首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The blood–brain barrier (BBB) is an anatomical microstructural unit, with several different components playing key roles in normal brain physiological regulation. Formed by tightly connected cerebrovascular endothelial cells, its normal function depends on paracrine interactions between endothelium and closely related glia, with several recent reports stressing the need to consider the entire gliovascular unit in order to explain the underlying cellular and molecular mechanisms. Despite that, with regard to traumatic brain injury (TBI) and significant events in incidence and potential clinical consequences in pediatric and adult ages, little is known about the actual role of BBB disruption in its diverse pathological pathways. This Mini‐Review addresses the current literature on possible factors affecting gliovascular units and contributing to posttraumatic BBB dysfunction, including neuroinflammation and disturbed transport mechanisms along with altered permeability and consequent posttraumatic edema. Key mechanisms and its components are described, and promising lines of basic and clinical research are identified, because further knowledge on BBB pathological interference should play a key role in understanding TBI and provide a basis for possible therapeutic targets in the near future, whether through restoration of normal BBB function after injury or delivering drugs in an increased permeability context, preventing secondary damage and improving functional outcome. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Little is known about the movement of 5-aminolevulinic acid (delta-aminolevulinic acid; ALA) between blood and brain. This is despite the fact that increases in brain ALA may be involved in generating the neuropsychiatric symptoms in porphyrias and that systemic administration of ALA is currently being used to delineate the borders of malignant gliomas. The current study examines the mechanisms involved in the movement of [(14)C]ALA across the blood-brain and blood-CSF barriers in the rat. In the adult rat, the influx rate constant (K(i)) for [(14)C]ALA movement into brain was low ( approximately 0.2 microl/g per min), was unaffected by increasing plasma concentrations of non-radioactive ALA or probenecid (an organic anion transport inhibitor) and, therefore, appears to be a diffusional process. The K(i) for [(14)C]ALA was 3-fold less than that for [(14)C]mannitol, a molecule of similar size. This difference appears to result from a lower lipid solubility rather than saturable [(14)C]ALA transport from brain to blood. The K(i) for [(14)C]ALA for uptake into the neonatal brain was 7-fold higher than in the adult. However, again, this was unaffected by increasing plasma ALA concentrations suggesting a diffusional process. In contrast, at the blood-CSF barrier, there was evidence of carrier-mediated [(14)C]ALA transport from blood to choroid plexus and blood to CSF. Both processes were inhibited by administration of non-radioactive ALA and probenecid. However, experiments in choroid plexus epithelial cell primary cultures indicated that transport in these cells was polarized with [(14)C]ALA uptake from the apical (CSF) side being about 7-fold greater than uptake from the basolateral (blood) side. In total, these results suggest that the brain is normally fairly well protected from changes in plasma ALA concentration by the very low blood-brain barrier permeability of this compound and by a saturable efflux mechanism present at the choroid plexus.  相似文献   

3.
The choroid plexus has been implicated in the regulation of cerebrospinal fluid (CSF) [Ca], but little information is available concerning Ca transport by this epithelium. We determined the transfer coefficients for 45Ca uptake into choroid plexus from blood, as well as tissue [Ca], in weanling Fischer-344 rats fed low, normal, or high Ca diets for 8 weeks. Plasma [Ca] decreased by 45% with low Ca diet and increased by 25% with high Ca diet. Choroid plexus 45Ca uptake varied inversely with plasma [Ca]. This relation was due largely to changes in extracellular Ca binding rather than to entry from blood, as the transfer coefficient was independent of plasma [Ca]. The extracellular Ca distribution in choroid plexus, the intercept of a plot of tissue 45Ca distribution against time, was reciprocally related to plasma [Ca]. Changes in total cell [Ca] during hypercalcemia were equivalent to those in plasma, and in hypocalcemia were 70% of those in plasma. These findings indicate that regulation of CSF [Ca] does not involve saturable transport of Ca into the choroid epithelium from blood, and that the apical membrane of the choroid epithelium is involved in homeostasis of CSF [Ca].  相似文献   

