首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Severe toxicity is commonly observed in cancer patients receiving irinotecan. UDP-glucuronosyltransferase 1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38. This study prospectively evaluated the association between the prevalence of severe toxicity and UGT1A1 genetic variation. PATIENTS AND METHODS: Sixty-six cancer patients with advanced disease refractory to other treatments received irinotecan 350 mg/m(2) every 3 weeks. Toxicity and pharmacokinetic data were measured during cycle 1. UGT1A1 variants (-3279G>T, -3156G>A, promoter TA indel, 211G>A, 686C>A) were genotyped. RESULTS: The prevalence of grade 4 neutropenia was 9.5%. Grade 4 neutropenia was much more common in patients with the TA indel 7/7 genotype (3 of 6 patients; 50%) compared with 6/7 (3 of 24 patients; 12.5%) and 6/6 (0 of 29 patients; 0%) (P =.001). The TA indel genotype was significantly associated with the absolute neutrophil count nadir (7/7 < 6/7 < 6/6, P =.02). The relative risk of grade 4 neutropenia was 9.3 (95% CI, 2.4 to 36.4) for the 7/7 patients versus the rest of the patients. Pretreatment total bilirubin levels (mean +/- standard deviation) were significantly higher in patients with grade 4 neutropenia (0.83 +/- 0.08 mg/dL) compared to those without grade 4 neutropenia (0.47 +/- 0.03 mg/dL; P <.001). The -3156G>A variant seemed to distinguish different phenotypes of total bilirubin within the TA indel genotypes. The -3156 genotype and the SN-38 area under the concentration versus time curve were significant predictors of ln(absolute neutrophil count nadir; r(2) = 0.51). CONCLUSION: UGT1A1 genotype and total bilirubin levels are strongly associated with severe neutropenia, and could be used to identify cancer patients predisposed to the severe toxicity of irinotecan. The hypothesis that the -3156G>A variant is a better predictor of UGT1A1 status than the previously reported TA indel requires further testing.  相似文献   

2.
Background: Severe toxicity is commonly observed in cancer patients receiving irinotecan (CPT-11)UDPglucuronosyltransferase1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38 but therelationship between UGT1A1 and severe toxicity remains unclear. Our study aimed to assess this point to guideclinical use of CPT-11. Materials and Methods: 89 cancer patients with advanced disease received CPT-11-basedchemotherapy for at least two cycles. Toxicity, including GI and hematologic toxicity was recorded in detail andUGT1A1 variants were genotyped. Regression analysis was used to analyse relationships between these variablesand tumor response. Results: The prevalence of grade III-IV diarrhea was 10.1%, this being more common inpatients with the TA 6/7 genotype (5 of 22 patients, 22.7%) (p<0.05). The prevalence of grade III-IV neutropeniawas 13.4%and also highest in patients with the TA 6/7 genotype (4 of 22 patients; 18.2%) but without significance(p>0.05). The retreatment total bilirubin levels were significantly higher in TA6/7 patients (mean, 12.75μmol/L)with compared to TA6/6 (mean, 9.92 μmol/L) with p<0.05. Conclusions: Our study support the conclusion thatpatients with a UGT1A1*28 allele (s) will suffer an increased risk of severe irinotecan-induced diarrhea, whetherwith mid-or low-dosage. However, the UGT1A1*28 allele (s) did not increase severe neutropenia. Higher serumtotal bilirubin is an indication that patients UGT1A1 genotype is not wild-type, with significance for clinic usageof CPT-11.  相似文献   

