首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Dietary fatty acids are known to play an important role in the development as well as prevention of dyslipidemia. In this study, we evaluated the impact of feeding polyunsaturated fatty acids (PUFAs) for a period of 4 months on various aspects of cholesterol metabolism in genetically obese mutant rats of WNIN/GR-Ob strain. Based on their phenotype, lean and obese rats were divided into two groups, A and B respectively, and further subdivided depending on the type of dietary fat. Control groups of rats (AI and BI), were fed on 4% groundnut oil, which was replaced by safflower oil; n-6 PUFA diet (AII and BII) or oil blend of safflower and soybean oil, n-6 and n-3 PUFA diet (AIII and BIII) in the experimental groups. It was observed that feeding of diets with n-6 PUFA or a combination of n-6 and n-3 PUFAs resulted in marked elevation of plasma levels of total as well as HDL cholesterol and triglycerides in obese rats (BII and BIII), as compared to the control group (BI). Further, plasma HDL fraction of obese rats had elevated apolipoprotein E (apo E), while apo A1 levels remained unaltered. Increased lecithin: cholesterol acyltransferase (LCAT) activity and cholesteryl ester (CE) levels in the plasma and enhanced expression of hepatic scavenger receptor class B type1 (SR-B1) were also observed in PUFA-fed obese rats (BII and BIII). However, there was no change in hepatic ATP-binding cassette transporter protein A1 (ABCA1) levels in the obese rats fed on PUFA rich diets. Intriguingly, though these changes favor efficient removal of cholesterol from peripheral tissues, its esterification and enhanced clearance through reverse cholesterol transport (RCT); plasma HDL-C remained higher in these genetically dyslipidemic obese rats, thereby pointing at yet unknown mechanisms, involved in cholesterol homeostasis, which need to be studied.  相似文献   

2.
The present study was designed to investigate the effects of dietary trans-fatty acids (TFA) present in Indian vanaspati (partially hydrogenated vegetable oils) in comparison with saturated fatty acids (SFA) on adipocyte plasma membrane fatty acid composition, fluidity, and insulin action. The effects of 3% energy (% en) TFA was studied at 2% and 4% en of linoleic acid (18:2 n-6). WNIN male weanling rats were divided into 4 groups and fed casein-based diet containing 10% groundnut oil control (CON), palmolein (SFA), blend of vanaspati and safflower oil (3% en TFA and 2% en 18:2 n-6, TFA-1), or blend of vanaspati and safflower oil (3% en TFA and 4% en 18:2 n-6, TFA-2) for 12 weeks. Compared with CON, rats fed TFA and SFA diets had high levels of fasting plasma insulin and triglycerides. Both TFA- and SFA-fed groups had low levels of arachidonic acid (20:4 n-6) in adipocyte plasma membrane phospholipids. However, adipocyte plasma membrane fluidity decreased only in TFA-fed rats. Norepinephrine-stimulated lipolysis was high, whereas the antilipolytic effect of insulin and insulin-stimulated glucose transport were low in the adipocytes of SFA- and TFA-fed rats. However, the extent of decrease in the antilipolytic effect of insulin and insulin-stimulated glucose transport was greater in TFA-fed rats. These findings suggest that diet providing approximately 10% en SFA (PUFA/SFA [P/S] ratio 0.2) decreased adipocyte insulin sensitivity in rats. In these diets, replacement of approximately 2% en SFA (16:0) and approximately 1% en monounsaturated fatty acid (18:1 cis) with TFA decreased adipocyte insulin sensitivity to a greater extent. However, increasing dietary 18:2 n-6 did not prevent or reduce the TFA-induced adipocyte insulin resistance.  相似文献   

3.
OBJECTIVE: The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. METHODS: The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. RESULTS: The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. CONCLUSION: The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver.  相似文献   

