首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: Promoter hypermethylation occurs frequently in tumors and leads to silencing of tumor-relevant genes like tumor suppressor genes. In a subset of sporadic colorectal cancers (CRC), inactivation of the mismatch repair gene MLH1 due to promoter methylation causes high level of microsatellite instability (MSI-H). MSI-H is also a hallmark of hereditary nonpolyposis colorectal cancer (HNPCC) in which mismatch repair inactivation results from germ-line mutations. For differentiation of sporadic and hereditary MSI-H tumor patients, MLH1 promoter methylation analysis is a promising tool but is not yet used in daily diagnostics because only qualitative techniques without standardization are available. The aim of this study is to establish a reliable and quantitative MLH1 methylation analysis technique and to define valid MLH1 methylation cutoff values for HNPCC diagnostics. EXPERIMENTAL DESIGN: We developed a new real-time PCR-based technique to detect and quantify methylation of both proximal and distal hMLH1 promoter regions. We established and validated this technique in a cohort of 108 CRCs [94 MSI-H and 16 microsatellite stable (MSS) cases] comprising a reference (n = 58) and a tester tumor group (n = 50). RESULTS: The reference tumor group contained 28 HNPCC with proven germ-line mutations or positive Amsterdam I criteria (median age, 37 years) and loss of MLH1 expression, 14 sporadic MSI-H CRC tumors with loss of MLH1 expression and BRAF V600E mutation (median age, 80.5 years), and 16 sporadic MSS CRC (median age, 76.5 years). No MLH1 promoter methylation could be found in any MSS tumors. HNPCC patients showed no or low level of MLH1 promoter methylation. A cutoff value of 18% methylation extent could be determined in this study to define MLH1 hypermethylation specific for sporadic MSI-H cases. Methylation could also be verified qualitatively by melting point analysis. BRAF V600E mutations were not detected in any HNPCC patients (n = 22 informative cases). CONCLUSION: According to the present data, quantitative MLH1 methylation analysis in MSI-H CRC is a valuable molecular tool to distinguish between HNPCC and sporadic MSI-H CRC. The detection of a BRAF V600E mutation further supports the exclusion of HNPCC.  相似文献   

2.
Hereditary non-polyposis colorectal cancer (HNPCC) is caused by mutations in one of the mismatch repair genes MLH1, MSH2, MSH6, or PMS2 and results in high-level microsatellite instability (MSI-high) in tumours of HNPCC patients. The MSI test is considered reliable for indicating mutations in MLH1 and MSH2, but is questioned for MSH6. Germline mutation analysis was performed in 19 patients with an MSI-high tumour and absence of MSH2 and/or MSH6 protein as determined by immunohistochemistry (IHC), without an MLH1 or MSH2 mutation, and in 76 out of 295 patients suspected of HNPCC, with a non-MSI-high colorectal cancer (CRC). All 295 non-MSI-high CRCs were analysed for presence of MSH6 protein by IHC. In 10 patients with an MSI-high tumour without MSH2 and/or MSH6 expression, a pathogenic MSH6 mutation was detected, whereas no pathogenic MSH6 mutation was detected in 76 patients with a non-MSI-high CRC and normal MSH6 protein expression. In none of the 295 CRCs loss of MSH6 protein expression was detected. The prevalence of a germline MSH6 mutation is very low in HNPCC suspected patients with non-MSI-high CRC. Microsatellite instability analysis in CRCs is highly sensitive to select patients for MSH6 germline mutation analysis.  相似文献   

