首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
BACKGROUND: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress. METHODS: Primary cortical neuronal-glial cultures were exposed to N-methyl-D-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mM), sevoflurane (0.1-2.9 mM), halothane (0.1-2.9 mM), or 10 microM (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 microM). RESULTS: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization. CONCLUSIONS: Volatile anesthetics offer similar protection against excitotoxicity, but this protection is substantially less than that provided by selective NMDA receptor antagonism. Peak effects of NMDA receptor antagonism were observed at volatile anesthetic concentrations substantially greater than those used clinically.  相似文献   

2.
BACKGROUND: Volatile anesthetics decrease ischemic brain injury. Mechanisms for this protection remain under investigation. The authors hypothesized that volatile anesthetics serve as antioxidants in a neuronal-glial cell culture system. METHODS: Primary cortical neuronal-glial cultures were prepared from fetal rat brain. Cultures were exposed to iron, H2O2, or xanthine-xanthine oxidase for 30 min in serum-free media containing dissolved isoflurane (0-3.2 mm), sevoflurane (0-3.6 mm), halothane (0-4.1 mm), n-hexanol, or known antioxidants. Cell damage was assessed by release of lactate dehydrogenase (LDH) and trypan blue exclusion 24 h later. Lipid peroxidation was measured by the production of thiobarbituric acid-reactive substances in a cell-free lipid system. Iron and calcium uptake and mitochondrial depolarization were measured after exposure to iron in the presence or absence of isoflurane. RESULTS: Deferoxamine reduced LDH release caused by H2O2 or xanthine-xanthine oxidase, but the volatile anesthetics had no effect. Iron-induced LDH release was prevented by the volatile anesthetics (maximum effect for halothane = 1.2 mm, isoflurane = 1.2 mm, and sevoflurane = 2.1 mm aqueous phase). When corrected for lipid solubility, the three volatile anesthetics were equipotent against iron-induced LDH release. In the cell-free system, there was no effect of the anesthetics on thiobarbituric acid-reactive substance formation in contrast to Trolox, which provided complete inhibition. Isoflurane (1.2 mm) reduced mean iron uptake by 46% and inhibited mitochondrial depolarization but had no effect on calcium uptake. CONCLUSIONS: Volatile anesthetics reduced cell death induced by oxidative stress only in the context of iron challenge. The likely reason for protection against iron toxicity is inhibition of iron uptake and therefore indirect reduction of subsequent intracellular oxidative stress caused by this challenge. These data argue against a primary antioxidant effect of volatile anesthetics.  相似文献   

3.
Background: Volatile anesthetics decrease ischemic brain injury. Mechanisms for this protection remain under investigation. The authors hypothesized that volatile anesthetics serve as antioxidants in a neuronal-glial cell culture system.

Methods: Primary cortical neuronal-glial cultures were prepared from fetal rat brain. Cultures were exposed to iron, H2O2, or xanthine-xanthine oxidase for 30 min in serum-free media containing dissolved isoflurane (0-3.2 mm), sevoflurane (0-3.6 mm), halothane (0-4.1 mm), n-hexanol, or known antioxidants. Cell damage was assessed by release of lactate dehydrogenase (LDH) and trypan blue exclusion 24 h later. Lipid peroxidation was measured by the production of thiobarbituric acid-reactive substances in a cell-free lipid system. Iron and calcium uptake and mitochondrial depolarization were measured after exposure to iron in the presence or absence of isoflurane.

Results: Deferoxamine reduced LDH release caused by H2O2 or xanthine-xanthine oxidase, but the volatile anesthetics had no effect. Iron-induced LDH release was prevented by the volatile anesthetics (maximum effect for halothane = 1.2 mm, isoflurane = 1.2 mm, and sevoflurane = 2.1 mm aqueous phase). When corrected for lipid solubility, the three volatile anesthetics were equipotent against iron-induced LDH release. In the cell-free system, there was no effect of the anesthetics on thiobarbituric acid-reactive substance formation in contrast to Trolox, which provided complete inhibition. Isoflurane (1.2 mm) reduced mean iron uptake by 46% and inhibited mitochondrial depolarization but had no effect on calcium uptake.  相似文献   


4.
Background: During cerebral ischemia, excess of glutamate release and dysfunction of its high affinity transport induce an accumulation of extracellular glutamate, which plays an important role in neuronal death. The authors studied the relationship among propofol neuroprotection, glutamate extracellular concentrations, and glutamate transporter activity in a model of ischemic cortical cell cultures.