4.
The hypocholesterolemic effect of polyunsaturated fatty acids was compared in male rats given high-cholesterol diets containing either evening primrose oil (EPO, linoleic plus gamma-linolenic), safflower oil (SFO, linoleic) or olive oil (OLO, low linoleic) at the 10% level. EPO with a phytosterol content of 1.47% was found to be more hypocholesterolemic than SFO (phytosterols 0.34%), and rats given EPO excreted more neutral (cholesterol and its metabolites) but not acidic steroids during the first 2 weeks of the feeding. Even when the phytosterol content of EPO and SFO was adjusted to be the same (0.67%), EPO was still more hypocholesterolemic than SFO but to a lesser extent, although fecal neutral steroid excretion was comparable in these two dietary fat regimens. The results indicate a significant hypocholesterolemic efficacy of gamma-linolenic acid.  相似文献   

5.
This study was designed to investigate the response to a high-cholesterol, n-3 polyunsaturated fatty acid (PUFA) or n-6 PUFA diet in rats and hamsters. Animals were fed n-3 or n-6 PUFA with a cholesterol-free diet, or with a diet enriched with cholesterol (0.5%, w/w) for 2 weeks. In rats and hamsters fed a cholesterol-free diet, plasma cholesterol, triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels in n-3 PUFA group were significantly lower than those in n-6 PUFA group. In contrast, when diets were supplemented with 0.5% cholesterol, the plasma cholesterol- and triglyceride-lowering effect of dietary n-3 PUFA disappeared. In hamsters fed with the atherogenic diet (0.5% dietary cholesterol) for 2 weeks, n-3 PUFA induced hypercholesterolemia more than n-6 PUFA, the increase being in the VLDL and low-density lipoprotein (LDL) fractions. Our data thus indicate that elevation of VLDL- and LDL-cholesterol in hamsters by n-3 PUFA, compared with n-6 PUFA, is dependent on 0.5% dietary cholesterol supplementation. In rats, on the other hand, dietary n-3 PUFA did not induce hypercholesterolemia more than n-6 PUFA when 0.5% cholesterol was supplemented. Although the effects of n-3 PUFA on plasma cholesterol, triglycerides and VLDL-triglycerides were similar in hamsters and rats, the interactive effects of n-3 PUFA and cholesterol on plasma and lipoprotein cholesterol levels differed in the two species. It was also found that plasma triglycerides, cholesterol and lipoprotein cholesterol levels in hamsters are higher than in rats in the presence and absence of dietary cholesterol. In addition, cholesterol feeding induces hypertriglyceridemia and hypercholesterolemia only in hamsters. Moreover, liver triglyceride concentrations increased in rats fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed rats were significantly lower than those in the n-6 PUFA-fed rats in the presence and absence of dietary cholesterol. However, triglycerides did not accumulate in the liver in hamsters fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed hamsters were not significantly different from those in the n-6 PUFA-fed hamsters in the presence and absence of dietary cholesterol. Therefore, these studies confirm marked species differences in response to the interactive effects of dietary n-3 PUFA and cholesterol.  相似文献   

6.
The influence of n-3 and n-6 PUFA on the fatty acid composition and the enzyme content of zymogen granules of the normal exocrine pancreas was tested on rats. The animals were fed on different diets comprising 5% fish oil (FO), safflower oil (SFO), and evening primrose oil (EPO) used singly or in combination as dietary fats. The results were compared with those from animals fed 5% hydrogenated beef tallow (HBT). The fatty acid composition and digestive enzyme content were analyzed after a 6-wk feeding period. Differences in the pancreatic fatty acid profiles were related to the fatty acid composition of the ingested fats. Equivalent levels of n-3 fatty acids and 20:3n-6 were obtained with either EPO or FO fed singly or in combination. Similar results were observed with SFO/FO. Higher C20:3n-6/C20:4n-6 ratios were obtained with the oil mixtures. An increase in amylase levels, but a decrease in serine protease (Band 21 kdalton) levels, was associated with EPO. An elevation in procarboxypeptidase levels paralleled an increase in 18:0 levels, whereas the proportion of lipase (Band 49 kdalton) varied inversely with the proportion of C20:3n-6. The SFO/FO mixture elevated the proportions of protease II and proelastase. These results suggest that specific fatty acids influence the proportion of specific digestive enzymes in the zymogen granules.  相似文献   

