首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opiate receptors measured in vitro or in vivo with [3H]lofentanil in the rat vagus nerve were found to accumulate on both sides of a ligature, thus indicating a bidirectional axoplasmic transport of these receptors. When rats were treated with capsaicin, the accumulation of opiate receptors was tremendously reduced in the vagus whereas muscarinic receptors in ligated sciatic nerves were unaffected. Since capsaicin is known to affect sensory neurones, mostly those containing substance P, the present results support the idea that the opiate receptors in the vagus are associated with substance P neurones.  相似文献   

2.
The ventral tegmental area (VTA) is a heterogeneous midbrain structure that contains dopamine (DA), GABA, and glutamate neurons that project to many different brain regions. Here, we combined retrograde tracing with immunocytochemistry against tyrosine hydroxylase (TH) or glutamate decarboxylase (GAD) to systematically compare the proportion of dopaminergic and GABAergic VTA projections to 10 target nuclei: anterior cingulate, prelimbic, and infralimbic cortex; nucleus accumbens core, medial shell, and lateral shell; anterior and posterior basolateral amygdala; ventral pallidum; and periaqueductal gray. Overall, the non-dopaminergic component predominated VTA efferents, accounting for more than 50% of all projecting neurons to each region except the nucleus accumbens core. In addition, GABA neurons contributed no more than 20% to each projection, with the exception of the projection to the ventrolateral periaqueductal gray, where the GABAergic contribution approached 50%. Therefore, there is likely a significant glutamatergic component to many of the VTA's projections. We also found that VTA cell bodies retrogradely labeled from the various target brain regions had distinct distribution patterns within the VTA, including in the locations of DA and GABA neurons. Despite this patterned organization, VTA neurons comprising these different projections were intermingled and never limited to any one subregion. These anatomical results are consistent with the idea that VTA neurons participate in multiple distinct, parallel circuits that differentially contribute to motivation and reward. While attention has largely focused on VTA DA neurons, a better understanding of VTA subpopulations, especially the contribution of non-DA neurons to projections, will be critical for future work.  相似文献   

3.
Low frequency (6 pps) stimulation of ventral tegmental area (VTA) and nucleus accumbens (NA) produced EEG synchronization and suppressed attack behavior elicited by hypothalamic stimulation. Both quiet biting and affective attack with rage were suppressed. Autonomic and non-directed somatic motor components of the attack reaction were unaffected.High frequency (60 pps) stimulation of VTA failed to suppress any components of the attack reaction; high frequency stimulation of NA, however, did produce suppression of attack.Low frequency (6 pps) sensory stimulation, delivered by photic or lateral geniculate stimulation, produced EEG synchronization but failed to cause suppression of attack. These results indicate that low frequency stimulation per se does not cause suppression of ongoing behavior.This study demonstrates that VTA and NA, components of the mesolimbic dopamine system, are involved in the inhibition of emotional-type behaviors.  相似文献   

4.
The hypocretin/orexin (HCRT) neuropeptide system modulates behavioral state and state-dependent processes via actions on multiple neuromodulatory transmitter systems. Recent studies indicate that HCRT selectively increases dopamine (DA) neurotransmission within the prefrontal cortex (PFC) and the shell subregion of the nucleus accumbens (NAs), but not the core subregion of the nucleus accumbens (NAc). The circuitry underlying the differential actions of HCRT across distinct DA systems is unclear. The current study examined whether HCRT preferentially activates PFC- and NAs-projecting relative to NAc-projecting DA neurons within the VTA. One week after infusion of the retrograde tracer fluorogold (FG) into the medial PFC, NAc or NAs, animals received a ventricular infusion of HCRT-1. Subsequent analyses conducted across the rostral-caudal extent of the VTA determined the degree to which: (i) Fos-immunoreactivity (ir) was observed within tyrosine hydroxylase (TH)-ir neurons; (ii) TH-ir was observed within FG-ir neurons; and (iii) Fos-ir was observed within FG-ir neurons. HCRT significantly increased Fos-ir in VTA DA (TH-ir) neurons, primarily in a restricted population of small-to-medium-sized DA neurons located within the caudomedial VTA. Furthermore, within this region of the VTA, PFC- and NAs-projecting TH-ir neurons were more likely to contain Fos-ir than were NAc-projecting TH-ir neurons. These results provide novel evidence that HCRT selectively activates PFC- and NAs-projecting DA neurons within the VTA, and suggest a potential role for HCRT in PFC- and NAs-dependent cognitive and/or affective processes. Moreover, these and other observations suggest that the dysregulation of HCRT-DA interactions could contribute to cognitive/affective dysfunction associated with a variety of behavioral disorders.  相似文献   