3.
There is increased incidence of microsatellite instability (MSI) in patients who develop multiple primary colorectal cancers (CRC), although the association with hereditary nonpolyposis colon cancer (HNPCC) is unclear. This study aims to evaluate the underlying genetic cause of MSI in these patients. Microsatellite instability was investigated in 111 paraffin-embedded CRCs obtained from 78 patients with metachronous and synchronous cancers, and a control group consisting of 74 cancers from patients with a single CRC. Tumours were classified as high level (MSI-H), low level (MSI-L) or stable (MSS). MLH1, MSH2 and MSH6 gene expression was measured by immunohistochemistry. Methylation of the MLH1 promoter region was evaluated in MSI-H cancers that failed to express MLH1, and mutational analysis performed in MSI-H samples that expressed MLH1, MSH2 and MSH6 proteins. The frequency of MSI-H was significantly greater in the multiple, 58 out of 111 (52%), compared to the single cancers, 10 out of 74 (13.5%), P < 0.01. Of the 32 patients from whom two or more cancers were analysed, eight (25%) demonstrated MSI-H in both cancers, 13 (41%) demonstrated MSI-H in one cancer and 11 (34%) failed to demonstrate any MSI-H. MSI-H single cancers failed to express MLH1 or MSH2 in seven out of nine (78%) cases and MSI-L/MSS cancers failed to express MLH1 or MSH2 in one out of 45 (2.2%) cases, all cancers expressed MSH6. MSI-H multiple cancers failed to express MLH1 or MSH2 in 21 out of 43 (48%) cases and MSI-L/MSS cancers failed to express MLH1 or MSH2 in four out of 32 (12.5%) cases. MSH6 expression was lost in five MSI-H multiple cancers, four of which also failed to express MLH1 or MSH2. Loss of expression of the same mismatch repair (MMR) gene was identified in both cancers from six out of 19 (31%) patients. Methylation was identified in 11 out of 17 (65%) multiple and three out of six (50%) single MSI-H cancers that failed to express MLH1. Mutational analysis of 10 MSI-H multiple cancers that expressed MLH1, MSH2 and MSH6 failed to demonstrate mutations in the MLH1 or MSH2 genes. We suggest that, although MSI-H is more commonly identified in those with multiple colorectal cancers, this does not commonly arise from a classical HNPCC pathway.  相似文献   

4.
PURPOSE: Germline mutations in mismatch repair genes predispose to hereditary nonpolyposis colorectal cancer (HNPCC). To address effective screening programs, the true incidence of the disease must be known. Previous clinical investigations reported estimates ranging between 0.5% and 13% of all the colorectal cancer (CRC) cases, whereas biomolecular studies in Finland found an incidence of 2% to 2.7% of mutation carriers for the disease. The aim of the present report is to establish the frequency of the disease in a high-incidence area for colon cancer. PATIENTS AND METHODS: Through the data of the local CRC registry, we prospectively collected all cases of CRC from January 1, 1996, through December 31, 1997 (N = 391). Three hundred thirty-six CRC cases (85.9% of the incident cases) were screened for microsatellite instability (MSI) with six to 12 mono- and dinucleotide markers. MSI cases were subjected to MSH2 and MLH1 germline mutation analysis and immunohistochemistry; the methylation of the promoter region was studied for MLH1. RESULTS: Twenty-eight cases (8.3% of the total) showed MSI. MSI cases differed significantly from microsatellite-stable (MSS) cases for their proximal location (P <.01), high mucinous component (P <.01), and poor differentiation (P =.002). Of MSI cases studied (n = 12), only one with a family history compatible with HNPCC had a germline mutation (in MSH2). Five other patients with a family history of HNPCC (two with MSI and three with MSS tumors) did not show germline mutations. CONCLUSION: We conclude that the incidence of molecularly confirmed HNPCC (one [0.3%] of 336) in a high-incidence area for CRC is lower than in previous biomolecular and clinical estimates.  相似文献   

5.
Hereditary non-polyposis colorectal cancer (HNPCC) represents 1-3% of all colorectal cancers. HNPCC is caused by a constitutional defect in a mismatch repair (MMR) gene, most commonly affecting the genes MLH1, MSH2 and MSH6. The MMR defect results in an increased cancer risk, with the greatest lifetime risk for colorectal cancer and other cancers associated to HNPCC. The HNPCC-associated tumor phenotype is generally characterized by microsatellite instability (MSI) and immunohistochemical loss of expression of the affected MMR protein. The aim of this study was to determine the sensitivity of IHC for MLH1, MSH2 and MSH6, and MSI analysis in tumors from known MMR gene mutation carriers. Fifty-eight paired normal and tumor samples from HNPCC families enrolled in our high-risk colorectal cancer registry were studied for the presence of germline mutations in MLH1, MSH2 and MSH6 by DGGE and direct sequencing. MSI analysis and immunostaining for MLH1, MSH2 and MSH6 were evaluated. Of the 28 patients with a real pathogenic mutation, loss of immunohistochemical expression for at least 1 of these MMR proteins was found, and all except 1 have MSI-H. Sensitivity by MSI analysis was 96%. IHC analysis had a sensitivity of 100% in detecting MMR deficiency in carriers of a pathogenic MMR mutation, and can be used to predict which gene is expected to harbor the mutation for MLH1, MSH2 and MSH6. This study suggests that both analyses are useful for selecting high-risk patients because most MLH1, MSH2 and MSH6 gene carriers will be detected by this 2-step approach. This practical method should have immediate application in the clinical work of patients with inherited colorectal cancer syndromes.  相似文献   