4.
Leptin is secreted by adipose tissue and thought to regulate appetite at the central level. Several studies have explored the central nervous system (CNS) entry of this peptide across the blood–brain and blood–cerebrospinal fluid (CSF) barriers in parallel, but this is the first to explore the transport kinetics of leptin across the choroid plexus (blood–CSF barrier) in isolation from the blood–brain barrier (BBB). This is important as the presence of both barriers can lead to ambiguous results from transport studies. The model used was the isolated Ringer perfused sheep choroid plexus. The steady-state extraction of [125I]leptin (7.5 pmol l−1) at the blood face of the choroid plexus was 21.1±5.7%, which was greater than extraction of the extracellular marker, giving a net cellular uptake for [125I]leptin (14.0±3.7%). In addition, trichloroacetic acid precipitable [125I] was detected in newly formed CSF, indicating intact protein transfer across the blood–CSF barrier. Human plasma concentrations of leptin are reported to be 0.5 nM. Experiments using 0.5 nM leptin in the Ringer produced a concentration of leptin in the CSF of 12 pM (similar to that measured in humans). [125I]Leptin uptake at the blood–plexus interface using the single-circulation paired tracer dilution technique (uptake in <60 s) indicated the presence of a saturable transport system, which followed Michaelis–Menten-type kinetics (Km=16.3±1.8 nM, Vmax=41.2±1.4 pmol min−1 g−1), and a non-saturable component (Kd=0.065±0.002 ml min−1 g−1). In addition, secretion of new CSF by the choroid plexuses was significantly decreased with leptin present. This study indicates that leptin transport at the blood–CSF barrier is via saturable and non-saturable mechanisms and that the choroid plexus is involved in the regulation of leptin availability to the brain.  相似文献   

5.
Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation , 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected45Ca and36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.  相似文献   

6.
7.
Aquaporin-1 and aquaporin-4, water channel membrane proteins reported in both experimental animals and in adult humans, have been detected in different, non-overlapping areas of the central nervous system. This immunohistochemical study describes the developmental expression pattern of the water channel membrane proteins, aquaporin-1 and aquaporin-4, in various structures of human fetal brain over the gestational period of 14-40 weeks. Aquaporin-1 immunostaining was exclusively found in the epithelial cells of the choroid plexus from the 14th gestational week, and the staining pattern altered slightly over time. At week 14, immunostaining appeared only in the apical cell membranes. By the 18th gestational week, the entire plasma membrane of these apical cells was immunopositive, as well as was the cytosol. These changes in immunoreactivity indicate an increasing production of aquaporin-1 in the epithelial cells during the period between the 14th and 24th weeks of gestation. Aquaporin-4 immunostaining was first detected in the archicortex, from gestational week 14 and was detected in the neocortex, 6-7 weeks later. Immunostained structures were always astrocytes, particularly the astrocytic endfeet in the ventricular wall, at the developing ependymal lining, at the pial surface, and around the capillaries. Neuronal labeling was not observed. These results in human fetal brain lend morphological support to the previous findings that aquaporin-1 and aquaporin-4 play different roles in the regulation of the water homeostasis of the brain.  相似文献   

8.
The blood–brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte–endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB‐centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add‐on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs.  相似文献   