Methods: Thirteen-day-old primary cortical neuronal-glial cultures were exposed to a 90-min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber, followed by reoxygenation. Propofol was added only during the OGD period, and its effect was compared to that of the N-methyl-d-aspartate receptor antagonist dizocilpine (MK-801). Twenty-four hours after the injury, cell death was quantified by lactate dehydrogenase release and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Extracellular concentrations of glutamate in culture supernatants and glutamate uptake were performed at the end of OGD period by high-performance liquid chromatography and incorporation of l-[3H]glutamate into cells, respectively.

Results: At clinically relevant concentrations (0.05-10 [mu]m), propofol offered protection equivalent to that of MK-801. It significantly reduced lactate dehydrogenase release and increased the reduction of MTT. At the end of the ischemic injury, propofol was able to reverse the OGD-induced increase in glutamate extracellular concentrations and decrease of glutamate uptake. The inhibition of the glial GLT1 transporter by 3-methyl-glutamate did not further modify the effect of propofol on glutamate uptake, suggesting that GLT1 was not the major target of propofol.  相似文献   


5.
PURPOSE: The present study was designed to clarify the direct effects of the volatile anesthetics halothane, isoflurane and sevoflurane on oxytocin-induced uterine smooth muscle contraction from pregnant rats. METHODS: Longitudinal smooth muscle layers were obtained from pregnant rats. Intracellular concentration of free Ca++ ([Ca++](i)) was measured, using a fluorescence technique, simultaneously with muscle tension. Inward Ba++ current (I(Ba)) through voltage-dependent Ca++ channels (VDCCs) was measured using a whole cell patch clamp technique. After incubation with 20 nM oxytocin, halothane, isoflurane or sevoflurane (1, 2, and 3%) was introduced into the tissue bath. RESULTS: All volatile anesthetics significantly inhibited muscle contraction concomitant with a decrease in [Ca++](i). Volatile anesthetics also inhibited the peak I(Ba). When the anesthetic concentrations were expressed as multiples of minimum alveolar concentrations, there were no differences in the inhibitory potencies of the three volatile agents tested for muscle tension and VDCC. CONCLUSIONS: Volatile anesthetics halothane, isoflurane and sevoflurane reduce the oxytocin-induced contraction of pregnant uterine smooth muscle. Inhibition of the contraction by the volatile anesthetics is due, at least in part, to the decrease in [Ca++](i), and the decrease in [Ca++](i) may be mediated by inhibition of VDCC activity.  相似文献   

6.
目前研究表明,对于心肌缺血/再灌注(isehemic/reperfusion,I/R)损伤,适当的刺激可以激活机体的内源性保护机制,即缺血预处理(ischemic preconditioning,IPC)和缺血后处理(ischemic postconditioning,I-post),最终达到心肌保护效果.同时现有的研究发现,吸人性麻醉药同样可以诱导产生内源性的心肌保护作用,其作用机制及临床应用前景成为目前广泛关注的焦点,现就以七氟醚为代表的吸入性麻醉药的心肌保护作用及糖尿病与吸人性麻醉药心肌保护作用的关系作一简要综述.  相似文献   

7.
We hypothesized that N-methyl-d-aspartate (NMDA) receptors mediate some or all of the capacity of inhaled anesthetics to prevent movement in the face of noxious stimulation, and that this capacity to prevent movement correlates directly with the in vitro capacity of such anesthetics to block the NMDA receptor. To test this hypothesis, we measured the effect of IV infusion of the NMDA blockers dizocilpine (MK-801) and (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid (CPP) to decrease the MAC (the minimum alveolar concentration of anesthetic that prevents movement in 50% of subjects given a noxious stimulation) of 8 conventional anesthetics (cyclopropane, desflurane, enflurane, halothane, isoflurane, nitrous oxide, sevoflurane, and xenon) and 8 aromatic compounds (benzene, fluorobenzene, o-difluorobenzene, p-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, pentafluorobenzene, and hexafluorobenzene) and, for comparison, etomidate. We postulated that MK-801 or CPP infusions would decrease MAC in inverse proportion to the in vitro capacity of these anesthetics to block the NMDA receptor. This notion proved correct for the aromatic inhaled anesthetics, but not for the conventional anesthetics. At the greatest infusion of MK-801 (32 microg x kg(-1) x min(-1)) the MACs of conventional anesthetics decreased by 59.4 +/- 3.4% (mean +/- sd) and at 8 microg x kg(-1) x min(-1) by 45.5 +/- 4.2%, a decrease not significantly different from a 51.4 +/- 19.0% decrease produced in the EC50 for etomidate, an anesthetic that acts solely by enhancing gamma-amino butyric acid (GABA) receptors. We conclude that some aromatic anesthetics may produce immobility in the face of noxious stimulation by blocking the action of glutamate on NMDA receptors but that conventional inhaled anesthetics do not.  相似文献   