6.
BACKGROUND: Microsatellite instability (MSI) is due to defective DNA mismatch repair (MMR) and has been detected at various rates in colorectal carcinoma (CRC). The role of MSI in colorectal tumorigenesis was assessed further in this study by both microsatellite analysis of two CRC subsets [unselected patients (n = 215) and patients <50 years of age (n = 95)], and mutation screening of the two major MMR genes MLH1 and MSH2 among familial CRC cases. PATIENTS AND METHODS: PCR-based microsatellite analysis was performed on paraffin-embedded tissues. In CRC families, MLH1/MSH2 mutation analysis and MLH1/MSH2 immunostaining were performed on germline DNA and MSI+ tumour tissues, respectively. RESULTS: The MSI+ phenotype was detected in 75 (24%) patients, with higher incidence in early-onset or proximally located tumours. Among 220 patients investigated for family cancer history, MSI frequency was markedly higher in familial [18/27 (67%)] than in sporadic [32/193 (17%)] cases. Three MLH1 and six MSH2 germline mutations were identified in 14 out of 36 (39%) CRC families. Prevalence of MLH1/MSH2 mutations in CRC families was significantly increased by the presence of: (i) fulfilled Amsterdam criteria; (ii) four or more CRCs; or (iii) one or more endometrial cancer. While MSH2 was found mostly mutated, almost all [8/9 (89%)] familial MSI+ cases with loss of the MLH1 protein were negative for MLH1 germline mutations. CONCLUSIONS: Both genetic (for MSH2) and gene-silencing (for MLH1) alterations seem to be involved in CRC pathogenesis.  相似文献   

7.
Patients suspected on clinical grounds to have hereditary non-polyposis colorectal cancer (HNPCC) may be offered laboratory testing in order to confirm the diagnosis and to facilitate screening of pre-symptomatic family members. Tumours from an affected family member are usually pre-screened for microsatellite instability (MSI) and/or loss of immunohistochemical expression of mismatch repair (MMR) genes prior to germline MMR gene mutation testing. The efficiency of this triage process is compromised by the more frequent occurrence of sporadic colorectal cancer (CRC) showing high levels of MSI (MSI-H) due to epigenetic loss of MLH1 expression. Somatic BRAF mutations, most frequently V600E, have been described in a significant proportion of sporadic MSI-H CRC but not in HNPCC-associated cancers. BRAF mutation testing has therefore been proposed as a means to more definitively identify and exclude sporadic MSI-H CRC cases from germline MMR gene testing. However, the clinical validity and utility of this approach have not been previously evaluated in a familial cancer clinic setting. Testing for the V600E mutation was performed on MSI-H CRC samples from 68 individuals referred for laboratory investigation of suspected HNPCC. The V600E mutation was identified in 17 of 40 (42%) tumours showing loss of MLH1 protein expression by immunohistochemistry but in none of the 28 tumours that exhibited loss of MSH2 expression (P < 0.001). The assay was negative in all patients with an identified germline MMR gene mutation. Although biased by the fact that germline testing was not pursued beyond direct sequencing in many cases lacking a high clinical index of suspicion of HNPCC, BRAF V600E detection was therefore considered to be 100% specific and 48% sensitive in detecting sporadic MSI-H CRC amongst those cases showing loss of MLH1 protein expression, in a population of patients with MSI-H CRC and clinical features suggestive of HNPCC. Accordingly, we recommend the incorporation of BRAF V600E mutation testing into the laboratory algorithm for pre-screening patients with suspected HNPCC, whose CRCs show loss of expression of MLH1. In such tumours, the presence of a BRAF V600E mutation indicates the tumour is not related to HNPCC and that germline testing of MLH1 in that individual is not warranted. We also recommend that in families where the clinical suspicion of HNPCC is high, germline testing should not be performed on an individual whose CRC harbours a somatic BRAF mutation, as this may compromise identification of the familial mutation.  相似文献   