9.
We examined the kinetics and distribution of [59Fe–125I] rat Tf and unlabelled human Tf injected into a lateral cerebral ventricle (i.c.v. injection) in the rat. [56Fe–131I]Tf injected intravenously served as a control of blood–brain barrier (BBB) integrity. In CSF of adult rats, 59Fe and [125I]Tf decreased to only 2.5% of the dose injected after 4 h. In brain parenchyma, [125I]Tf had disappeared after 24 h, whereas approximately 18% of i.c.v.-injected 59Fe was retained even after 72 h. The elimination pattern of [125I]Tf from the CSF corresponded to that of [131I]albumin injected i.c.v., suggesting a nonselective washout of CSF proteins. [131I]Tf was hardly detectable in the brain, reflecting an unimpaired BBB during the experiments. Morphologically, 59Fe and i.c.v. injected human Tf were confined to the ventricular surface and meningeal areas, whereas grey matter regions at distances more than 2–3 mm from the ventricles and the subarachnoid space were unlabelled. However, accumulation of 59Fe was observed in the anterior thalamic and the medial habenular nuclei, and in brain regions with synaptic communications to these areas. In the newborn rats aged 7 days (P7) injected i.c.v. with [59Fe–125I]Tf and examined after 24 h, the amounts of [125I]Tf in CSF were approximately 3.5 times higher than in adult rats collected after the same time interval, whereas the amounts of 59Fe in CSF were at the same level in P7 and adult rats. In the brain tissue of the i.c.v. injected P7 rats, both [125I]Tf and 59Fe were retained to a significantly higher degree compared to that seen in adult brains. The rapid washout and lack of capability for i.c.v. injected [125I]Tf to penetrate deeply into the brain parenchyma of the adult brain question the importance of Tf of the CSF, and choroid plexus-derived Tf, for Fe neutralization and delivery of Fe–Tf to TfR-containing neurons and other cells in the CNS. However, it may serve these functions in young animals due to a lower rate of turnover of CSF.  相似文献   

10.
Recent studies suggest that manganese-induced neurodegenerative toxicity may be partly due to its action on aconitase, which participates in cellular iron regulation and mitochondrial energy production. This study was performed to investigate whether chronic manganese exposure in rats influenced the homeostasis of iron in blood and cerebrospinal fluid (CSF). Groups of 8–10 rats received intraperitoneal injections of MnCl2 at the dose of 6 mg Mn/kg/day or equal volume of saline for 30 days. Concentrations of manganese and iron in plasma and CSF were determined by atomic absorption spectrophotometry. Rats exposed to manganese showed a greatly elevated manganese concentration in both plasma and CSF. The magnitude of increase in CSF manganese (11-fold) was equivalent to that of plasma (10-fold). Chronic manganese exposure resulted in a 32% decrease in plasma iron (p<0.01) and no changes in plasma total iron binding capacity (TIBC). However, it increased CSF iron by 3-fold as compared to the controls (p<0.01). Northern blot analyses of whole brain homogenates revealed a 34% increase in the expression of glutamine synthetase (p<0.05) with unchanged metallothionein-I in manganese-intoxicated rats. When the cultured choroidal epithelial cells derived from rat choroid plexus were incubated with MnCl2 (100 μM) for four days, the expression of transferrin receptor mRNA appeared to exceed by 50% that of control (p<0.002). The results indicate that chronic manganese exposure alters iron homeostasis possibly by expediting unidirectional influx of iron from the systemic circulation to cerebral compartment. The action appears likely to be mediated by manganese-facilitated iron transport at brain barrier systems.  相似文献   

11.
Parkinson's disease has many symptomatic treatments, but there is no neuroprotective therapy currently available. The evolution of this disease is inexorably progressive, and halting or stopping the neurodegenerative process is a major unmet need. Parkinson's disease motor features at onset are typically limited to 1 body segment, that is, focal signs, and the nigrostriatal degeneration is highly asymmetrical and mainly present in the caudal putamen. Thus, clinically and neurobiologically the process is fairly limited early in its evolution. Tentatively, this would allow the possibility of intervening to halt neurodegeneration at the most vulnerable site. The recent use of new technologies such as focused ultrasound provides interesting prospects. In particular, the possibility of transiently opening the blood–brain barrier to facilitate penetrance of putative neuroprotective agents is a highly attractive approach that could be readily applied to Parkinson's disease. However, because there are currently effective treatments available (ie, dopaminergic pharmacological therapy), more experimental evidence is needed to construct a feasible and practical therapeutic approach to be tested early in the evolution of Parkinson's disease patients. In this review, we provide the current evidence for the application of blood–brain barrier opening in experimental models of Parkinson's disease and discuss its potential clinical applicability. © 2019 International Parkinson and Movement Disorder Society  相似文献   