7.
This study investigates the effects of n-6 polyunsaturated fatty acids (PUFAs), in the form of dietary Evening Primrose Oil (EPO) and safflower oil, on the development of tolerance to ethanol. The degree of fluorescence polarization of the fluoroprobes DPH, PROP-DPH, and TMA-DPH in isolated cortical synaptosomal membranes was measured. In addition, the development of tolerance, as shown by changes in synaptosomal membrane fluidity after an acute in vitro ethanol challenge, was also determined after 20 weeks of ethanol administration, either alone or together with a PUFA-enriched diet. Although the administration of EPO-enriched diet did not significantly render the inner core of the cortical synaptosomal membrane tolerant to the acute ethanol challenge, concomitant administration of ethanol and EPO was found to increase further the rigidity and tolerance to the acute ethanol challenge in the inner core. Chronic administration of safflower oil, which lacks γ-linolenic acid (18:3, n-6) but like EPO contains linoleic acid, either alone or together with chronic ethanol had no effect on synaptosomal membrane fluidity after an acute ethanol challenge. The results suggest that γ-linolenic acid or its metabolites may have an important role to play in the development of tolerance to chronic ethanol.  相似文献   

8.
The effects of dietary linoleic acid on the serum level of high density lipoprotein (HDL) cholesterol and its relationship with the tissue status of zinc and copper were examined in adult male rats fed diets differing in the amount of linoleic acid. One group of 9 animals was fed a diet containing hydrogenated coconut oil (4%) and the other was fed a diet containing coconut oil (3.4%) plus linoleic acid (0.6%). Both diets were isocalorically formulated with the equal levels of minerals and other nutrients and contained cholesterol at 1% level. During a 6-week experiment, no differences were observed in food intake and body weight between the two groups. The feeding of linoleic acid produced a significant decrease in serum HDL cholesterol level at 6 weeks and no changes in other lipoproteins and total serum cholesterol and triglyceride. Dietary linoleic acid also significantly lowered the concentrations of zinc in serum and tibia at 6 weeks, while it had no effect on copper contents in these tissues. No changes were observed in the concentration of either zinc or copper in the liver. Linear regression analysis of the 18 pairs of serum zinc and HDL values at 6 weeks indicated a significant positive correlation (r = +0.65; P less than 0.01) between the two parameters. No such relationships were shown between tibia zinc and serum HDL, and between tissue copper and serum HDL. The results indicate that dietary linoleic acid at a relatively low level produces a decrease in serum HDL cholesterol without significantly lowering total serum cholesterol and that the decrease in HDL cholesterol due to linoleic acid feeding is significantly correlated with the reduction in serum zinc level.  相似文献   