5.
Extracellular single unit recordings were obtained from the nucleus accumbens of urethane anesthetized rats. It was found that electrical stimulation of the basal lateral and basal medial nuclei of the amygdala produced strong excitatory responses in neurons of the nucleus accumbens, in particular the medial region. Latencies of activation were relatively short with a mean of 10.7 ms.Dopamine applied iontophoretically had a marked attenuating effect on the excitatory response of nucleus accumbens neurons to amygdala stimulation. The spontaneous activity of all neurons recorded from the nucleus accumbens was also suppressed by dopamine, but the excitatory response was more sensitive to dopamine inhibition than the spontaneous activity.Neurons in the nucleus accumbens showed a variety of responses to single-pulse electrical stimulation of the ventral tegmental area (VTA). Some units in the nucleus accumbens received convergent inputs from both the amygdala and the VTA. Stimulation of the VTA also attenuated the response of nucleus accumbens neurons to excitatory inputs from the amygdala. A train of 10 pulses (0.15 ms, 200–600 αA) at 10 Hz delivered to the VTA at 100 ms before stimulation of the amygdala caused attenuation of the original excitatory response. The attenuating effect could be observed irrespective of whether individual single-pulse stimulation of the VTA elicited a response in that particular accumbens neuron or not. 6-Hydroxydopamine injected into the VTA 2 days prior to the recording experiment, or haloperidol injected intraperitoneally 1 h before the recording session, abolished this attenuating effect. However, responses to single-pulse stimulations of the VTA were not abolished. The results suggest that the attenuation of the excitatory response to amygdala stimulation was due to the release of dopamine from mesolimbic dopaminergic neurons. Responses to single-pulse stimulations of the VTA were probably due to activation of non-dopaminergic neurons projecting from the same area.It is suggested as a working hypothesis that this inhibitory effect of dopamine may be an important function of the mesolimbic dopamine pathway in modulating the extent to which limbic structures can exert an influence on the motor system through the accumbens.  相似文献   

6.
Stimulation of the ventral tegmental area (VTA) and nucleus accumbens (NA) suppressed attack behavior elicited by hypothalamic stimulation. Because the nondirected somatic motor and autonomic components of attack were not affected by VTA or NA stimulation, and previous work had demonstrated the importance of sensory guidance in attack, the mechanism for suppression was postulated to be on the sensory component of the attack reaction. We investigated the effects of VTA and NA stimulation on the biting reflex, one of the sensory-controlled components of hypothalamically elicited attack behavior. The receptive field for biting was measured during hypothalamic stimulation with and without concurrent VTA and NA stimulation. At stimulation parameters that inhibited attack, the extent of the receptive field was reduced. Thus, VTA and NA may produce inhibition of attack by acting on the sensory component of the response mechanism. We suggest that reduction of receptive fields is a mechanism by which behavioral inhibition is mediated in the central nervous system.  相似文献   

7.
应用荧光分光光度法和放射免疫法,在以6-羟基多巴胺(6-OHDA)单侧损毁内侧前脑束(MFB)制备的偏侧帕金森病(PD)大鼠模型身上,测定了腹侧被盖区(VTA)和伏核(Acb)中多巴胺(DA)和八胺胆囊收缩素(CCK-8)的含量,并测定了TVA和Acb区微量注射CCK-8对正常大鼠DA含量的影响。结果如下:PD大鼠模型损毁侧VTA和Acb的DA和CCK-8的含量与健康及对照组相比均减少(P〈0.0  相似文献   

8.
Extracellular recordings were obtained from neurons in the ventral tegmental area (VTA) of urethane-anesthetized rats. Neurons were devided into two types based on the latencies of antidromic activation following electrical stimulation of the nucleus accumbens (NAcc), and on the durations of action potentials. Type A neurons had longer latencies for antidromic activation (mean 15.9 msec) and longer durations of action potentials (2.6msec), while type B neurons had shorter latencies (mean 4.5 msec) and shorter duration of action potentials (< 2.6msec).Electrical stimulation of the medial preoptic-anterior hypothalamic areas (mPOA-AHA) and NAcc produced the following effects on the two types of VTA neurons: (i) the majority of both type A and B neurons were suppressed by mPOA-AHA stimula stimulation with onset latencies of less than 10 msec; (ii) 42% of type B neurons were also suppressed by NAcc stimulation, with onset latencies of less than 10 msec; (iii) type A neurons were suppressed (33%) or activated (43%) by NAcc stimulation, the onset latencies usually being longer than 10 msec; (iv) 71% of type A neurons tested had convergent inputs from the mPOA-AHA and NAcc, usually suppressed-suppressed or suppressed-activated, while 45% of type B neurons had convergent inputs from these two areas, usually suppressed-suppressed.  相似文献   