8.
PURPOSE: Immunohistochemistry (IHC) and microsatellite instability (MSI) analysis can be used to identify patients with a possible DNA mismatch repair defect [hereditary nonpolyposis colorectal carcinoma (HNPCC)]. The Bethesda criteria have been proposed to select families for determination of MSI. The aims of this study were to assess the yield of MSI analysis in families suspected for HNPCC, to compare the results of immunohistochemical staining and MSI analysis, and to assess the additional value of PMS2 staining. EXPERIMENTAL DESIGN: Clinical data and tumors were collected from 725 individuals from 631 families with suspected HNPCC. MSI analysis was performed using eight markers including the 5 National Cancer Institute markers. Four immunohistochemical staining antibodies were used (MLH1, MSH2, MSH6 and PMS2). RESULTS: A MSI-H (tumors with instability for >30% of the markers) phenotype in colorectal cancers (CRCs) was observed in 21-49% of families that met the various Bethesda criteria. In families with three cases of CRC diagnosed at age > 50 years, families with a solitary case of CRC diagnosed between ages 45 and 50 years, and families with one CRC case and a first-degree relative with a HNPCC-related cancer, one diagnosed between ages 45 and 50 years (all Bethesda-negative families), the yield of MSI-H was 10-26%. Immunohistochemical staining confirmed the MSI results in 93% of the cases. With IHC, adding PMS2 staining led to the identification of an additional 23% of subjects with an hMLH1 germ-line mutation (35 carriers were tested). CONCLUSIONS: The Bethesda guidelines for MSI analysis should include families with three or more cases of CRC diagnosed at age > 50 years. The age at diagnosis of CRC in the original guidelines should be raised to 50 years. Routine IHC diagnostics for HNPCC should include PMS2 staining.  相似文献   

9.
Methylation of the MLH1 gene promoter region is an underlying cause of colorectal cancer (CRC) with high microsatellite instability (MSI-H) diagnosed in persons without a germ line mutation in a mismatch repair (MMR) gene (non-Lynch Syndrome CRC). It is unclear whether relatives of CRC cases with MLH1 methylation have an increased risk of colorectal or other cancers. In this retrospective cohort study, we assessed risk of CRC and other cancers for the first- and second-degree relatives of CRC cases with a methylated MLH1 gene, by comparing observed numbers of cases with those expected on the basis of age-, sex-, and country-specific cancer incidences (standardized incidence ratios). The cohort consisted of 3,128 first- and second-degree relatives of the 233 MLH1-methylated CRC cases with no MMR or MUTYH gene mutations. The standardized incidence ratio (SIR) for CRC was 1.60 [95% confidence interval (CI), 1.22-2.16] for first-degree relatives and 1.08 (0.74-1.60) for second-degree relatives. The SIR for gastric cancer was 2.58 (1.52-4.71) for first-degree relatives and 4.52 (2.23-10.61) for second-degree relatives and, for ovarian cancer, it was 2.16 (1.29-3.86) for first-degree relatives. The risk of liver cancer was also increased significantly in first-degree relatives but the estimate was on the basis of only two cases. These data imply that relatives of CRC cases with MLH1 methylation may be at increased risk of CRC and stomach cancer and possibly ovarian and liver cancer, suggesting that there may be a heritable factor for CRC and other cancers associated with MLH1 methylation in non-Lynch syndrome CRCs.  相似文献   