8.
BACKGROUND: During cerebral ischemia, excess of glutamate release and dysfunction of its high affinity transport induce an accumulation of extracellular glutamate, which plays an important role in neuronal death. The authors studied the relationship among propofol neuroprotection, glutamate extracellular concentrations, and glutamate transporter activity in a model of ischemic cortical cell cultures. METHODS: Thirteen-day-old primary cortical neuronal-glial cultures were exposed to a 90-min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber, followed by reoxygenation. Propofol was added only during the OGD period, and its effect was compared to that of the N-methyl-d-aspartate receptor antagonist dizocilpine (MK-801). Twenty-four hours after the injury, cell death was quantified by lactate dehydrogenase release and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Extracellular concentrations of glutamate in culture supernatants and glutamate uptake were performed at the end of OGD period by high-performance liquid chromatography and incorporation of l-[3H]glutamate into cells, respectively. RESULTS: At clinically relevant concentrations (0.05-10 microm), propofol offered protection equivalent to that of MK-801. It significantly reduced lactate dehydrogenase release and increased the reduction of MTT. At the end of the ischemic injury, propofol was able to reverse the OGD-induced increase in glutamate extracellular concentrations and decrease of glutamate uptake. The inhibition of the glial GLT1 transporter by 3-methyl-glutamate did not further modify the effect of propofol on glutamate uptake, suggesting that GLT1 was not the major target of propofol. CONCLUSION: Propofol showed a neuroprotective effect in this in vitro model of OGD, which was apparently mediated by a GLT1-independent restoration of the glutamate uptake impaired during the injury.  相似文献   

9.
Background: General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized.

Methods: The effects of representative intravenous and volatile anesthetics were studied on the release of sulfated cholecystokinin 8 (CCK8s), a representative excitatory neuropeptide, from isolated rat cerebrocortical nerve terminals (synaptosomes). Basal, elevated KCl depolarization-evoked and veratridine-evoked release of CCK8s from synaptosomes purified from rat cerebral cortex was evaluated at 35[degrees]C in the absence or presence of extracellular Ca2+. CCK8s released into the incubation medium was determined by enzyme-linked immunoassay after filtration.

Results: Elevation of extracellular KCl concentration (to 15-30 mm) or veratridine (10-20 [mu]m) stimulated Ca2+-dependent CCK8s release. Basal, elevated KCl- or veratridine-evoked CCK8s release was not affected significantly by propofol (12.5-50 [mu]m), pentobarbital (50 and 100 [mu]m), thiopental (20 [mu]m), etomidate (20 [mu]m), ketamine (20 [mu]m), isoflurane (0.6-0.8 mm), or halothane (0.6-0.8 mm).  相似文献   


10.
To clarify the mechanism by which volatile anesthetics initiate malignant hyperthermia (MH), we examined the effect of halothane, isoflurane, and enflurane on Ca2+ uptake and release by sarcoplasmic reticulum vesicles isolated from MH-susceptible (MHS) and normal pig muscle. Clinical concentrations of these anesthetics (0.1-0.5 mM) stimulated sarcoplasmic reticulum ATP-dependent Ca2+ uptake (maximal at approximately 4 mM), whereas 10-20 times the clinical anesthetic concentration inhibited Ca2+ uptake. There was no significant difference between MHS and normal sarcoplasmic reticulum in any aspect of Ca2+ uptake. Ca2+ release from 45Ca(2+)-filled sarcoplasmic reticulum vesicles in a 10(-8) M Ca(2+)-containing medium (pH 7.0) was significantly stimulated at clinical concentrations of all three volatile anesthetics (anesthetic concentration for the 50% stimulation of Ca2+ release = 0.096-0.22 mM); however, the rate constant for Ca2+ release from MHS sarcoplasmic reticulum was in all cases significantly greater than that from normal sarcoplasmic reticulum. Furthermore, 0.5 mM halothane had no effect on Ca2+ release from normal sarcoplasmic reticulum at pH values less than 6.8, although it could still significantly stimulate Ca2+ release from MHS sarcoplasmic reticulum even at pH 6.4; similar results were obtained for isoflurane and enflurane. These studies thus demonstrate that the interaction of volatile anesthetics with the sarcoplasmic reticulum Ca(2+)-release channel is altered in MHS porcine muscle such that the channel may be activated even at a Ca2+ concentration or pH that would be expected to maintain the channel in the closed state.  相似文献   

