首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Research on biomarkers and genetics shares a number of objectives, including the identification of novel disease mechanisms, optimization of therapeutic studies, and improvement of diagnosis and prognosis. The latter is of particular relevance in neurodegenerative diseases where the underlying molecular processes often go on for decades until the first clinical symptoms appear. In this commentary we review the potential contribution that insight gained from genetic research may have on biomarker development in neurodegeneration. We argue that future progress will largely depend on a widespread application of novel high-throughput technologies now becoming available in both fields.  相似文献   

2.
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.  相似文献   

3.
Although the neurobiological basis of bipolar disorder (BD) remains unknown, mitochondrial dysfunction, oxidative stress and oxidative cell damage have been identified in this disease. Uncoupling proteins (UCP) are proton carriers located in the inner membrane of the mitochondria involved in controlling the production of mitochondrial reactive oxygen species (ROS). Therefore, in this study we wished to investigate the involvement of UCP in BD. We analyzed the RNA and protein levels of UCP2 in the dorsolateral prefrontal cortex (DLPFC) of subjects with BD and schizophrenia (SCZ) and assessed the potential relationship between the antioxidant superoxide dismutase (SOD1 and SOD2) and UCP2 in the same region. Our results showed a downregulation of UCP2 mRNA levels in the DLPFC of subjects with BD and SCZ. There were no differences in UCP2 protein, SOD1 and SOD2 levels between patients and controls. Although more studies are necessary, our results suggest that UCP2 is not been used as a compensatory mechanism to oppose the higher levels of oxidative stress found in BD and SCZ.  相似文献   

4.
The associations between interleukin-1 alpha (IL-1α-889) and beta (IL-1β-511) single nucleotide polymorphisms (SNPs) and the risk for Parkinson's disease (PD) are still controversial and ambiguous. The aim of this study was to determine a more precise estimation of the relationship by meta-analysis. We searched databases through March 2010 for all publications on the association between these variations and PD. A total of 11 studies including 2803 PD patients and 2539 healthy controls were identified. The overall and geographic subgroups analysis was conducted, and odds ratios (OR) and 95% confidence intervals (95% CI) were calculated in the fixed- or random-effects model. We found that the overall OR (95% CI) for TT and CT genotypes versus CC genotype for IL-1α-889 was 1.01 (0.88–1.16), while the overall OR (95% CI) for TT and CT genotypes versus CC genotype for IL-1β-511 was 1.19 (0.87–1.62). The sensitivity analysis strengthened our confidence in the validity of these null associations. There was no publication bias observed in this study. To sum up, there were no associations found between the SNPs of IL-1α-889, IL-1β-511 and risk for PD.  相似文献   

5.
This is a narrative review of new ideas and concepts related to differences between men and women in their risk of developing dementia or Alzheimer's disease (AD). We introduce the concept of dimorphic neurology and the distinction between sex and gender. We then provide three examples of risk factors related to sex and gender from the literature. Apolipoprotein E genotype is equally common in men and women but has a stronger effect in women. Apolipoprotein E genotype is a biological factor that cannot be modified but interacts with sex or gender related factors that can be modified. Low education has a similar harmful effect in men and women but has been historically more common in women. Education is a social factor related to gender that can be modified. Finally, bilateral oophorectomy is a factor restricted to women. Bilateral oophorectomy is a surgical practice related to sex that can be modified. Consideration of risk and protective factors in men and women separately may accelerate etiologic research for neurological diseases in general, and for dementia and AD in particular. Similarly, future preventive interventions for dementia should be tailored to men and women separately.  相似文献   

