
The effect of exogenous GM1 ganglioside on the 5,7-dihydroxytryptamine (5,7-HT; a selective serotonin neurotoxin) induced alteration of the postnatal development of central 5-hydroxytryptamine (5-HT; serotonin) neurons has been investigated using neuro-chemical and immunocytochemical techniques. Neonatal 5,7-HT (50 mg/kg s.c.) treatment is known to lead to a marked and a permanent degeneration of distant 5-HT nerve terminal projections (e.g. in cerebral cortex, hippocampus and spinal cord), while projections close to the 5-HT perikarya in the mesencephalon and pons-medulla increase their nerve density. These regional alterations are reflected by decreases and increases, respectively, of endogenous 5-HT, [3H]5-HT uptake in vitro and number of 5-HT nerve terminals demonstrated by immunocytochemistry. Treatment of newborn rats with GM1 (4 X 30 mg/kg s.c.; 24 h interval) had no significant effect on the postnatal development of 5-HT neurons. GM1 administration had furthermore no effect on the 5,7-HT induced alteration of the regional 5-HT levels and [3H]5-HT uptake in the cerebral cortex acutely, indicating that GM1 did not significantly interfere with the primary neurodegenerative actions of 5,7-HT. At the age of 1 month a clear counteracting effect of GM1 was observed, in particular of the 5,7-HT induced 5-HT denervations. The 5-HT levels in the frontal and occipital cortex were reduced to 25 and 20% of control after 5,7-HT alone, while these values were 70 and 40%, respectively, after 5,7-HT and GM1 treatment. A similar antagonizing effect of GM1 was found in the frontal cortex when measuring [3H]5-HT uptake. GM1 treatment also caused a minor reduction of the 5,7-HT induced increase of the 5-HT levels in striatum and mesencephalon. Quantitation of 5-HT nerve terminal density in sections processed for 5-HT immunocytochemistry using an automatic image analysis system showed markedly more nerve terminals in the frontal and occipital cortex after 5,7-HT + GM1 compared to 5,7-HT treatment alone. Minor counteracting effects of GM1 were noted in the hippocampus and spinal cord (thoracic-lumbar) as evaluated by chemical 5-HT assay, although substantial counteracting effects were observed locally in these areas by quantitative immunocytochemistry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Rat pups were injected intracisternally (i.c.) or intraperitoneally (i.p.) with 5,7-dihydroxytryptamine (5,7-DHT) or saline and challenged 2 and 14 weeks later with the 5-HT precursor 5-hydroxytryptophan (5-HTP), which evokes behavioral supersensitivity in adult rats, 5,7-DHT induced transient postinjection convulsions in rats injected i.c. but not i.p. Rats with either type of 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP. However, rats lesioned by i.p. injections exhibited significantly greater shaking behavior (+1445%) in response to 5-HTP than their i.c. counterparts, who instead showed more forepaw myoclonus (+250%) and head weaving (+270%), the core features of the 5-HT syndrome. Differences in 5-HT syndrome behaviors were already present 2 weeks after lesioning, whereas the difference in shaking behavior was not. After 14 weeks, 5-HT was selectively depleted (-43 to -92%) in hippocampus, spinal cord, and frontal cortex, and differences between i.c. and i.p. 5,7-DHT routes were insignificant except in frontal cortex. Brainstem 5-HT concentrations were significantly increased (+35%) after i.p. 5,7-DHT injections in contrast to reduction (-89%) after i.c. 5,7-DHT; 5-hydroxyindole acetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratios were decreased (-20%) with either route. These data suggest that brainstem 5-HT hyperinnervation following i.p. 5,7-DHT injection modifies the functional consequences of injury in abating the 5-HT syndrome, but does not result in complete recovery since shaking behavior is enhanced. Loss of presynaptically mediated autoregulation or receptor dysregulation may play a major role in behavioral supersensitivity induced by 5-HTP in rats with 5,7-DHT lesions. To the extent that the 5-HT syndrome is mediated by 5-HT1A receptors and shaking behavior by 5-HT2 sites, differential responses to injury of 5-HT1A and 5-HT2 receptors may contribute to these behavioral differences.  相似文献   