11.
Background: Many muscarinic functions are relevant to anesthesia, and alterations in muscarinic activity affect the anesthetic/analgesic potency of various drugs. Volatile anesthetics have been shown to depress muscarinic receptor function, and inhibition of the muscarinic signaling pathway alters the minimal alveolar anesthetic concentration of inhaled anesthetics. The purpose of this investigation was to determine in a neuronal cell which source of Ca2+ underlying the carbachol-evoked transient increase in cytoplasmic Ca2+ was reduced by isoflurane.

Methods: Experiments were performed at 37[degrees]C on continuously perfused monolayers of human neuroblastoma SH-SY5Y cells using Fura-2 as the cytoplasmic Ca2+ indicator. Carbachol (1 mm) was applied to evoke a transient increase in cytoplasmic Ca2+.

Results: Isoflurane (1 mm) reduces the carbachol-evoked transient increase in cytoplasmic Ca2+, and this isoflurane action is eliminated when the cells are continuously stimulated with 200 mm KCl or pretreated with 10 mm caffeine or 200 [mu]m ryanodine.  相似文献   


12.
Mg2+ and ketamine interact superadditively at N- methyl-D-aspartate (NMDA) receptors, which may explain the clinical efficacy of the combination. Because patients are usually exposed concomitantly to volatile anesthetics, we tested the hypothesis that volatile anesthetics interact with ketamine and/or Mg2+ at recombinantly expressed NMDA receptors. NR1/NR2A or NR1/NR2B receptors were expressed in Xenopus oocytes. We determined the effects of isoflurane, sevoflurane, and desflurane on NMDA receptor signaling, alone and in combination with S(+)-ketamine (4.1 microM on NR1/NR2A, 3.0 microM on NR2/NR2B) and/or Mg2+ (416 microM on NR1/NR2A, 629 microM on NR1/NR2B). Volatile anesthetics inhibited NR1/NR2A and NR1/NR2B glutamate receptor function in a reversible, concentration-dependent, voltage-insensitive and noncompetitive manner (half-maximal inhibitory concentration at NR1/NR2A receptors: 1.30 +/- 0.02 minimum alveolar anesthetic concentration [MAC] for isoflurane, 1.18 +/- 0.03 MAC for desflurane, 1.24 +/- 0.06 MAC for sevoflurane; at NR1/NR2B receptors: 1.33 +/- 0.12 MAC for isoflurane, 1.22 +/- 0.08 MAC for desflurane, and 1.28 +/- 0.08 MAC for sevoflurane). On both NR1/NR2A and NR1/NR2B receptors, 50% inhibitory concentration for volatile anesthetics was reduced approximately 20% by Mg2+, approximately 30% by S(+)-ketamine, and approximately 50% by the compounds in combination. Volatile anesthetic effects on NMDA receptors can be potentiated significantly by Mg2+, S(+)-ketamine, or-most profoundly-both. Therefore, the analgesic effects of ketamine and Mg2+, are likely to be enhanced in the presence of volatile anesthetics. IMPLICATIONS: Clinically relevant concentrations of volatile anesthetics inhibit functioning of N-methyl-D-aspartate receptors expressed recombinantly in Xenopus oocytes. This inhibition is reversible, concentration-dependent and voltage-insensitive, and results from noncompetitive antagonism of glutamate/glycine signaling. In addition, these effects can be potentiated significantly by co-application of either Mg2+, S(+)-ketamine, or--most profoundly--both.  相似文献   

13.
Background : Controversy persists concerning the mechanisms and role of general anesthetic inhibition of glutamate release from nerve endings. To determine the generality of this effect and to control for methodologic differences between previous studies, the authors analyzed the presynaptic effects of isoflurane and propofol on glutamate release from nerve terminals isolated from several species and brain regions.