12.
Iron and transferrin uptake into the brain, CSF and choroid plexus, and albumin uptake into the CSF and choroid plexus, were determined after the intravenous injection of [59Fe-125]Itransferrin and [131I]albumin into control rats aged 15, 21 and 63 days and 21-day iron-deficient rats. Iron uptake by the brain was unidirectional, greatly exceeded that of transferrin and was equivalent to 39 and 36% of the plasma iron pool per day in the 15-day control and 21-day iron-deficient rats. The rate of transferrin catabolism in the rats was only about 20% of the plasma pool per day. Iron and transferrin uptake into the brain and CSF decreased with increasing age and was greater in the iron-deficient than in the control 21-day rats. The quantity of 125I-transferrin recovered in the CSF could account for only a small proportion of the iron taken up by the brain. Albumin transfer to the CSF also decreased with age but was lower than that of transferrin and was not affected by iron deficiency. Similarly, the plasma: CSF concentration ratios of transferrin and albumin, as determined immunologically, decreased with age and were greater for transferrin than albumin. It is concluded that iron uptake by the brain is dependent on iron release from transferrin at the cerebral capillary endothelial cells with recycling of transferrin to the plasma and transfer of the iron into the brain interstitium. Only a small fraction of the transferrin bound by brain capillaries is transcytosed into the brain and CSF, this being one source of CSF transferrin while other sources are local synthesis and transfer from the plasma by the choroid plexuses.  相似文献   

13.
Using immunocytochemistry we have shown that there is a population of macrophages within the stroma of the choroid plexus of rats and mice which expresses high levels of major histocompatibility complex Class II antigens. In whole mount preparations of the choroid plexus, the morphology and regular distribution of these cells is similar to the Langerhans cells of the skin. These cells reside at an important interface between the central nervous system and the peripheral immune system and their possible role in immune-mediated diseases of the central nervous system is discussed.  相似文献   

14.
Transforming growth factor α (TGFα) is a cytokine that belongs to the epidermal growth factor (EGF) family of growth factors. EGF has a fast and saturable entry from blood to brain that is inhibitable by TGFα (18). In this report, we studied the passage of TGFα from blood to brain after an i.v. bolus injection. Using radioactively labeled peptide, we found that TGFα had an apparent rate of entry of 0.7 μl/g/min. However, most of the TGFα was trapped in the capillary endothelial cells of the cerebral vasculature rather than entering the brain parenchyma. No saturation was detected. TGFα was relatively stable in blood for 20 min after i.v. injection, but dissociation of the isotope 125I was more evident in brain. The accumulation of TGFα in the cerebral vasculature was similar to that of amyloid-β protein1–40. Therefore, we conclude that TGFα from the periphery interacts with the blood–brain barrier without substantial uptake into brain parenchyma. This raises the possibility that TGFα might be involved in intracranial vascular disorders such as angiopathy.  相似文献   