9.
Mice fed a high-fat diet develop hyperglycemia and obesity. Using non-insulin-dependent diabetes mellitus (NIDDM) model mice, we investigated the effects of seven different dietary oils on glucose metabolism: palm oil, which contains mainly 45% palmitic acid (16:0) and 40% oleic acid (18:1); lard oil, 24% palmitic and 44% oleic acid; rapeseed oil, 59% oleic and 20% linoleic acid (18:2); soybean oil, 24% oleic and 54% linoleic acid; safflower oil, 76% linoleic acid; perilla oil, 58% α-linolenic acid; and tuna fish oil, 7% eicosapentaenoic acid and 23% docosahexaenoic acid. C57BL/6J mice received each as a high-fat diet (60% of total calories) for 19 weeks (n = 6 to 11 per group). After 19 weeks of feeding, body weight induced by the diets was in the following order: soybean> palm ≥ lard ≥ rapeseed ≥ safflower ≥ perilla> fish oil. Glucose levels 30 minutes after a glucose load were highest for safflower oil (21.5 mmol/L), modest for rapeseed oil, soybean oil, and lard ( 17.6 mmol/L), mild for perilla, fish, and palm oil ( 13.8 mmol/L), and minimal for high-carbohydrate meals ( 10.4 mmol/L). Only palm oil-fed mice showed fasting hyperinsulinemia (P < .001). By stepwise multiple regression analysis, body weight (or white adipose tissue [WAT] weight) and intake of linoleic acid (or n-3/n-6 ratio) were chosen as independent variables to affect glucose tolerance. By univariate analysis, the linoleic acid intake had a positive correlation with blood glucose level (r = .83, P = .02) but not with obesity (r = .46, P = .30). These data indicate that (1) fasting blood insulin levels vary among fat subtypes, and a higher fasting blood insulin level in palm oil-fed mice may explain their better glycemic control irrespective of their marked obesity; (2) a favorable glucose response induced by fish oil feeding may be mediated by a decrease of body weight; and (3) obesity and a higher intake of linoleic acid are independent risk factors for dysregulation of glucose tolerance.  相似文献   

10.
Squirrel monkeys (Saimiri sciureus) were fed diets containing safflower oil, butter, or coconut oil and 1 mg cholesterol/cal for 15--17 mo to examine the effect of type of fat on cholelithiasis and bile acid metabolism. Controls were fed low cholesterol diets containing an isocaloric mixture of the three fats. Cholic acid fractional catabolic rate, pool size, chenodeoxycholic acid pool size, and total bile acid pool size and excretion rate were estimated using a modification of Lindstedt's isotopic turnover procedure. The animals fed the safflower oil diet had the highest incidence of cholelithiasis (9/10) when compared to those fed butter (3/7) and coconut oil (1/7). Animals consuming the low cholesterol control diet did not develop gallstones. The butter- and coconut oil-fed groups had significantly (p less than 0.05) expanded bile acid pools when compared to controls, and the butter-fed group had a significantly increased (p less than 0.05) cholic acid fractional catabolic rate. The safflower oil group had the smallest mean bile acid pool and the highest mean lithogenic index of the cholesterol-fed groups. It was concluded that the safflower oil-fed animals had a higher incidence of cholelithiasis than the butter group because, unlike the latter group, they did not compensate for a high cholesterol intake by stimulating bile acid synthesis. The animals consuming coconut oil apparently did not absorb cholesterol to the extent of the other groups and as a result their bile did not become saturated with cholesterol.  相似文献   

11.
Fat-supplemented dies enriched with linoleic acid by the addition of 12% w/w sunflower seed oil or proportionally reduced in linoleic acid by addition of 12% mutton fat were fed to rats for 18 months before the fatty acid composition of perirenal storage fat and myocardial membranes (phospholipids) was determined. Although the fatty acid composition of perirenal fat generally reflected that of the diet, there was an inverse relationship between the consumption of n-6 and the deposition of n-9 fatty acids. In addition, enhanced deposition of oleic acid (18:1, n-9) appears to be related to the dietary intake of stearic acid (18:0). In contrast, in myocardial membranes the n-3 polyunsaturated fatty acids are found to be increased when the intake of n-6 polyunsaturated fatty acids is reduced. This is particularly evident for docosahexaenoic acid (22:6, n-3) which is significantly increased in phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol fractions of myocardial membranes, when the mutton fat diet was fed. After feeding the sunflower seed oil diet, the increased consumption of linoleic acid produced only small changes in the 18:2, n-6 content of cardiac phosphatidylcholine and phosphatidylethanolamine. These major classes of membrane phospholipids also showed only small increases in 20:4, n-6. In diphosphatidylglycerol, increased 18:2, n-6 also followed increased dietary intake, but this was not accompanied by increased 20:4, n-6. These changes in myocardial phospholipid fatty acid composition are similar to those observed after short-term feeding reported previously and confirm that changes in dietary n-6/n-3 fatty acid intake affect the fatty acid composition of both myocardial membranes and storage fat. These changes persist for the duration of the feeding period.  相似文献   