3.
(Cancer Sci 2010; 101: 722–727) Although individuals carrying the UGT1A1 allele *28 have an increased risk of severe toxicities associated with irinotecan, no phase I study has been conducted based on the polymorphism. This report presents the recommended doses of irinotecan for patients with the respective genotypes. Twenty‐seven patients with advanced colorectal cancer were enrolled in this study, and the UGT1A1*28 polymorphism was genotyped before chemotherapy. One course of chemotherapy consisted of irinotecan infused once every 2 weeks at 70, 100, 120, and 150 mg/m2 at dose levels 1, 2, 3, and 4, respectively, and doxifluridine was administered orally. This treatment continued for at least 12 weeks. The dose‐limiting toxicity was determined as grade 3 hematological and non‐hematological toxicities for the TA6/TA6 (6/6) and TA6/TA7 (6/7) genotypes. The pharmacokinetics of irinotecan, SN‐38, and SN‐38 glucuronide, was assessed at dose level 2. Eighteen and nine patients had the 6/6 and 6/7 genotypes, respectively. The maximum tolerated dose (MTD) was not observed up to dose level 4 in patients with the 6/6 genotype. In contrast, MTD was observed at dose level 2 (100 mg/m2) in patients with the 6/7 genotype. Patients with the 6/7 genotype had a significantly higher area under the plasma time–concentration curve 0‐∞ SN‐38 (P = 0.022) and biliary index (P = 0.030) than those with 6/6. The recommended starting doses of biweekly irinotecan for phase II/III were 150 mg/m2 for patients with the UGT1A1 6/6 genotype and 70 mg/m2 for those with the 6/7 genotype, respectively. The gene polymorphism should be considered when determining the precise recommended doses to be administered in phase I studies.  相似文献   

4.
5.
背景与目的:尿苷二磷酸葡萄糖醛酸转移酶1A1(uridine diphosphoglucu-ronosyltransferase 1A1,UGTlA1)是伊立替康代谢关键酶,其活性受基因多态性影响显著。本研究探讨结直肠癌患者中,UGT1A1*28和UGT1A1*6基因多态性与伊立替康治疗相关不良反应之间的关系。方法:入组2013年4月—2013年12月于复旦大学附属中山医院肿瘤内科接受治疗的消化道恶性肿瘤患者160例。抽提外周血中基因组DNA,分别采用STR方法和Sanger测序法,检测UGT1A1*28和UGT1A1*6基因型,分析UGT1A1基因多态性分布情况。对其中82例化疗方案中含伊立替康的结直肠癌患者进行随访,记录不良反应发生情况和严重程度,比较不同基因型患者之间的差异。结果:160例消化道肿瘤患者中,UTG1A1*28(启动子TATA盒区域TA重复次数)野生型TA6/6124例(77.5%);杂合子TA6/7 33例(20.5%);纯合子TA7/7 3例(2.0%)。UGT1A1*6位点(211G>A)野生型GG 105例(65.6%),杂合子GA 48例(30.0%);纯合子AA 7例(4.4%)。82例化疗方案中含伊立替康的结直肠癌患者中,*28基因型(TA6/7和TA7/7)显著增加发生3级以上中性粒细胞减少的风险(58.3% vs 0.0%,P<0.001),并增加整体不良反应发生率(76.0% vs 45.6%,P<0.001);*6基因型(GA和AA)、年龄、性别、化疗方案和伊立替康相关不良反应发生无显著相关性。结论:接受伊立替康化疗的结直肠癌患者,UGT1A1*28位点多态性显著增加中性粒细胞减少发生的风险,可预测伊立替康引起的骨髓抑制性不良反应,辅助临床选择合适的化疗方案。  相似文献   

6.
Jada SR  Lim R  Wong CI  Shu X  Lee SC  Zhou Q  Goh BC  Chowbay B 《Cancer science》2007,98(9):1461-1467
The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.  相似文献   