15.
16.
17.
The goal of the present study was to determine the effect of nitric oxide (NO) donors on the permeability of the blood–brain barrier in vivo. We examined the pial microcirculation in rats using intravital fluorescence microscopy. Permeability of the blood–brain barrier was quantitated by calculating the clearance of fluorescent-labeled dextran (Mw=10 000 Da; FITC–dextran-10K) during suffusion with vehicle, S-nitroso-N-acetylpenicillamine (SNAP; 100 μM) and 3-morpholinosydnonimin (SIN-1; 100 μM). In addition, we examined changes in arteriolar diameter during suffusion with vehicle, SNAP and SIN-1. During suffusion with vehicle, clearance of FITC–dextran-10K from pial vessels and diameter of pial arterioles remained relatively constant during the experimental period. In contrast, suffusion with SNAP or SIN-1 markedly increased clearance of FITC–dextran-10K from the cerebral microcirculation and produced a rapid, sustained dilatation of pial arterioles. Thus, NO donors increase the permeability of the blood–brain barrier and produce pronounced dilatation of cerebral arterioles. In light of evidence suggesting that NO donors may produce their effect by the simultaneous release of NO and superoxide anion to form peroxynitrite, we elected to examine the role of superoxide anion in increases in permeability of the blood–brain barrier in response to SNAP and SIN-1. We found that suffusion with tiron (1 mM) did not alter basal permeability of the blood–brain barrier, but significantly inhibited increases in permeability of the blood–brain barrier in response to SNAP and SIN-1. In addition, tiron did not alter baseline diameter of cerebral arterioles, or SNAP- and SIN-1-induced cerebrovasodilatation. The findings of the present study suggest that NO donors produce an increase in permeability of the blood–brain barrier which appears to be related to the presence of NO and superoxide anion, to presumably form peroxynitrite. We suggest that increases in NO formation observed during brain trauma may contribute to disruption of the blood–brain barrier.  相似文献   

18.
Previous studies have shown that 65Zn uptake in the brain expressed relative to plasma 65Zn level is enhanced by histidine infusion into the blood vessel. To study the effect of histidine on zinc uptake in the brain parenchyma via the CSF, the brains of rats injected intracerebroventricularly with 65Zn-His were subjected to autoradiography. Six days after injection, the radioactivity from 65Zn-His was distributed in the major part of the brain parenchyma higher than that from 65ZnCl2, and relatively concentrated in the hippocampal formation, globus pallidus and hypothalamus. The radioactivity of the aqueduct was also higher in the 65Zn-His group, indicating that CSF clearance of the 65Zn-His group may be lower than that of the 65ZnCl2 group. These results suggest an enhancement by histidine on zinc uptake in the brain parenchyma via the CSF.  相似文献   

19.
To evaluate the feasibility of applying blood-borne neurotrophins to promote normal function of the central nervous system (CNS) and to rescue neuronal degeneration, we characterized the permeability of the blood–brain barrier (BBB) to neurotrophins. We report here that some members of the neurotrophin family (NGF, βNGF, NT3, and NT5) can cross the BBB of mice in vivo to arrive at the brain parenchyma. BBB permeability differed among individual neurotrophins in that NGF had the fastest influx rate (Ki) and NT3 the slowest, and that the entry rate of NGF was twice that of its smaller bioactive subunit βNGF. BBB permeability also differed at various CNS regions in that the cervical spinal cord had the greatest rate of influx, whereas brain had the lowest. Saturability of influx was suggested by self-inhibition studies for NT3 in vivo, and for NGF in an in situ brain perfusion system, indicating the presence of saturable transport systems. The results suggest that peripheral administration of neurotrophins could have therapeutic effects within the CNS.  相似文献   

20.
65ZnCl2 was intravenously injected into Nagase analbuminemic rats (NAR), which have a genetical mutation affecting albumin mRNA processing and lack serum albumin, to test the hypothesis that albumin is necessary for zinc (Zn) transport into the brain. One hour after injection, 65Zn was largely concentrated in the choroid plexus of NAR as well as normal parental Sprague–Dawley rats (SDR). Six days after injection, in both groups, the 65Zn concentration in the choroid plexus decreased, with increases in other brain regions. The finding that there was no significant difference in brain distribution of 65Zn between NAR and SDR suggests that Zn transport into the brain and its distribution through the blood–cerebrospinal fluid barrier as well as the blood–brain barrier are not dependent on serum albumin. A most interesting observation was that the cerebral ventricles were considerably enlarged in NAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号