12.
BACKGROUND: Inflammation plays an important role in the pathogenesis of coronary artery disease. We examined whether dietary supplementation with alpha-linolenic acid (ALA, 18:3n-3) affects the levels of inflammatory markers in dyslipidaemic patients. METHODS: We recruited 76 male dyslipidaemic patients (mean age=51+/-8 years) following a typical Greek diet. They were randomly assigned either to 15 ml of linseed oil (rich in ALA) per day (n=50) or to 15 ml of safflower oil (rich in linoleic acid (LA, 18:2n-6)) per day (n=26). The ratio of n-6:n-3 in linseed oil supplemented group was 1.3:1 and in safflower oil supplemented group 13.2:1. Dietary intervention lasted for 3 months. Blood lipids and C-reactive protein (CRP), serum amyloid A (SAA), and interleukin-6 (IL-6) levels were determined prior and after intervention. CRP and SAA were measured by nephelometry and IL-6 by immunoassay. RESULTS: Dietary supplementation with ALA decreased significantly CRP, SAA and IL-6 levels. The median decrease of CRP was 38% (1.24 vs. 0.93 mg/l, P=0.0008), of SAA 23.1% (3.24 vs. 2.39 mg/l, P=0.0001) and of IL-6 10.5% (2.18 vs. 1.7 pg/ml, P=0.01). The decrease of inflammatory markers was independent of lipid changes. Dietary supplementation with LA did not affect significantly CRP, SAA and IL-6 concentrations but decreased cholesterol levels. CONCLUSIONS: Dietary supplementation with ALA for 3 months decreases significantly CRP, SAA and IL-6 levels in dyslipidaemic patients. This anti-inflammatory effect may provide a possible additional mechanism for the beneficial effect of plant n-3 polyunsaturated fatty acids in primary and secondary prevention of coronary artery disease.  相似文献   

13.
The interaction of sesamin, one of the most abundant lignans in sesame seed, and highly purified docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) in the form of ethyl ester in affecting hepatic fatty acid oxidation was examined in rats. In the first experiment, 3 groups of rats were fed with purified experimental diets free of n-3 fatty acid ethyl ester and containing 0%, 0.2%, and 0.4% sesamin (1:1 mixture of sesamin and episesamin), and 2 groups of animals were fed with a 2% DHA ethyl ester diet containing either 0% or 0.2% sesamin. In the second trial, 4 groups of rats were fed with either a 0% or a 2% EPA ethyl ester diet containing 0% or 0.2% sesamin. After 15 days of feeding, DHA and EPA ethyl esters added to a sesamin-free diet little affected the activity and messenger RNA (mRNA) levels of various enzymes involved in fatty acid oxidation. Sesamin increased the activity levels of various hepatic enzymes involved in fatty acid oxidation irrespective of the presence or absence of n-3 fatty acid ethyl ester in diets. However, the diet containing sesamin and DHA or EPA ethyl ester in combination increased many of these parameters synergistically. In particular, the peroxisomal palmitoyl-coenzyme A oxidation rate and acyl-coenzyme A oxidase activity level were much higher in rats fed with sesamin and DHA or EPA in combination than in animals fed with a diet free of n-3 fatty acid ethyl ester and containing sesamin. Analyses of mRNA levels revealed that a diet simultaneously containing sesamin and n-3 fatty acid ethyl ester increased the gene expression of various enzymes involved in peroxisomal fatty acid oxidation in a synergistic manner. However, the combination of sesamin and n-3 fatty acid ethyl esters was ineffective in causing a synergistic increase in mRNA levels of enzymes of mitochondrial fatty acid oxidation, microsomal cytochrome P-450 IV A1, and cytosolic liver-type fatty acid-binding protein. It was concluded that sesamin and DHA or EPA ethyl ester synergistically increased hepatic fatty acid oxidation primarily through up-regulation of the gene expression of peroxisomal fatty acid oxidation enzymes. The results essentially reproduced those observed in our previous study with a diet containing both fish oil and sesamin despite the fact that DHA and EPA ethyl esters were much less effective than fish oil in increasing hepatic fatty acid oxidation.  相似文献   