7.
OBJECTIVE: Delayed-type diarrhea is a common side effect of irinotecan and is associated with a bacterial-mediated formation of the active irinotecan metabolite SN-38 from its glucuronide conjugate in the intestine. Based on a pilot study, we hypothesized that concomitant administration of the antibiotic neomycin would diminish exposure of the gut to SN-38 and ameliorate the incidence and severity of diarrhea. PATIENTS AND METHODS: Patients were treated with irinotecan in a multicenter, double-blind, randomized, placebo-controlled trial. Eligible patients received irinotecan (350 mg/m(2) once every 3 weeks) combined with neomycin (660 mg three times daily for three consecutive days, starting 2 days before chemotherapy) or combined with placebo. Blood samples were obtained for additional pharmacokinetic and pharmacogenetic analyses. RESULTS: Sixty-two patients were evaluable for the toxicity analysis. Baseline patient characteristics, systemic SN-38 exposure, and UGT1A1*28 genotype status (i.e., an additional TA repeat in the promoter region of uridine diphosphate-glucuronosyltransferase isoform 1A1) were similar in both arms. Although distribution, severity, and duration of delayed-type diarrhea did not differ significantly between arms, grade 3 diarrhea tended to be less frequent in the neomycin arm. The presence of at least one UGT1A1*28 allele was strongly related to the incidence of grade 2-3 diarrhea. In the neomycin arm, grade 2 nausea was significantly more common. CONCLUSION: Our results do not suggest a major role for neomycin as prophylaxis for irinotecan-induced delayed-type diarrhea. It is suggested that the UGT1A1*28 genotype status could be used as a screening tool for a priori prevention of irinotecan-induced delayed-type diarrhea.  相似文献   

8.

Purpose

UGT1A1 genotypes are important when considering treatment with irinotecan-containing regimens. In this study, we determined the dose, efficacy, and tolerability of irinotecan according to UGT1A1 genotypes when combined with capecitabine in patients with metastatic colorectal cancer.

Methods

Patients with histologically confirmed metastatic adenocarcinoma of the colon or rectum were enrolled into a UGT1A1 genotype-directed dose-escalation trial of irinotecan plus fixed-dose capecitabine (2,000 mg/m2/day). The starting dose of irinotecan was different for each genotype group and ranged from 200 to 280 mg/m2. Pharmacokinetic concentrations of irinotecan and metabolites were determined by LC/MS/MS.

Results

Fifty patients were genotyped for UGT1A1 *28 and *6, and grouped according to the numbers of defective alleles (DA): 0, 1, and 2. Plasma concentrations of irinotecan, SN-38, and SN-38G were measured. The maximum tolerated dose of irinotecan was 350 mg/m2 for the 0 and 1 DA groups, and 200 mg/m2 for the 2 DA group. For the 0, 1, and 2 DA groups, mean AUClast ratios of SN-38G to SN-38 were 7.72, 5.71, and 2.72 (P = 0.0023) and relative dose intensities at recommended dose were 85, 83, and 97 %.

Conclusion

Irinotecan dosing based on UGT1A1*28 and *6 is feasible, and higher doses of irinotecan can be safely administered in patients with 0 or 1 DA, compared to those with 2 DA.  相似文献   

9.
10.
Pharmacogenetic testing for UDP-glucuronosyltransferase (UGT) 1A1*28, a promoter variant of the UGT1A1 gene, is now carried out clinically to estimate the risk of irinotecan-associated toxicity. We studied the clinical significance of UGT1A1*6 and UGT1A1*27, two variants in exon 1 of the UGT1A1 gene that are found mainly in Asians. The study group comprised 46 Japanese patients who received various regimens of chemotherapy including irinotecan at doses from 50 to 180 mg/m(2). Pharmacogenetic relationships were explored between the UGT1A1 genotype and the ratio of the area under the plasma concentration-time curve (AUC) of the active metabolite of irinotecan (SN-38) to that of SN-38 glucuronide (SN-38G), used as a surrogate for UGT1A1 activity (AUC(SN-38)/AUC(SN-38G)). No patient was homozygous for UGT1A1*28, and none had UGT1A1*27. Two were heterozygous for UGT1A1*28. Two were homozygous and 15 heterozygous for UGT1A1*6, all of whom were wild type with respect to UGT1A1*28. Two patients were simultaneously heterozygous for UGT1A1*28 and UGT1A1*6, present on different chromosomes. The other 25 patients had none of the variants studied. The two patients simultaneously heterozygous for UGT1A1*28 and UGT1A1*6 and the two patients homozygous for UGT1A1*6 had significantly higher AUC(SN-38)/AUC(SN-38G) ratios than the others (P = 0.0039). Concurrence of UGT1A1*28 and UGT1A1*6, even when heterozygous, altered the disposition of irinotecan remarkably, potentially increasing susceptibility to toxicity. Patients homozygous for UGT1A1*6 should also be carefully monitored. UGT1A1 polymorphisms in the coding region of the UGT1A1 gene should be genotyped in addition to testing for UGT1A1*28 to more accurately predict irinotecan-related toxicity, at least in Asian patients.  相似文献   