Methods : Synaptosomes were prepared from rat, mouse, or guinea pig cerebral cortex and also from rat striatum and hippocampus. Release of endogenous glutamate evoked by depolarization with 20 [mu]m veratridine (which opens voltage-dependent Na+ channels by preventing inactivation) or by 30 mm KCl (which activates voltage-gated Ca2+ channels by membrane depolarization) was monitored using an on-line enzyme-linked fluorometric assay.

Results : Glutamate release evoked by depolarization with increased extracellular KCl was not significantly inhibited by isoflurane up to 0.7 mm (~2 minimum alveolar concentration; drug concentration for half-maximal inhibition > 1.5 mm) or propofol up to 40 [mu]m in synaptosomes prepared from rat, mouse, or guinea pig cerebral cortex, rat hippocampus, or rat striatum. Lower concentrations of isoflurane or propofol significantly inhibited veratridine-evoked glutamate release in all three species (isoflurane IC50 = 0.41-0.50 mm; propofol IC50 = 11-18 [mu]m) and rat brain regions. Inhibition of veratridine-evoked release was insensitive to the [gamma]-aminobutyric acid receptor type A antagonist bicuculline (100 [mu]m) in rat cortical synaptosomes.  相似文献   


14.
Wise-Faberowski L  Aono M  Pearlstein RD  Warner DS 《Anesthesia and analgesia》2004,99(6):1708-14, table of contents
Volatile anesthetics reduce acute excitotoxic cell death in primary neuronal/glial cultures. We hypothesized that cells protected by isoflurane against N-methyl-d-aspartate (NMDA)-induced necrosis would instead become apoptotic. Primary mixed neuronal/glial cultures prepared from fetal rat brain were exposed to dissolved isoflurane (0 mM, 0.4 mM [1.8 minimum alveolar anesthetic concentration], or 1.6 mM [7 minimum alveolar anesthetic concentration]) and NMDA (0 or 100 microM) at 37 degrees C for 30 min. Dizocilpine (10 microM) plus 100 microM NMDA served as a positive control. Necrosis and apoptosis were assessed at 24 and/or 48 h after exposure by using Hoechst/propidium iodide staining, terminal-deoxynucleotidyl transferase end-nick labeling, DNA fragmentation enzyme-linked immunoabsorbence, and caspase-3 activity assays. NMDA increased the number of necrotic cells. Isoflurane (1.6 mM) and dizocilpine partially reduced cellular necrosis but did not increase the number of morphologically apoptotic or apoptotic-like cells resulting from exposure to 100 microM NMDA at 24 h. At 48 h, no evidence was found to indicate that cells protected by isoflurane had become apoptotic or apoptotic-like. However, cells protected by dizocilpine against necrosis showed evidence of caspase-3-mediated apoptosis. These in vitro data do not support the hypothesis that isoflurane protection against acute excitotoxic necrosis results in apoptosis.  相似文献   

15.
Effects of xenon on in vitro and in vivo models of neuronal injury   总被引:8,自引:0,他引:8  
Wilhelm S  Ma D  Maze M  Franks NP 《Anesthesiology》2002,96(6):1485-1491
BACKGROUND: Xenon, the "inert" gaseous anesthetic, is an antagonist at the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Because of the pivotal role that NMDA receptors play in neuronal injury, the authors investigated the efficacy of xenon as a neuroprotectant in both in vitro and in vivo paradigms. METHODS: In a mouse neuronal-glial cell coculture, injury was provoked either by NMDA, glutamate, or oxygen deprivation and assessed by the release of lactate dehydrogenase into the culture medium. Increasing concentrations of either xenon or nitrogen (10-75% of an atmosphere) were coadministered and maintained until injury was assessed. In separate in vivo experiments, rats were administered N-methyl-dl-aspartate and killed 3 h later. Injury was quantified by histologic assessment of neuronal degeneration in the arcuate nucleus of the hypothalamus. RESULTS: Xenon exerted a concentration-dependent protection against neuronal injury provoked by NMDA (IC(50) = 19 +/- 6% atm), glutamate (IC(50) = 28 +/- 8% atm), and oxygen deprivation (IC(50) = 10 +/- 4% atm). Xenon (60% atm) reduced lactate dehydrogenase release to baseline concentrations with oxygen deprivation, whereas xenon (75% atm) reduced lactate dehydrogenase release by 80% with either NMDA- or glutamate-induced injury. In an in vivo brain injury model in rats, xenon exerted a concentration-dependent protective effect (IC(50) = 78 +/- 8% atm) and reduced the injury by 45% at the highest xenon concentration tested (75% atm). CONCLUSIONS: Xenon, when coadministered with the injurious agent, exerts a concentration-dependent neuroprotective effect at concentrations below which anesthesia is produced in rodents. Unlike either nitrous oxide or ketamine (other anesthetics with NMDA antagonist properties), xenon is devoid of both neurotoxicity and clinically significant adverse hemodynamic properties. Studies are proposed to determine whether xenon can be used as a neuroprotectant in certain clinical settings.  相似文献   