14.
This study was designed to investigate the effects of the interaction between dietary (n-3) polyunsaturated fatty acids (PUFA) and different dietary cholesterol content on plasma and liver cholesterol in hamsters. Male Syrian hamsters consumed diets containing an incremental increase in dietary cholesterol content (0, 0.025, 0.05, 0.1 and 0.2%, w/w) with either (n-3) PUFA (21 g/100 g fatty acids) or (n-6) PUFA (37.4 g/100 g fatty acids) fat for 6 weeks. In hamsters fed the nonatherogenic diet (0 or 0.025% dietary cholesterol), very low density lipoprotein (VLDL)-cholesterol levels in the (n-3) PUFA group were not significantly different from those in the (n-6) PUFA group, and low density lipoprotein (LDL)-cholesterol levels in the (n-3) PUFA group were significantly lower than those in the (n-6) PUFA group. In contrast, in hamsters fed the atherogenic diet (0.1 or 0.2% dietary cholesterol), VLDL- and LDL-cholesterol levels in the (n-3) PUFA group were significantly higher than those in the (n-6) PUFA group, in a dose-dependent manner. When the hamsters were fed with 0, 0.025, 0.05, 0.1 or 0.2% (w/w) dietary cholesterol, high density lipoprotein (HDL) cholesterol concentration was significantly lower in the (n-3) PUFA group than those in the (n-6) PUFA group. Hepatic cholesteryl esters were significantly lower, while hepatic microsomal acyl-coenzyme A:cholesterol acyltransferase activity and VLDL-cholesteryl esters were significantly higher in hamsters fed (n-3) PUFA with the atherogenic diet (0.1 or 0.2% dietary cholesterol) than in those fed (n-6) PUFA with the atherogenic diet. Our results demonstrate that the amount of dietary cholesterol is an important factor in determining the mode and extent of effects of dietary (n-3) PUFA, especially on VLDL- and LDL-cholesterol levels. When dietary cholesterol intake was above 0.1% (w/w), the plasma cholesterol-lowering effect of (n-3) PUFA disappeared, and instead, it showed a cholesterol-increasing effect. However, the effects of dietary (n-3) PUFA on HDL-cholesterol are independent of dietary cholesterol content.  相似文献   

15.
Chen J  Jiang Y  Liang Y  Tian X  Peng C  Ma KY  Liu J  Huang Y  Chen ZY 《Atherosclerosis》2012,221(2):397-404
The present study examined the cholesterol-lowering activity of omega-3 docosapentaenoic acid (DPA n-3), omega-6 docosapentaenoic acid (DPA n-6) and docosahexaenoic acid (DHA), and their interaction with gene expression of transporters, receptors and enzymes involved in cholesterol absorption and metabolism as well as their effect on aortic function. Forty hamsters were fed either the control diet containing 0.4% stearic acid or one of the three experimental diets containing 0.4% DPA n-3, 0.4% DPA n-6 and 0.4% DHA. Results showed that supplementation of these three fatty acids reduced plasma total cholesterol (TC) and non high-density-lipoprotein cholesterol (non-HDL-C) by 29-33% and 29-50%, respectively, compared with the control. The reduction in TC and non-HDL-C was accompanied by down-regulation of hepatic SREBP-2 and HMG-CoA reductase. Aorta from DPA n-3 and DHA groups was found to have significantly lesser tension and relax better than that from the control and DPA n-6 hamsters, largely mediated by their inhibition on the gene expression of cycloxygense-2 (COX-2). It was concluded that all three fatty acids were beneficial in improving lipoprotein profile with DPA n-3 and DHA having better effect on aortic function.  相似文献   