11.
目的 探讨尿苷二磷酸葡萄糖醛酸转移酶(UGT)1A1基因多态性在FOLFIRI方案二线治疗转移性结直肠癌(mCRC)中的安全性和作为疗效预测指标的价值。方法在FOLFIRI方案化疗前分离mCRC患者外周血中单核细胞,采用荧光定量PCR-HRM法测定UGT1A1基因型。根据NCI CTC 3.0和RECIST 10标准分别评价化疗的不良反应和疗效,并分析UGT1A1基因多态性与不良反应和近期有效率(RR)的关系。用Kaplan-Meier法进行生存分析,Log-rank 检验分析UGT1A1基因型对无进展生存期(PFS)的影响。结果38例患者中,UGT1A1*28位点的野生型(TA6/6)有31例(81.6%),杂合突变型(TA6/7)2例(5.3%),纯合突变型(TA7/7)5例(13.2%);UGT1A1*6位点的野生型(G/G)有28例(73.7%),杂合突变型(G/A)8例(21.1%),纯合突变型(A/A)2例(5.3%)。在3~4级延迟性腹泻和中性粒细胞减少的发生率方面,UGT1A1*28的野生型(TA6/6)显著低于TA6/7和TA7/7基因型(P<0.05),UGT1A1*6的野生型(G/G)也显著低于G/A和A/A基因型(P<0.05)。RR和PFS在UGT1A1各种基因型之间差异无统计学意义(P>0.05)。结论 在FOLFIRI方案二线治疗mCRC中,UGT1A1*28位点和UGT1A1*6位点突变可以作为严重的延迟性腹泻和中性粒细胞减少的预测指标,但UGT1A1基因多态性与疗效无关。  相似文献   

12.

Background

It was recently reported that genetic polymorphisms of UDP glucuronyltransferase-1 polypeptide A1 (UGT1A1), a glucuronidation enzyme, were associated with irinotecan (CPT-11) metabolism. The active metabolite of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38) was glucuronidated (SN-38G) by UGT1A1. Genetic polymorphisms of UGT1A1 were associated with potentially serious adverse events, including neutropenia. Several studies have suggested that the dose of CPT-11 should be decreased in patients homozygous for UGT1A1*6 or UGT1A1*28, or double heterozygotes (*6/*28). However, the reference dose for patients with these genetic polymorphisms is unclear.

Methods

We investigated the relationship between the SN-38G/SN-38 concentration ratio and the dose of CPT-11 in 70 patients with colorectal cancer who received FOLFIRI-based regimens, by measuring the plasma concentrations of CPT-11, SN-38, and SN-38G.

Results

The SN-38G/SN-38 concentration ratio was lower in patients who were homozygous for UGT1A1*6, heterozygous for UGT1A1*6 or UGT1A1*28, or were double heterozygotes compared with patients with wild-type genes. The relative decreases in the SN-38G/SN-38 concentration ratio in patients homozygous for UGT1A1*6 and in double heterozygotes were greater than in patients heterozygous for UGT1A1*6 or UGT1A1*28. Interestingly, decreases in the SN-38G/SN-38 concentration ratio were associated with decreases in the neutrophil count and the final infusion dose of CPT-11.