16.
Because the volatile anesthetics depress the entry of calcium (Ca) into myocardial cells and also alter release of intracellular Ca stores, additional pharmacologic blockade of Ca entry could potentially enhance anesthetic-induced depression. The depressant effects of the calcium entry blocker diltiazem combined with the volatile anesthetics halothane, enflurane, or isoflurane were investigated in isolated guinea pig papillary muscle. Muscle contractions were studied in normal Tyrode solution after rest and at stimulation rates of 0.1, 0.25, 0.5, 1, 2, and 3 Hz. Anesthetics were studied in the presence of 0.1 and 1 microM diltiazem, which depressed tension to approximately 85 and 55% of control at 2-3 Hz, respectively; depression at the higher concentration was frequency-dependent. Depressant effects of enflurane were determined as previously done for equianesthetic concentrations (approximately 1 and 2 MAC) of halothane and isoflurane. At all stimulation rates, 1.7 and 3.5% enflurane depressed peak tension and dT/dt-max to approximately 73 and 50% of the mean control-recovery value, respectively. After control measurements of contractile characteristics, effects of 0.1 microM diltiazem were determined alone and then with the addition of halothane (0.75 or 1.5%), isoflurane (1.3 or 2.5%), or enflurane (1.7 or 3.5%), respectively. Recovery from anesthetic was then determined in the continued presence of diltiazem. After rest and at rates less than or equal to 0.5 Hz, equianesthetic concentrations of these volatile agents caused similar depression in the presence of diltiazem. At 3 Hz stimulation rate, 1.3% isoflurane caused significantly less contractile depression than did 1.7% enflurane or than 0.75% halothane. At 2-MAC concentrations, differences among the anesthetics were more apparent: 2.5% isoflurane depressed peak tension and dT/dt-max less than did halothane at 1-3 Hz stimulation rates, and depressed dT/dt-max less than 3.5% enflurane at 2-3 Hz. Similar frequency-dependent differences in depression by approximately 2 MAC anesthetics were observed in the presence of 1 microM diltiazem. The patterns of depressant action by the volatile anesthetics were similar to those previously observed in the absence of diltiazem. Furthermore, when the volatile anesthetic depression of contractions was combined with the depression due to diltiazem-induced blockade of Ca entry, the resulting contractile depression did not differ significantly from a prediction that assumed simply additive effects.  相似文献   

17.
Background: Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity.

Methods: [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31[degrees]C).

Results: Low temperature (34 or 31[degrees]C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 [mu]m) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle.  相似文献   


18.
Background: Glutamate transporters play an important role in maintaining extracellular glutamate homeostasis. The authors studied the effects of volatile anesthetics on one type of glutamate transporters, excitatory amino acid transporter type 3 (EAAT3), and the role of protein kinase C in mediating these effects.

Methods: Excitatory amino acid transporter type 3 was expressed in Xenopus oocytes by injection of EAAT3 mRNA. Using two-electrode voltage clamp, membrane currents were recorded before, during, and after application of l-glutamate. Responses were quantified by integrating the current trace and are reported as microcoulombs. Data are mean +/- SEM.