16.
The effect of long-term manipulation of dietary lipid intake on platelet and vessel wall lipid composition and eicosanoid synthesis was investigated. Rats were fed a standard diet (REF diet) supplemented (12% w/w) with either sheep fat (SF), sunflower seed oil (SSO) or tuna fish oil (TFO) for a period of 15 months. Significant compositional changes both in the aorta and platelets were observed following dietary lipid treatment and differences between these tissues were particularly apparent with regard to the incorporation and conversion of n-3 fatty acids. For example, platelets displayed a selective accumulation of eicosapentaenoic acid (EPA, 20:5 n-3) over docosahexaenoic acid (DHA, 22:6, n-3), but in the aorta the proportion of DHA was considerably higher than that of EPA. In both tissues, compared to REF diet, n-3 dietary fatty acids replaced the n-6 unsaturates 20:4 and 22:4, but did not affect the proportion of linoleic acid. In contrast to aorta, the unsaturation index for platelet membrane varied significantly between dietary groups. The capacity of aorta and platelets to generate PGI2-like activity and thromboxane was unaltered by the SSO diet. However, changes were seen following SF and TFO supplementation. Rats fed the SF diet displayed a greater synthetic capacity whilst in animals maintained on TFO diet the synthesis of these two eicosanoids was considerably suppressed. The SF group displayed the highest value for PGI2/TXB2 ratio whereas TFO diet fed rats showed the lowest which may partly be due to synthesis of TXA3. The reduction in eicosanoids following the tuna fish oil supplementation can be explained on the basis of concurrent compositional changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The fatty acid composition of serum lipids, erythrocytes, platelets, and diet was studied in women with insulin-dependent diabetes (IDDM) and in normal subjects matched for age, sex, body weight, and serum lipid levels. The dietary intake of linoleic acid was higher in IDDM patients than in the normal subjects. The linoleic acid content of serum triglycerides, cholesterol esters, and phospholipids and of red cells and platelets were elevated in patients with IDDM proportionately to their dietary linoleate intake. The linoleic acid content of serum lipids, but not of diet, was significantly correlated with glycosylated hemoglobin A1c in IDDM patients. However, the serum lipid content of arachidonic acid and other n-6 polyunsaturated fatty acids, which are metabolites of linoleic acid, was decreased in IDDM patients, but these metabolites were normal or increased in their cell membranes. The contents of n-3 polyunsaturated fatty acids were decreased in serum and platelet lipids and tended to be increased in erythrocyte membranes of diabetic patients. The results suggest that elongation and desaturation of essential fatty acids, linoleic acid in particular, are decreased in women with IDDM.  相似文献   

18.
Ferrochelatase is an enzyme bound to the inner mitochondrial membrane, which is important in heme biosynthesis. Activity of purified ferrochelatase is affected by the presence of certain fatty acids. In the present study, we examined whether the activity of ferrochelatase is altered by dietary manipulation of the composition of mitochondrial membrane phospholipid fatty acyl groups. Rats were fed diets containing triolein, safflower or menhaden oil as 5% (w/w) of the diet. After 3 weeks, the animals were killed and liver mitochondria were isolated. Phospholipid fatty acid composition and ferrochelatase activity were assayed in the isolated mitochondria. Marked differences were seen. The proportion of oleic acid was highest in the triolein oil-fed group, that of linoleic and arachidonic acid was highest in the safflower oil-fed group and the proportion of eicosapentaenoic acid was highest in the menhaden oil-fed group. Ferrochelatase activity was greatest in the triolein oil-fed group and lowest in the menhaden oil-fed group regardless of whether the mitochondria were intact, sonicated or sonicated and treated with Tween 20. Mixing of mitochondria from menhaden oil-fed rats with triolein oil resulted in a significant increase in ferrochelatase activity. Membrane fluidity and activities of the mitochondrial membrane enzymes succinic dehydrogenase and cytochrome oxidase did not differ among the groups. We conclude that dietary manipulation of mitochondrial membrane phospholipid fatty acyl group composition can directly modulate hepatic ferrochelatase activity. This has potential application in the treatment of protoporphyria, the genetic disorder in which ferrochelatase activity is deficient.  相似文献   