Conclusion

Our results suggest that the SN-38G/SN-38 concentration ratio is an important factor for guiding dose adjustments, even in patients with wild-type genes. Therefore, the SN-38G/SN-38 concentration ratio, as an index of the patient’s metabolic capacity, is useful for assessing dose adjustments of CPT-11.  相似文献   

13.
Irinotecan often causes unpredictably severe, occasionally fatal, toxicity involving leukopenia or diarrhea. It is converted by carboxyesterase to an active metabolite, SN-38, which is further conjugated and detoxified to SN-38-glucuronide by UDP-glucuronosyltransferase (UGT). We genotyped the UGT1A7 gene by direct sequencing analysis and polymerase chain reaction-restriction fragment length polymorphism in 118 cancer patients and 108 healthy subjects. All the patients had received irinotecan-containing chemotherapy and were evaluated to see whether the variant UGT1A7 genotype would increase the likelihood of severe toxicity of irinotecan consisting of grade 4 leukopenia and/or grade 3 or more diarrhea. Among the 26 patients with severe toxicity, the allele frequencies were 61.5% for UGT1A7 (*)1, 15.4% for UGT1A7 (*)2, and 23.1% for UGT1A7 (*)3. On the other hand, the frequencies were 63.6% for UGT1A7 (*)1, 15.8% for UGT1A7 (*)2, and 20.7% for UGT1A7 (*)3 among the 92 patients without severe toxicity. None of the 118 patients had UGT1A7 (*)4. Neither univariate analysis (odds ratio, 1.13; 95% confidential interval, 0.46 - 2.75) nor multivariate logistic regression analysis (odds ratio, 0.74; 95% confidential interval, 0.26 - 2.07) found any significant association between carrying at least one of the variant alleles and the occurrence of severe toxicity. The distribution of UGT1A7 genotypes in 108 healthy subjects was not significantly different from that in the patients (P = 0.99 and 0.86 for those with and without severe toxicity, respectively), but significantly less than that in Caucasians reported previously (P < 0.001). The results suggested that determination of UGT1A7 genotypes would not be useful for predicting severe toxicity of irinotecan.  相似文献   

14.
Liu CY  Chen PM  Chiou TJ  Liu JH  Lin JK  Lin TC  Chen WS  Jiang JK  Wang HS  Wang WS 《Cancer》2008,112(9):1932-1940
BACKGROUND: It is known that the uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1)*28 polymorphism reduces UGT1A1 enzyme activity, which may lead to severe toxicities in patients who receive irinotecan. This study was conducted to assess the influence of this polymorphism on the efficacy and toxicity of irinotecan treatment in Chinese patients with metastatic colorectal carcinoma (CRC). METHODS: In total, 128 patients with metastatic CRC who had received previous treatment with irinotecan plus 5-fluorouracil/leucovorin were analyzed retrospectively. Genomic DNA samples were obtained from patients' leukocytes, and genotypes were determined by analyzing the sequence of TATA boxes in the UGT1A1 gene. The influence of the UGT1A1*28 polymorphism on toxicity and treatment outcome was analyzed. RESULTS: Approximately 20% of patients were identified with the UGT1A1*28 polymorphism, including 15.6% (n = 20 patients) with the thymine-adenine (TA)6/TA7 genotype and 4.7% (n = 6 patients) with the TA7/TA7 genotype. The remaining 79.7% of patients (n = 102) had wild type TA6/TA6. Marked increases in grade 3 or 4 neutropenia (53.8% vs 4.9%; P < .01), neutropenic fever (38.5% vs 3.9%; P < .01), diarrhea (26.9% vs 5.9%; P < .01), and pretreatment bilirubin level (23.1% vs 8.8%; P = .04) were observed in patients who had the TA6/TA7 or TA7/TA7 genotypes. Patients' pretreatment bilirubin levels correlated well with irinotecan-induced neutropenia (P < .01). It was noted that, although the requirement for irinotecan dose reduction was significantly greater in patients who had this genetic variant (42.3% vs 12.7%; P < .01), it did not affect the response rate to irinotecan-based chemotherapy (42.3% vs 45.1%; P = .80), and it did not significantly affect progression-free survival (10 months vs 11 months; P = .94) or overall survival (19 months vs 18 months; P = .84). CONCLUSIONS: The current data suggested that the UGT1A1*28 polymorphism may be a key determinant for predicting irinotecan-induced severe toxicities without affecting treatment outcome for patients with metastatic CRC. Further prospective studies are warranted for using this polymorphism to optimize irinotecan-based chemotherapy.  相似文献   