Results: l-Glutamate-induced responses were increased gradually with the increased concentrations of isoflurane, a volatile anesthetic. At 0.52 and 0.70 mm isoflurane, the inward current was significantly increased compared with control. Isoflurane (0.70 mm) significantly increased Vmax (maximum velocity) (3.6 +/- 0.4 to 5.1 +/- 0.4 [mu]C;P < 0.05) but not Km (Michoelis-Menten Constant) (55.4 +/- 17.0 vs. 61.7 +/- 13.6 [mu]m;P > 0.05) of EAAT3 for glutamate compared with control. Treatment of the oocytes with phorbol-12-myrisate-13-acetate, a protein kinase C activator, caused a significant increase in transporter current (1.7 +/- 0.2 to 2.5 +/- 0.2 [mu]C;P < 0.05). Responses in the presence of the combination of phorbol-12-myrisate-13-acetate and volatile anesthetics (isoflurane, halothane, or sevoflurane) were not greater than those when volatile anesthetic was present alone. Oocytes pretreated with any of the three protein kinase C inhibitors alone (chelerythrine, staurosporine, or calphostin C) did not affect basal transporter current. Although chelerythrine did not change the anesthetic effects on the activity of EAAT3, staurosporine or calphostin C abolished the anesthetic-induced increase of EAAT3 activity.  相似文献   


19.
Background: Tyrosine protein kinase proteins exert a prominent control on signaling pathways and may couple rapid events, such as action potential and neurotransmitter release, to long-lasting changes in synaptic strength and survival. Whether anesthetics modulate tyrosine kinase activity remains unknown. The aim of the current study was therefore to examine the effects of intravenous and volatile anesthetics on the phosphorylation of focal adhesion kinase (pp125FAK), a functionally important nonreceptor tyrosine kinase, in the rat hippocampus.

Methods: Phosphorylation of pp125FAK was examined in hippocampal slices by immunoblotting with both antiphosphotyrosine and specific anti-pp125FAK antibodies. Experiments were performed in the absence (control) or presence of various concentrations of pharmacologic or anesthetic agents or both.

Results: Clinically relevant concentrations of thiopental, propofol, etomidate, isoflurane, sevoflurane, and desflurane induced a concentration-related increase in tyrosine phosphorylation. In contrast, ketamine (up to 100 [mu]m) and the nonimmobilizer F6 (1,2-dichlorohexafluorocyclobutane, 25 [mu]m) did not significantly affect pp125FAK phosphorylation. The anesthetic-induced increase in pp125FAK phosphorylation was blocked by GF 109203X, RO 318220, and chelerythrin (100 [mu]m), three structurally distinct inhibitors of protein kinase C and U 73122 (50 [mu]m), an inhibitor of phospholipase C. The propofol- and isoflurane-induced increase in pp125FAK phosphorylation was reversible and showed nonadditivity of effects with phorbol 12-myristate 13-acetate (an activator of protein kinase C, 0.1 [mu]m). In contrast, ketamine (up to 100 [mu]m), MK801 (10 [mu]m, an N-methyl-d-aspartate receptor antagonist), bicuculline (10 [mu]m, a [gamma]-aminobutyric acid type A receptor antagonist), and dantrolene (30 [mu]m, an inhibitor of the ryanodine receptor) were ineffective in blocking anesthetic-induced activation of tyrosine phosphorylation.  相似文献   


20.
Background: The investigation examined whether primary alcohols could be used as tools to explore the mechanism of anesthetic actions in airway smooth muscle (ASM). The hypothesis was that, like volatile anesthetics, the primary alcohols relax intact ASM by decreasing intracellular Ca2+ concentration ([Ca2+]i) and by inhibiting agonist-induced increases in the force developed for a given [Ca2+]i (Ca2+ sensitivity).

Method: The effects of butanol, hexanol, and octanol on isometric force in canine tracheal smooth muscle were examined. The effects of hexanol on [Ca2+]i (measured with fura-2) and the relationship between force and [Ca2+]i were studied during membrane depolarization provided by KCl and during muscarinic stimulation provided by acetylcholine.

Results: The primary alcohols relaxed ASM contracted by KCl or acetylcholine in a concentration-dependent manner, with potency increasing as chain length increased. The alcohols could completely relax the strips, even during maximal stimulation with 10 [mu]m acetylcholine (median effective concentrations of 28 +/- 12, 1.3 +/- 0.4, and 0.14 +/- 0.05 mm [mean +/- SD] for butanol, hexanol, and octanol, respectively). Hexanol decreased both [Ca2+]i and force in a concentration-dependent manner. Hexanol decreased Ca2+ sensitivity during muscarinic stimulation but had no effect on the force-[Ca2+]i relationship in its absence.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号