19.
In order to determine precisely the respective roles of linolenic acid and linoleic acid in the maternal diet on rat brain subcellular fractions during development, we used two diets with different percentages of linolenic acid (18:3 n-3). The animals were fed peanut oil (group A) or soybean oil (group B) during pregnancy and throughout lactation. Nature and amount of essential fatty acids had no incidence on saturated and monounsaturated fatty acid distributions in myelin, synaptosomal, mitochondrial and microsomal fractions. In adult rats, all subcellular fractions are marked by an increase of n-3 fatty acid and a decrease of n-6 fatty acid levels in group B compared to group A. In 15-day-old animals, on the contrary, only the synaptosomal fractions are significantly affected by the diet. Independent of diet, brain development is marked by a decrease of n-6 fatty acids in all subcellular fractions; on the other hand, the n-3 fatty acid level is increased in the synaptosomal and mitochondrial fractions, and decrease in the myelin and microsomal fractions. The sum of (n-3 + n-6) fatty acids remains constant in group B and in group A in all subcellular fractions. Finally, under our experimental conditions, we found no marked effect of diet composition upon linoleic acid conversion to arachidonic acid; only the delta 4-7-10-13-16-docosapentaenoic acid (22:5 n-6) level decreased in group B. delta 7-10-13-16-19-Docosapentaenoic acid (22:5 n-3) seemed to be a better substrate for delta 4 desaturase than delta 7-10-13-16-docosatetraenoic acid (22:4 n-6).  相似文献   

20.
By modifying the degree of hydrogenation of dietary fat, it is possible to modify the fatty acid composition and the biochemical activity of cellular tissues. The age can be another variable influencing these modifications. The effect of isocaloric diets containing oils with different degrees of hydrogenation: fish oil (FO, 0.3% TRANS), partially hydrogenated fish oil (PHFO, 29% TRANS), or highly hydrogenated fish oil (HHFO, 2.3% TRANS), in the fatty acid composition (CIS and TRANS isomers) of hepatic microsomes from young (70-day-old) and aged (18-month-old) rats, in the microsomal cytochrome P-450 (C-450) content, and in the aminopyrine N-demethylase (AND), aniline hydroxylase (AH), NADPH cytochrome P-450 reductase (NCR), UDP-glucuronyl transferase (UGT), and GSH-S transferase (GST) enzymatic activities were studied. Fatty acid composition and n-6/n-3 ratio of microsomal membranes was modified to a higher extent in young rats. C-450 content and AND activity were reduced when the degree of hydrogenation of dietary fat was increased in the young and the aged rats. AH activity was higher after the PHFO diet in the young rats only. NCR activity was reduced in the young animals when the hydrogenation of the fat was increased. However, in aged rats the enzyme exhibited a higher activity after the PHFO and HHFO diet. UGT and GST activities where not affected by the level of hydrogenation of the dietary fat in both the young and the aged rats. However, UGT activity was higher in the young rats, while GST activity was higher in the aged animals. We conclude that hydrogenation of dietary fat can modify the fatty acid composition of hepatic microsomes, young animals being more sensitive to these changes than aged animals. These effects were also reflected in the amount and/or the activity of some molecular components of the hepatic microsomal mixed-function oxidase enzyme system. Microsomal TRANS fatty acid composition is not affecting the activity of the enzymes, the age of the animals being the most important factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号