15.
Irinotecan is widely used in the treatment of colorectal, gastric, and lung cancers. However, adverse drug reactions such as severe diarrhea and neutropenia limit the dose of this drug. Irinotecan is metabolized by carboxylesterase to form an active metabolite, 7-ethyl-10-hydroxycamptothecin(SN-38), which in turn is subsequently conjugated by UGT-glucuronosyltransferase 1A1(UGT1A1)to yield an inactive form, SN-38 glucuronide(SN-38 G). The UGT1A1 gene polymorphisms contribute to the individual variation in adverse events among patients administered irinotecan. However, the distribution of polymorphisms shows large interethnic differences. The distribution of UGT1A1*28 greatly differs between Caucasians and Japanese; the frequency of UGT1A1*28 is high in Caucasians, whereas it is low in Asians including Japanese. Recently, it has been demonstrated that genetic variants of UGT1A1*6 in addition to UGT1A1*28 are associated with the occurrence of adverse events in irinotecan chemotherapy in Asians. This review summarizes recent studies to outline the role of UGT1A1*28 and UGT1A1*6 for irinotecan-induced adverse drug reaction in Japanese cancer patients.  相似文献   

16.
目的:研究 UGT1A1基因多态性与伊立替康治疗结直肠癌患者的不良反应及疗效之间的关系。方法:自外周血中抽提基因组 DNA,进行 PCR 扩增,应用直接测序法分析2012年3月至2013年3月,于我院行基因检测的65例结直肠癌患者 UGT1A1*28和 UGT1A1*6基因多态性的分布情况。并对这65例应用含伊立替康方案化疗的患者出现的不良反应及化疗疗效,进行观察记录,比较不同基因型间的差异。结果:65例患者中,UGT1A1*28野生型 TA6/6有49例(75.4%),杂合突变型 TA6/7有14例(21.5%),纯合突变型TA7/7有2例(3.1%)。UGT1A1*6野生型 G/G 有47例(72.3%),杂合突变型 G/A 有15例(23.1%),纯合突变型 A /A 有3例(4.6%)。在以上65例结直肠癌患者中,UGT1A1基因启动子区28位点,TA6/6、TA6/7和TA7/7型,发生3级以上腹泻者分别为8.2%、37.5%;发生3级以上中性粒细胞减少者分别为28.6%、62.5%。UGT1A1基因启动子区6位点,G/G、G/A 和 A /A 型,发生3级以上腹泻者分别为12.8%、44.4%;发生3级以上中性粒细胞减少者分别为14.9%、22.2%。各组之间疗效无统计学差异。结论:患者 UGT1A1*28和UGT1A1*6多态性分布基本一致,UGT1A1*28突变型可以使应用含伊立替康化疗患者发生3级以上腹泻和中性粒细胞减少的风险增加。UGT1A1*6突变型可增加3级以上腹泻的发生风险。因此,UGT1A1基因型的检测对伊立替康相关的不良反应有一定的预测作用,可提高用药安全性,在临床用药中起到了指导作用。  相似文献   

17.
目的:观察结直肠癌患者UGT1A1*28基因多态性的分布频率,了解UGT1A1*28基因多态性与结直肠癌患者应用伊立替康联合5-氟尿嘧啶化疗毒副反应的相关性。方法:从384例接受伊立替康联合氟尿嘧啶一线化疗的晚期结直肠癌病例中采外周血提取DNA。采用PCR 法扩增目的基因片段,直接测序法分析UGT1A1*28基因多态性。临床观察并评价患者化疗毒副反应分级,统计分析UGT1A1*28基因表型与化疗毒副反应相关性。结果:全部 384例患者 UGT1A1*28基因多态性分布情况:TA6/6野生基因型287例(74.7%),TA6/7杂合基因型73例(19.0%),TA7/7纯合基因型24例(6.3%)。化疗毒副反应和UGT1A1*28基因多态性进行临床单因素分析显示UGT1A1*28基因纯合型TA7/7、杂合型TA6/7与3-4度白细胞减少、中性粒细胞减少、腹泻、胆红素升高具有明显相关性(P<0.01),UGT1A1*28基因纯合型TA7/7及杂合型TA6/7患者发生中性粒细胞减少的风险较UGT1A1*28基因野生型TA6/6患者高5.625倍(OR=5.625)。UGT1A1*28基因纯合型TA7/7和UGT1A1*28基因杂合型TA6/7患者发生腹泻的风险较UGT1A1*28基因野生型TA6/6患者高6.778倍(OR=6.778)。结论:UGT1A1*28基因纯合型TA7/7及杂合型TA6/7患者应用伊立替康化疗后发生重度中性粒细胞减少、重度腹泻的风险高于UGT1A1*28基因野生型TA6/6,为临床伊立替康用药选择、剂量调整、毒副反应的提前干预提供理论依据。  相似文献   