16.
Localization of GABAA and GABAB receptor subtypes on serotonergic neurons   总被引:1,自引:0,他引:1  
The effect of selective destruction of serotonin (5-HT)-containing neurons with 5,7-dihydroxytryptamine (5,7-DHT) on [3H] muscimol and (-)-[3H]baclofen binding was investigated in various rat brain regions. Ten days after intracerebroventricular 5,7-DHT, serotonin levels and [3H]imipramine binding were markedly decreased. 5,7-DHT reduced [3H]muscimol binding only in the mesencephalon, and (-)-[3H]baclofen binding was unmodified in all the areas considered. These results suggest that except in the mesencephalon GABA receptors may not be localized on serotonergic nerve terminals.  相似文献   

17.
The autoradiographic distribution of the selective NK-3 tachykinin agonist [3H]senktide was investigated in rat brain. [3H]Senktide bound with high affinity (KD less than 2.5 nM) and high specificity (greater than 75%) to cerebral cortex and numerous subcortical sites, including the substantia nigra pars compacta. In addition, moderately dense binding was seen in the median but not the dorsal raphe nucleus, and this was disrupted by 5,7-dihydroxytryptamine (5,7-DHT)-induced destruction of 5-HT neurons. 5,7-DHT lesions did not affect the binding of [3H]senktide to forebrain regions, suggesting that 5-HT terminals are devoid of NK-3 receptors.  相似文献   

18.
As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H3 receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 μg icv) or saline vehicle (10 μl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83–91% and 69–83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[3H]-D-glucose (500 μCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [3H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47–56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [3H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [3H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.  相似文献   

19.
Adult intact, or castrated testosterone propionate (TP, 150 μg/kg) treated male rats, were tested for masculine sexual behavior after having been injected with 5,7-dihydroxytryptamine (5,7-DHT, 4 μg/4 ml) intracerebrally either alone or in combination with systemic treatment with protriptyline, a noradrenaline (NA) re-uptake blocking agent. No changes were found in the sexual behavior of intact rats although the brain 5-HT levels were reduced to about one-third of their normal value. By contrast, there was a marked increase in the proportion of rats showing ejaculation patterns in the castrate + TP group after 5,7-DHT lesion than in the vehicle-injected group.Compared to the control group, the 5,7-DHT group showed a reduced uptake of [3H]5-HT and [3H]NA in the hypothalamus. Also the uptake of [3H]amines in the cerebral cortex was lowered although the difference did not attain statistical significance. A statistically significant relationship was found between the behavioral changes and the reduction of [3H]5-HT uptake in the hypothalamus while no such relationship was found between the NA uptake and the behavioral changes.Tistochemical analysis of the site of the 5,7-DHT injections showed that the unspecific damage (nerve cell loss, glial cell infiltration) involved a somewhat larger area in the 5,7-DHT group than in the controls. These unspecific lesions were, however, located outside the region of the large medial 5-HT bundle.The results support the hypothesis that 5-HT serves as a transmitter in the neural processes underlying masculine sexual behavior and, further, points to one component of the ascending 5-HT projections which innervates inter alia the hypothalamus as being of particular importance in this context.  相似文献   

20.
BACKGROUND: Having shown a decrease in [3H]pirenzepine binding in the hippocampus from subjects with schizophrenia, we wished to determine whether such a change in radioligand binding was associated with changes in hippocampal mRNA for the muscarinic1 (M1) and muscarinic4 (M4) receptors in tissue from different cohorts of subjects. METHOD: The [3H]pirenzepine binding using autoradiography and in situ hybridization with oligonucleotides specific for muscarinic M1 and M4 receptors were completed using hippocampal tissue obtained postmortem from 20 control subjects and 20 subjects with schizophrenia. RESULTS: The [3H]pirenzepine binding was decreased in the dentate gyrus (p < .05), CA3 (p < .01), CA2 (p < .05), and CA1 (p < .01) regions of the hippocampus from subjects with schizophrenia. Levels of M4 mRNA varied with the diagnosis of schizophrenia (p = .01), but significant region-specific changes were not apparent. Changes in levels of mRNA for the muscarinic M1 receptor were not detected with diagnosis. CONCLUSIONS: This study suggests that decreases in hippocampal [3H]pirenzepine binding in subjects with schizophrenia are most likely associated with widespread changes in expression levels of the M4 receptor. These data further implicate the hippocampal formation in the pathology of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号