9.
The hypothalamic neuropeptide Y (NPY) circuitry is a key regulator of feeding behavior. NPY also acts in the mesolimbic dopaminergic circuitry, where it can increase motivational aspects of feeding behavior through effects on dopamine output in the nucleus accumbens (NAc) and on neurotransmission in the ventral tegmental area (VTA). Endogenous NPY in the NAc originates from local interneurons and afferent projections from the hypothalamic arcuate nucleus (Arc). However, the origin of endogenous NPY in the VTA is unknown. We determined, in normal-weight male Wistar rats, if the source of VTA NPY is local, and/or whether it is derived from VTA-projecting neurons. Immunocytochemistry, in situ hybridization and RT-qPCR were utilized, when appropriate in combination with colchicine treatment or 24 hr fasting, to assess NPY/Npy expression locally in the VTA. Retrograde tracing using cholera toxin beta (CTB) in the VTA, fluorescent immunocytochemistry and confocal microscopy were used to determine NPY-immunoreactive afferents to the VTA. NPY in the VTA was observed in fibers, but not following colchicine pretreatment. No NPY- or Npy-expressing cell bodies were observed in the VTA. Fasting for 24 hr, which increased Npy expression in the Arc, failed to induce Npy expression in the VTA. Double-labeling with CTB and NPY was observed in the Arc and in the ventrolateral medulla. Thus, VTA NPY originates from the hypothalamic Arc and the ventrolateral medulla of the brainstem in normal-weight male Wistar rats. These afferent connections link hypothalamic and brainstem processing of physiologic state to VTA-driven motivational behavior.  相似文献   

10.
Extracellular single unit recordings were obtained from neurones in the nucleus accumbens of urethane anaesthetized rats. Single pulse stimulation (300-800 microA, 0.15 ms, 0.5-1.5 Hz) of the ventral subiculum of the hippocampus strongly excited silent and spontaneously active (3-6 spikes/s) medial accumbens neurones. The majority of neurones excited by hippocampal stimulation were quiescent and identified only by the elicited action potentials. Neurones on the dorso-medial border of the nucleus accumbens and adjacent lateral septum, with a faster spontaneous discharge rate (8-12 spikes/s), were inhibited by hippocampal stimulation. In the ventral border of the accumbens and the olfactory tubercle, hippocampal stimulation also inhibited the fast-firing (greater than 20 spikes/s) neurones. When trains of 10 conditioning pulses (300-800 microA, 0.15 ms, 10 Hz) were delivered to the ventral tegmental area (VTA) 100 ms before each single-pulse stimulation of the hippocampus, the excitatory responses of the silent and spontaneously active accumbens neurones were attenuated. The possibility of this relatively prolonged attenuation effect being dopamine-mediated was supported by several lines of evidence. Dopamine, applied iontophoretically, reduced markedly the excitatory response of accumbens neurones to hippocampal stimulation. Iontophoretically applied dopamine mimicked the attenuating effect produced by VTA conditioning stimulation in the same neurone. The attenuating effects of VTA conditioning stimulation on the activation of accumbens neurones by hippocampal stimulation was reduced by: (1) administration of 6-hydroxydopamine to the VTA 2 days and 7-9 days prior to the recording session, (2) the intraperitoneal injection of haloperidol 1 h before the recording session, and (3) the iontophoretic application of trifluoperazine to accumbens neurones. These observations support the hypothesis that the attenuating effects of the mesolimbic dopamine system on limbic inputs to the nucleus accumbens may have a role in limbic-motor integration.  相似文献   

11.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy. J. Neurosci. Res. 51:583–592, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Evidence for functional interactions between metabotropic glutamate (mGlu) receptors and dopamine (DA) neurotransmission is now clearly established. In the present study, we investigated interactions between group III mGlu receptors and D1- and D2-like receptors in the nucleus accumbens (NAcc). Administration, into the NAcc, of the selective group III mGlu receptor agonist, AP4, resulted in an increase in locomotor activity, which was blocked by pretreatment with the group III mGlu receptor antagonist, MPPG. In addition, pretreatment with AP4 further blocked the increase in motor activity induced by the D1-like receptor agonist, SKF 38393, but potentiated the locomotor responses induced by either the D2-like receptor agonist, quinpirole, or coinfusion of SKF 38393 and quinpirole. MPPG reversed the effects of AP4 on the motor responses induced by D1-like and/or D2-like receptor activation. These results confirm that glutamate transmission may control DA-dependent locomotor function through mGlu receptors and further indicate that group III mGlu receptors oppose the behavioural response produced by D1-like receptor activation and favour those produced by D2-like receptor activation.  相似文献   

13.
14.
In urethane anesthetized rats, excitatory postsynaptic potential (EPSP) recorded intracellularly from nucleus accumbens neurons following stimulation of the amygdala was attenuated by repetitive stimulation of the ventral tegmental area (VTA). VTA stimulation also depolarized the resting membrane potential of accumbens neurons. Attenuation of the EPSP and membrane depolarization were frequently dissociated but both were blocked by haloperidol, a dopamine antagonist.  相似文献   

