首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The myelin‐associated protein Nogo‐A contributes to the failure of axon regeneration in the mammalian central nervous system (CNS). Inhibition of axon growth by Nogo‐A is mediated by the Nogo‐66 receptor (NgR). Nonmammalian vertebrates, however, are capable of spontaneous CNS axon regeneration, and we have shown that retinal ganglion cell (RGC) axons regenerate in the lizard Gallotia galloti. Using immunohistochemistry, we observed spatiotemporal regulation of Nogo‐A and NgR in cell bodies and axons of RGCs during ontogeny. In the adult lizard, expression of Nogo‐A was associated with myelinated axon tracts and upregulated in oligodendrocytes during RGC axon regeneration. NgR became upregulated in RGCs following optic nerve injury. In in vitro studies, Nogo‐A‐Fc failed to inhibit growth of lizard RGC axons. The inhibitor of protein kinase A (pkA) activity KT5720 blocked growth of lizard RGC axons on substrates of Nogo‐A‐Fc, but not laminin. On patterned substrates of Nogo‐A‐Fc, KT5720 caused restriction of axon growth to areas devoid of Nogo‐A‐Fc. Levels of cyclic adenosine monophosphate (cAMP) were elevated over sustained periods in lizard RGCs following optic nerve lesion. We conclude that Nogo‐A and NgR are expressed in a mammalian‐like pattern and are upregulated following optic nerve injury, but the presence of Nogo‐A does not inhibit RGC axon regeneration in the lizard visual pathway. The results of outgrowth assays suggest that outgrowth‐promoting substrates and activation of the cAMP/pkA signaling pathway play a key role in spontaneous lizard retinal axon regeneration in the presence of Nogo‐A. Restriction of axon growth by patterned Nogo‐A‐Fc substrates suggests that Nogo‐A may contribute to axon guidance in the lizard visual system. J. Comp. Neurol. 525:936–954, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Neuropeptides are conserved metazoan signaling molecules, and represent useful markers for comparative investigations on the morphology and function of the nervous system. However, little is known about the variation of neuropeptide expression patterns across closely related species in invertebrate groups other than insects. In this study, we compare the immunoreactivity patterns of 14 neuropeptides in three closely related microscopic dinophilid annelids (Dinophilus gyrociliatus, D. taeniatus and Trilobodrilus axi). The brains of all three species were found to consist of around 700 somata, surrounding a central neuropil with 3–5 ventral and 2–5 dorsal commissures. Neuropeptide immunoreactivity was detected in the brain, the ventral cords, stomatogastric nervous system, and additional nerves. Different neuropeptides are expressed in specific, non‐overlapping cells in the brain in all three species. FMRFamide, MLD/pedal peptide, allatotropin, RNamide, excitatory peptide, and FVRIamide showed a broad localization within the brain, while calcitonin, SIFamide, vasotocin, RGWamide, DLamide, FLamide, FVamide, MIP, and serotonin were present in fewer cells in demarcated regions. The different markers did not reveal ganglionic subdivisions or physical compartmentalization in any of these microscopic brains. The non‐overlapping expression of different neuropeptides may indicate that the regionalization in these uniform, small brains is realized by individual cells, rather than cell clusters, representing an alternative to the lobular organization observed in several macroscopic annelids. Furthermore, despite the similar gross brain morphology, we found an unexpectedly high variation in the expression patterns of neuropeptides across species. This suggests that neuropeptide expression evolves faster than morphology, representing a possible mechanism for the evolutionary divergence of behaviors.  相似文献   