10.
11.
Defects of DNA mismatch repair (MMR) cause the high level microsatellite instability (MSI-H) phenotype. MSI-H cancers may develop either sporadically or in the context of the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome that is caused by germline mutations of MMR genes. In colorectal cancer (CRC), MSI-H is characterized by a dense lymphocytic infiltration, reflecting a high immunogenicity of these cancers. As a consequence of immunoselection, MSI-H CRCs frequently display a loss of human leukocyte antigen (HLA) class I antigen presentation caused by mutations of the beta2-microglobulin (beta2m) gene. To examine the implications of beta2m mutations during MSI-H colorectal tumor development, we analyzed the prevalence of beta2m mutations in MSI-H colorectal adenomas (n=38) and carcinomas (n=104) of different stages. Mutations were observed in 6/38 (15.8%) MSI-H adenomas and 29/104 (27.9%) MSI-H CRCs. A higher frequency of beta2m mutations was observed in MSI-H CRC patients with germline mutations of MMR genes MLH1 or MSH2 (36.4%) compared with patients without germline mutations (15.4%). The high frequency of beta2m mutations in HNPCC-associated MSI-H CRCs is in line with the hypothesis that immunoselection may be particularly pronounced in HNPCC patients with inherited predisposition to develop MSI-H cancers. beta2m mutations were positively related to stage in tumors without distant metastases (UICC I-III), suggesting that loss of beta2m expression may promote local progression of colorectal MSI-H tumors. However, no beta2m mutations were observed in metastasized CRCs (UICC stage IV, p=0.04). These results suggest that functional beta2m may be necessary for distant metastasis formation in CRC patients.  相似文献   

12.
Forty-eight hereditary nonpolyposis colorectal carcinoma (HNPCC) families for which a tumor sample was available were evaluated for the presence of germ-line mutations in MSH2 and MLH1, tumor microsatellite instability (MSI), and where possible, expression of MSH2 and MLH1 in tumors by immunohistochemistry. Fourteen of 48 of the families had a germ-line mutation in either MSH2 or MLH1 that could be detected by genomic DNA sequencing, and 28 of 48 of the families had MSI-H tumors. Four additional families showed loss of expression of MSH2, and one additional family showed loss of expression of MLH1 but did not have germ-line mutations in MSH2 or MLH1 that could be detected by DNA sequencing. MSI-H, as defined using the National Cancer Institute recommended five-microsatellite panel, had a 100% sensitivity for identifying samples having MSH2 or MLH1 mutations or loss of expression. In contrast, loss of MSH2 and MLH1 expression did not identify all samples having germ-line mutations in MSH2 or MLH1, because in five cases, a mutant protein product was expressed that could be detected by IHC. A combination of the Bethesda criteria for HNPCC and an MSI-H phenotype defined the smallest number of cases having all of the germ-line MSH2 and MLH1 mutations that could be detected by DNA sequencing.  相似文献   

13.
Mutations of the mismatch repair (MMR) genes MLH1 and MSH2 are associated with hereditary nonpolyposis colorectal cancer (HNPCC), a highly penetrant autosomal dominant condition characterized by hypermutability of short tandemly repeated sequences in tumor DNA. Mutations of another MMR gene, MSH6, seem to be less common than MLH1 and MSH2 defects, and have been mostly observed in atypical HNPCC families, characterized by a weaker tumor family history, higher age at disease onset, and low degrees of microsatellite instability (MSI), predominantly involving mononucleotide runs. We have investigated the MSH6 gene sequence in the peripheral blood of 4 HNPCC and 20 atypical HNPCC probands. Two frameshift mutations within exon 4 were detected in 2 patients. One mutation was found in a proband from a typical HNPCC family, who had developed a colorectal cancer (CRC), a gastric cancer and a rectal adenoma. The CRC and the adenoma showed mild MSI limited to mononucleotide tracts, while the gastric carcinoma was microsatellite stable. The other mutation was detected in an atypical HNPCC proband, whose CRC showed widespread MSI involving both mono- and dinucleotide repeats. The phenotypic variability associated with MSH6 constitutional mutations represents a complicating factor for the optimization of strategies aimed at identifying candidates to MSH6 genetic testing.  相似文献   

14.
The microsatellite instability (MSI) pathway is found in most cases of hereditary nonpolyposis colorectal cancer (HNPCC) and in 12 % of sporadic colorectal cancer (CRC). It involves inactivation of deoxyribonucleic acid mismatch repair (MMR) genes MLH1, MSH2, PMS2, and MSH6. MMR germline mutation detections are an important supplement to HNPCC clinical diagnosis. It enables at-risk and mutation-positive relatives to be informed about their cancer risks and to benefit from intensive surveillance programs that have been proven to reduce the incidence of CRC. In this study, we analyzed for the first time in Tunisia the potential value of immunohistochemical assessment of MMR protein to identify microsatellite instability in CRC. We evaluate by immunohistochemistry MMR protein expression loss in tumoral tissue compared to positive expression in normal mucosa. Immunohistochemistry revealed loss of expression for MLH1, MSH2, MSH6, and PMS2 in 15, 21, 13, and 15 % of cases, respectively. Here, we report a more elevated frequency of MSI compared to data of the literature. In fact, by immunohistochemistry, 70 % of cases were shown to be MSS phenotype, whereas 30 % of cases, in our set, were instable. Moreover, according to molecular investigation, 71 % of cases were instable (MSI-H) and remaining cases were stable (29 %). Thus, we found a perfect association between MMR immunohistochemical analyses and MSI molecular investigation. Immunohistochemical analysis of MMR gene product expression may allow one to specifically identify MSI phenotype of patients with colorectal carcinomas.  相似文献   