15.
The psychostimulant methylphenidate (MPD) is the most common medication used in treating ADHD in children. Studies have shown an increasing prevalence among adolescents without ADHD to take MPD as a cognitive booster and recreational drug, even though it is a Schedule II drug and has a high potential for abuse. The objective of this study is to explore if there is an association between the animals’ behavioral and neurophysiological responses to acute and/or chronic methylphenidate exposure within the ventral tegmental area and the nucleus accumbens, and to compare how these two brain structures fire in response to methylphenidate. Freely moving adolescent rats implanted with semimicroelectrodes within the VTA and NAc were divided into three MPD dosing groups: 0.6, 2.5, and 10 mg/kg i.p., as well as a saline control group. The animals were divided into two groups based on their behavioral responses to chronic MPD, behavioral sensitization and tolerance, and the neuronal responses of the two groups were compared for each MPD dosing. Significant differences in the proportion of neuronal units in the VTA and NAc responding to MPD were observed at the 0.6 and 10.0 mg/kg MPD dosing groups. Moreover, the same doses of 0.6, 2.5, and 10.0 mg/kg MPD elicited behavioral sensitization in some animals and behavioral tolerance in others. This specific study shows that the VTA and NAc neurons respond differently to the same doses of MPD. MPD has different neuronal and behavioral effects depending on the individual, the dosage of MPD, and the brain structure studied.  相似文献   

16.
17.
18.
Rats were implanted with dual dialysis probes, one in the ventral tegmental area, and another one ipsilateral in the nucleus accumbens. Infusion of cocaine (10, 100, 1000 mM) into the ventral tegmental area gradually increased extracellular dopamine to 164, 329 and 991% of baseline in the ventral tegmental area, but reduced dopamine to 76, 47 and 38% of baseline in the nucleus acumbens. These results are consistent with cocaine-induced feedback regulation of dopamine cell activity involving somatodendritec impulse-regulating dopamine D2 autoreceptors.  相似文献   

19.
In situ hybridization was combined with Fluoro-Gold retrograde labeling to determine if cells projecting from the forebrain to the ventral tegmental area (VTA) express D1 receptor mRNA. Cell counts were made in the prefrontal cortex, shell of the nucleus accumbens, and ventral pallidum to estimate the percentage of neurons projecting to the VTA that express D1 receptor mRNA. Retrogradely labeled cells were observed in the infralimbic and prelimbic regions of the prefrontal cortex, and up to 37% of the retrogradely labeled cells expressed D1 receptor mRNA. Double-labeled cells constituted up to 89% of retrogradely labeled neurons in the rostral shell and up to 68% in the caudal shell of the nucleus accumbens. The number of retrogradely labeled cells in the ventral pallidum that were double-labeled ranged from 13% in the rostral to less than 10% in the caudal portions. These data provide anatomical support for a role of D1 receptors in the reciprocal innervation between the forebrain and VTA. Synapse 25:205–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Oxytocin (80 ng) injected into the caudal mesencephalic ventral tegmental area (VTA) of male rats induces penile erection. Such an effect occurs together with an increase in nitric oxide (NO) production, as measured by the augmented concentration of NO(2)(-) and NO(3)(-) found in the dialysate obtained from this brain area by means of intracerebral microdialysis. Both effects are abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (1 microg), an oxytocin receptor antagonist, by S-methyl-l-thiocitrulline acetate (20 microg), a neuronal NO synthase inhibitor, or by omega-conotoxin GVIA (50 ng), a N-type Ca(2+) channel blocker, all injected into the VTA 15 min before oxytocin. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (40 microg), a guanylate cyclase inhibitor, given into the VTA 15 min before oxytocin, abolishes penile erection, but not the increase in NO production, while haemoglobin (40 microg), a NO scavenger, injected immediately before oxytocin reduces the increase in NO production, but not penile erection. 8-Bromo-cyclic guanosine monophosphate (0.5-10 microg) microinjected into the VTA induces penile erection with an inverted U-shaped dose-response curve; the maximal effective dose being 3 microg. Immunohistochemistry reveals that in the caudal VTA oxytocin-containing axons/fibres (originating from the paraventricular nucleus of the hypothalamus) contact cell bodies of mesolimbic dopaminergic (tyrosine hydroxylase-positive) neurons containing both NO synthase and guanylate cyclase. These results suggest that oxytocin injected into the VTA induces penile erection by activating NO synthase in the cell bodies of mesolimbic dopaminergic neurons. NO in turn activates guanylate cyclase present in these neurons, thereby increasing cyclic GMP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号