4.
5.
The vertebrate ciliary ganglion (CG) is a relay station in the parasympathetic pathway activating the iris sphincter and ciliary muscle to mediate pupillary constriction and lens accommodation, respectively. While the postganglionic motoneurons in the CG are cholinergic, as are their inputs, there is evidence from avian studies that GABA may also be involved. Here, we used light and electron microscopic methods to examine the GABAergic innervation of the CG in Macaca fascicularis monkeys. Immunohistochemistry for the gamma aminobutyric acid synthesizing enzyme glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT) revealed that all CG neurons are contacted by ChAT‐positive terminals. A subpopulation of 17.5% of CG neurons was associated with terminal boutons expressing GAD‐immunoreactivity in addition. Double‐labeling for GAD and synaptophysin confirmed that these were synaptic terminals. Electron microscopic analysis in conjunction with GABA‐immunogold staining showed that (1) GAD‐positive terminals mainly target dendrites and spines in the perisomatic neuropil of CG neurons; (2) GABA is restricted to a specific terminal type, which displays intermediate features lying between classically excitatory and inhibitory endings; and (3) if a CG neuron is contacted by GABA‐positive terminals, virtually all perisomatic terminals supplying it show GABA immunoreactivity. The source of this GABAergic input and whether GABA contributes to a specific CG function remains to be investigated. Nevertheless, our data indicate that the innervation of the ciliary ganglion is more complex than previously thought, and that GABA may play a neuromodulatory role in the control of lens or pupil function. J. Comp. Neurol. 525:1517–1531, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult‐specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re‐established adult organs. Although there are multiple neuropeptides that have stage‐specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44‐producing median neurosecretory cells start expressing Insulin‐like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult‐specific structure in the digestive tract, the crop. We propose that the adult‐specific insulin‐producing cells may regulate functions of the digestive system in a stage‐specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution.  相似文献   

7.
8.
9.
Invertebrate tachykinin‐related peptides (TKRPs) comprise a group of signaling molecules having sequence similarities to mammalian tachykinins. A growing body of evidence has demonstrated the presence of TKRPs in the central nervous system of insects. In this investigation, we used an antiserum against locustatachykinin‐II to reveal the distribution pattern of these peptides in the brain of the moth Heliothis virescens. Immunolabeling was found throughout the brain of the heliothine moth. Most of the roughly 500 locustatachykinin‐II immunoreactive cell bodies, that is, ca. 400, were located in the protocerebrum, whereas the rest was distributed in the deutocerebrum, tritocerebrum, and the gnathal ganglion. Abundant immunoreactive processes were located in the same regions. Labeled processes in the protocerebrum were especially localized in optic lobe, central body, lateral accessory lobe, superior protocerebrum, and lateral protocerebrum, while those in the deutocerebrum were present exclusively in the antennal lobe. In addition to brain interneurons, four pairs of median neurosecretory cells in the pars intercerebralis with terminal processes in the corpora cardiaca and aorta wall were immunostained. No sexual dimorphism in immunoreactivity was found. Comparing the data obtained here with findings from other insect species reveals considerable differences, suggesting species‐specific roles of tachykinin‐related peptides in insects.  相似文献   

10.
The siphon of Aplysia californica has several functions, including involvement in respiration, excretion, and defensive inking. It also provides sensory input for defensive withdrawals that have been studied extensively to examine mechanisms that underlie learning. To better understand the neuronal bases of these functions, we used immunohistochemistry to catalogue peripheral cell types and innervation of the siphon in stage 12 juveniles (chosen to allow observation of tissues in whole‐mounts). We found that the siphon nerve splits into three major branches, leading ultimately to a two‐part FMRFamide‐immunoreactive plexus and an apparently separate tyrosine hydroxylase–immunoreactive plexus. Putative sensory neurons included four distinct types of tubulin‐immunoreactive bipolar cells (one likely also tyrosine hydroxylase immunoreactive) that bore ciliated dendrites penetrating the epithelium. A fifth bipolar neuron type (tubulin‐ and FMRFamide‐immunoreactive) occurred deeper in the tissue, associated with part of the FMRFamide‐immunoreactive plexus. Our observations emphasize the structural complexity of the peripheral nervous system of the siphon, and the importance of direct tests of the various components to better understand the functioning of the entire organ, including its role in defensive withdrawal responses. J. Comp. Neurol. 523:2409–2425, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661–675, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
In primate retina, the midget, parasol, and small bistratified cell populations form the large majority of ganglion cells. In addition, there is a variety of low-density wide-field ganglion cell types that are less well characterized. Here we studied retinal ganglion cells in the common marmoset, Callithrix jacchus, using particle-mediated gene transfer. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95–green fluorescent protein. The retinas were processed with established immunohistochemical markers for bipolar and/or amacrine cells to determine ganglion cell dendritic stratification. In total over 500 ganglion cells were classified based on their dendritic field size, morphology, and stratification in the inner plexiform layer. Over 17 types were distinguished, including midget, parasol, broad thorny, small bistratified, large bistratified, recursive bistratified, recursive monostratified, narrow thorny, smooth monostratified, large sparse, giant sparse (melanopsin) ganglion cells, and a group that may contain several as yet uncharacterized types. Assuming each characterized type forms a hexagonal mosaic, the midget and parasol cells account for over 80% of all ganglion cells in the central retina but only ∼50% of cells in the peripheral (>2 mm) retina. We conclude that the fovea is dominated by midget and parasol cells, but outside the fovea the ganglion cell diversity in marmoset is likely as great as that reported for nonprimate retinas. Taken together, the ganglion cell types in marmoset retina resemble those described previously in macaque retina with respect to morphology, stratification, and change in proportion across the retina.  相似文献   