15.
Little evidence for involvement of MLH3 in colorectal cancer predisposition   总被引:3,自引:0,他引:3  
Mutations in the DNA MMR genes MSH2, MLH1, MSH6 and PMS2 underlie a large subset of HNPCC cases, and a hallmark of the tumors is MSI. In many HNPCC families, however, a causative mutation has not been found. Therefore, the involvement of additional, thus far unknown, genes in MSI as well as MSS colorectal tumor predisposition is possible. The role of a relatively recently cloned MMR gene, MLH3, in familial CRC has been studied; but the results appear somewhat conflicting. To further evaluate the role of MLH3 in CRC predisposition, we analyzed 30 Finnish CRC cases for germline mutations by sequencing. These cases were selected from a large series of Finnish CRC patients, to match features previously proposed to associate with MLH3 germline defects. We found 5 missense variants, 4 of which were also found in Finnish cancer-free controls. The only remaining variant does not appear to be an attractive candidate for a disease-associated mutation because the amino acid change is located outside the conserved residues. We also screened for the previously reported variants, including a frameshift change, the most likely pathogenic MLH3 mutation observed so far. The frameshift was not present in the 30 CRC cases or in 700 cancer-free controls. While it is a difficult task to exclude a role of MLH3 in HNPCC, our study could not confirm a role for MLH3 in CRC predisposition.  相似文献   

16.
Activating mutations of BRAF have been frequently observed in microsatellite unstable (MSI+) colorectal carcinomas (CRCs), in which mutations of BRAF and KRAS are mutually exclusive. Previously, we reported that hypermethylation of hMLH1 might play an important role in the tumorigenesis of right-sided sporadic CRCs with MSI showing less frequency of KRAS/TP53 alteration. Therefore, we have assumed that BRAF mutations might be highly associated with hMLH1 methylation status rather than MSI status. In this study, mutations of BRAF and KRAS and their relationship with MSI and hMLH1 methylation status were examined in 140 resected specimens of CRC. The methylation status was classified into 3 types: full methylation (FM), partial methylation (PM) and nonmethylation (NM). Only FM closely linked to reduced expression of hMLH1 protein. BRAF mutations were found in 16 cases (11%), all leading to the production of BRAF(V599E). As for MSI status, BRAF mutations were found in 43% of MSI+ and 4% of MSI- cases (p < 0.0001). Among the MSI+ individuals, BRAF mutations were more frequent in cases with hMLH1 deficiency (58%) than those with hMSH2 deficiency (0%; p=0.02). Moreover, they were found in 69% of FM, 4% of PM and 4% of NM, revealing a striking difference between FM and the other 2 groups (FM vs. PM or NM; p < 0.0001). These findings suggest that BRAF activation may participate in the carcinogenesis of sporadic CRCs with hMLH1 hypermethylation in the proximal colon, independently of KRAS activation.  相似文献   

17.
Mutations of the mismatch repair (MMR) genes MLH1 and MSH2 are associated with hereditary nonpolyposis colorectal cancer (HNPCC), a highly penetrant autosomal dominant condition characterized by hypermutability of short tandemly repeated sequences in tumor DNA. Mutations of another MMR gene, MSH6, seem to be less common than MLH1 and MSH2 defects, and have been mostly observed in atypical HNPCC families, characterized by a weaker tumor family history, higher age at disease onset, and low degrees of microsatellite instability (MSI), predominantly involving mononucleotide runs. We have investigated the MSH6 gene sequence in the peripheral blood of 4 HNPCC and 20 atypical HNPCC probands. Two frameshift mutations within exon 4 were detected in 2 patients. One mutation was found in a proband from a typical HNPCC family, who had developed a colorectal cancer (CRC), a gastric cancer and a rectal adenoma. The CRC and the adenoma showed mild MSI limited to mononucleotide tracts, while the gastric carcinoma was microsatellite stable. The other mutation was detected in an atypical HNPCC proband, whose CRC showed widespread MSI involving both mono- and dinucleotide repeats. The phenotypic variability associated with MSH6 constitutional mutations represents a complicating factor for the optimization of strategies aimed at identifying candidates to MSH6 genetic testing.  相似文献   