18.
PURPOSE: Ketoconazole has been shown to inhibit the glucuronidation of the UGT2B7 substrates zidovudine and lorazepam. Its effect on UGT1A substrates is unclear. A recent study found that coadministration of irinotecan and ketoconazole led to a significant increase in the formation of SN-38 (7-ethyl-10-hydroxycamptothecine), an UGT1A substrate. This study investigates whether ketoconazole contributes to the increase in SN-38 formation by inhibiting SN-38 glucuronidation. EXPERIMENTAL DESIGN: SN-38 glucuronidation activities were determined by measuring the rate of SN-38 glucuronide (SN-38G) formation using pooled human liver microsomes and cDNA-expressed UGT1A isoforms (1A1, 1A7 and 1A9) in the presence of ketoconazole. Indinavir, a known UGT1A1 inhibitor, was used as a positive control. SN-38G formation was measured by high-performance liquid chromatograph. RESULTS: Ketoconazole competitively inhibited SN-38 glucuronidation. Among the UGT1A isoforms screened, ketoconazole showed the highest inhibitory effect on UGT1A1 and UGT1A9. The K(i) values were 3.3 +/- 0.8 micromol/L for UGT1A1 and 31.9 +/- 3.3 micromol/L for UGT1A9. CONCLUSIONS: These results show that ketoconazole is a potent UGT1A1 inhibitor, which seems the basis for increased exposure to SN-38 when coadministered with irinotecan.  相似文献   

19.
20.
It remains uncertain whether there is an correlation between clinical pharmacokinetic parameters and outcomes for metastatic colorectal cancer especially with UGT1A1 *28 and *6 wild type (*1/*1-*1/*1) for serious events associated with Irinotecan are largely excluded. This study retrospectively analyzed the relationship between Irinotecan metabolite levels and outcomes of UGT1A1 *1/*1-*1/*1 genotype arrangement. Blood samples (n = 244) were collected for analysis of plasma DPD activity (before first chemotherapy) and SN-38 levels (1.5 and 49 hour after CPT-11 administration). Clinical variables such as toxicity and outcomes were then assessed. Of the *1/*1 -*1/*1 genotype combination, the median progression free survival of the CSN-38 1.5 h > 50.24 ng/ml subset was remarkably longer than that of the CSN-38 1.5 h ≤ 50.24 ng/ml subset. However, there were no differences between the CSN-38 49 h > 15.25 ng/ml subgroup and the ≤ 15.25 ng/ml group. It was lower DPD activity that responsible for the relatively higher incidence of bone marrow hypocellular, diarrhea, and oral mucositis in the CSN-38 1.5 h > 50.24 ng/ml and CSN-38 49 h > 15.25 ng/ml subsets. Therefore, plasma SN-38 levels is related to outcomes for UGT1A1 *1/*1-*1/*1 genotype, to improve efficacy, patients with CSN-38 1.5 h lower than 50.24 ng/ml, CPT-11 dosage could be added in next chemmotherapy on SN-38 plasma level monitoring. Additionally, in patients with DPD activity below 3.18 before treatment, appropriate reduction of 5-FU dose could be considered to minimize the incidence of adverse events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号