13.
The immunocytochemical distribution of gamma-aminobutyric acid (GABA), GABA synthesizing enzyme; L-glutamate decarboxylase (GAD) and degradative enzyme; GABA transaminase (GABA-T) in the chicken vestibular endorgans and the vestibular ganglion was investigated. GABA and GAD-like immunoreactivity were confined to the sensory hair cell cytoplasm, suggesting that GAD synthesizes GABA in the hair cell. GABA-T-like immunoreactivity, indicative of GABA degradation, was found around hair cells, along nerve fibers running through the stroma and within the ganglion cell. These immunocytochemical findings indicate that the GABAergic system exists in the chicken vestibular endorgans and that GABA may function as an afferent neurotransmitter at the level of hair cells.  相似文献   

14.
The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi‐ and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light‐dependent delays or advances to the clock. Injections of neuroactive substances combined with running‐wheel assays suggested that GABA, pigment‐dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light‐like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple‐label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin‐immunoreactive (‐ir) terminals overlapped with projections of putatively light‐sensitive interneurons from the ipsi‐ and contralateral compound eye. Thus, we hypothesize that the corazonin‐ir medial neuron integrates ipsi‐ and contralateral light information as part of the phase‐advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250–1272, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
In the developing mouse optic tract, retinal ganglion cell (RGC) axon position is organized by topography and laterality (i.e., eye-specific or ipsi- and contralateral segregation). Our lab previously showed that ipsilaterally projecting RGCs are segregated to the lateral aspect of the developing optic tract and found that ipsilateral axons self-fasciculate to a greater extent than contralaterally projecting RGC axons in vitro. However, the full complement of axon-intrinsic and -extrinsic factors mediating eye-specific segregation in the tract remain poorly understood. Glia, which are known to express several guidance cues in the visual system and regulate the navigation of ipsilateral and contralateral RGC axons at the optic chiasm, are natural candidates for contributing to eye-specific pre-target axon organization. Here, we investigate the spatiotemporal expression patterns of both putative astrocytes (Aldh1l1+ cells) and microglia (Iba1+ cells) in the embryonic and neonatal optic tract. We quantified the localization of ipsilateral RGC axons to the lateral two-thirds of the optic tract and analyzed glia position and distribution relative to eye-specific axon organization. While our results indicate that glial segregation patterns do not strictly align with eye-specific RGC axon segregation in the tract, we identify distinct spatiotemporal organization of both Aldh1l1+ cells and microglia in and around the developing optic tract. These findings inform future research into molecular mechanisms of glial involvement in RGC axon growth and organization in the developing retinogeniculate pathway.  相似文献   

16.
Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole‐mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3‐immunoreactive nerve endings ramified into several branches that extended two‐dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3‐immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3‐immunoreactive endings were beaded, rounded, or club‐like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB‐labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3‐immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.  相似文献   

17.
Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS–CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS–CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein–reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily “PNS glia.”  相似文献   

18.
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ‐aminobutyric acid‐like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz‐Ríos, Oyola, & Miller, 2002), double‐labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli‐THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli‐THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.  相似文献   

19.
20.
Class III Semaphorin (Sema) secreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used in situ hybridization or immunohistochemistry to map the expression of Sema3D, Sema3F, Nrp1, Nrp2, and PlxnA1 in the chicken (Gallus gallus) inner ear from embryonic day (E)5–E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. Sema3D expression flanking the sensory tissue in vestibular organs suggests that it may repel Nrp2- and PlxnA1-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5–E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8–E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, Sema3D in the future tegmentum vasculosum opposes Nrp1 and PlxnA1 in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. Sema3D immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号