18.
Endometrial cancer is the second most common cancer in hereditary nonpolyposis colorectal cancer (HNPCC). It has often been overlooked to explore the possibility of HNPCC in endometrial cancer patients. Our study was to investigate how many HNPCC patients existed among endometrial cancer patients. Among patients who underwent hysterectomy for endometrial cancer at Seoul National University Hospital from 1996 to 2004, 113 patients were included, whose family history and clinical data could be obtained and tumor specimens were available for microsatellite instability (MSI) testing and immunohistochemical (IHC) staining of MLH1, MSH2 and MSH6 proteins. There were 4 (3.5%) clinical HNPCC patients fulfilling the Amsterdam criteria II, and 2 (2/4, 50%) of them carried MSH2 germline mutations. There were also 8 (7.1%) suspected HNPCC (s-HNPCC) patients fulfilling the revised criteria for s-HNPCC, and one (1/8, 12.5%) of them revealed MLH1 germline mutation. In 101 patients, who were not clinical HNPCC or s-HNPCC, 11 patients showed both MSI-high and loss of expression of MLH1, MSH2 or MSH6 proteins, and 2 (2/11, 18.2%) of them showed MSH6 germline mutations. In 113 patients with endometrial cancer, we could find 5 (4.4%) HNPCC patients with MMR germline mutation and 2 (1.8%) clinical HNPCC patients without identified MMR gene mutation. Family history was critical in detecting 3 HNPCC patients with MMR germline mutation, and MSI testing with IHC staining for MLH1, MSH2 and MSH6 proteins was needed in the diagnosis of 2 HNPCC patients who were not clinical HNPCC or s-HNPCC, especially for MSH6 germline mutation.  相似文献   

19.
Mutations in DNA MMR genes, mainly MSH2 and MLH1, account for the majority of HNPCC, an autosomal dominant predisposition to colorectal cancer and other malignancies. The evaluation of many questions regarding HNPCC requires clinically and genetically well-characterized HNPCC patient cohorts of reasonable size. One main focus of this multicenter study is the evaluation of the mutation spectrum and mutation frequencies in a large HNPCC cohort in Germany; 1,721 unrelated patients, mainly of German descent, who met the Bethesda criteria were included in the study. In tumor samples of 1,377 patients, microsatellite analysis was successfully performed and the results were applied to select patients eligible for mutation analysis. In the patients meeting the strict Amsterdam criteria (AC) for HNPCC, 72% of the tumors exhibited high microsatellite instability (MSI-H) while only 37% of the tumors from patients fulfilling the less stringent criteria showed MSI-H; 454 index patients (406 MSI-H and 48 meeting the AC of whom no tumor samples were available) were screened for small mutations. In 134 index patients, a pathogenic MSH2 mutation, and in 118 patients, a pathogenic MLH1 mutation was identified (overall detection rate for pathogenic mutations 56%). One hundred sixty distinct mutations were detected, of which 86 are novel mutations. Noteworthy is that 2 mutations were over-represented in our patient series: MSH2,c.942+3A>T and MLH1,c.1489_1490insC, which account for 11% and 18% of the MSH2 and MLH1 mutations, respectively. A subset of 238 patients was screened for large genomic deletions. In 24 (10%) patients, a deletion was found. In 72 patients, only unspecified variants were found. Our findings demonstrate that preselection by microsatellite analysis substantially raises mutation detection rates in patients not meeting the AC. As a mutation detection strategy for German HNPCC patients, we recommend to start with screening for large genomic deletions and to continue by screening for common mutations in exon 5 of MSH2 and exon 13 of MLH1 before searching for small mutations in the remaining exons.  相似文献   

20.
Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号