6.
7.
8.
This article reviews neuroimaging studies of conscious and voluntary regulation of various emotional states (sexual arousal, sadness, negative emotion). The results of these studies show that metacognition and cognitive recontextualization selectively alters the way the brain processes and reacts to emotional stimuli. Neuroimaging studies of the effect of psychotherapy in patients suffering from diverse forms of psychopathology (obsessive-compulsive disorder, panic disorder, unipolar major depressive disorder, social phobia, spider phobia, borderline personality) are also examined. The results of these studies indicate that the mental functions and processes involved in diverse forms of psychotherapy exert a significant influence on brain activity. Neuroimaging investigations of the placebo effect in healthy individuals (placebo analgesia, psychostimulant expectation) and patients with Parkinson's disease or unipolar major depressive disorder are also reviewed. The results of these investigations demonstrate that beliefs and expectations can markedly modulate neurophysiological and neurochemical activity in brain regions involved in perception, movement, pain, and various aspects of emotion processing. Collectively, the findings of the neuroimaging studies reviewed here strongly support the view that the subjective nature and the intentional content (what they are "about" from a first-person perspective) of mental processes (e.g., thoughts, feelings, beliefs, volition) significantly influence the various levels of brain functioning (e.g., molecular, cellular, neural circuit) and brain plasticity. Furthermore, these findings indicate that mentalistic variables have to be seriously taken into account to reach a correct understanding of the neural bases of behavior in humans. An attempt is made to interpret the results of these neuroimaging studies with a new theoretical framework called the Psychoneural Translation Hypothesis.  相似文献   

9.
Complex molecular mechanisms underlying the pathogenesis of Parkinson's disease (PD) are gradually being elucidated. Accumulating genetic evidence implicates dysfunction of kinase activities and phosphorylation pathways in the pathogenesis of PD. Causative and risk gene products associated with PD include protein kinases (such as PINK1, LRRK2 and GAK) and proteins related phosphorylation signaling pathways (such as SNCA, DJ-1). PINK1, LRRK2 and several PD gene products have been associated with mitogen-activated protein (MAP) and protein kinase B (AKT) kinase signaling pathways. C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK) and p38, signaling pathways downstream of MAP, are particularly important in PD. JNK and p38 play an integral role in neuronal death. Targeting JNK or p38 signaling may offer an effective therapy for PD. Inhibitors of the ERK signaling pathway, which plays an important role in the development of l-DOPA-induced dyskinesia (LID), have been shown to attenuate this condition in animal models. In this review, we summarize experimental evidence gathered over the last decade on the role of PINK1, LRRK2 and GAK and their related phosphorylation signaling pathways (JNK, ERK, p38 and PI3K/AKT) in PD. It is speculated that improvement or modulation of these signaling pathways will reveal potential therapeutic targets for attenuation of the cardinal symptoms and motor complications in patients with PD in the future.  相似文献   

10.
Disease-modifying drugs and Parkinson's disease   总被引:1,自引:0,他引:1  
Symptomatic medications, l-Dopa and dopaminergic agents, remain the only clinically pertinent pharmacological treatment proven effective and available for the large population of patients with Parkinson's disease. The challenge for the pharmaceutical industry is to develop disease-modifying drugs which could arrest, delay or at least oppose the progression of the specific pathogenic processes underlying Parkinson's disease. The purpose of this review, based on recent biological and genetic data to be validated with appropriate animal models, was to re-examine the putative neuroprotective agents in Parkinson's disease and discuss the development of new strategies with the ultimate goal of demonstrating neurocytoprotective activity in this neurodegenerative disease. Since guidelines for research on neurocytoprotective drugs remain to be written, innovation will be the key to success of future clinical trials. It is reasonable to expect that future advances in our understanding of the pathogenic processes of Parkinson's disease will open the way to new perspectives for the treatment of other neurodegenerative diseases.  相似文献   

11.
The ubiquitin-proteasome system (UPS) is the main intracellular pathway for regulated protein turnover. This system is of vital importance for maintaining cellular homeostasis and is essential for neuronal functioning. It is therefore not surprising that impairment of this system is implicated in the pathogenesis of a variety of diseases, including neurological disorders, which are pathologically characterized by the presence of ubiquitin-positive protein aggregates. A direct correlation between intact neuronal functioning and the UPS is exemplified by a range of transgenic mouse models wherein mutations in components of the UPS lead to a neurodegenerative or neurological phenotype. These models have been proven useful in determining the role of the UPS in the nervous system in health and disease. Furthermore, recently developed in vivo models harboring reporter systems to measure UPS activity could also substantially contribute to understanding the effect of neurodegeneration on UPS function. The role of the UPS in neurodegeneration in vivo is reviewed by discussing the currently available murine models showing a neurological phenotype induced by genetic manipulation of the UPS.  相似文献   

12.
Recent data has indicated that the traditional view of Parkinson's disease (PD) as an isolated disorder of the nigrostriatal dopaminergic system alone is an oversimplification of its complex symptomatology. Aside from classical motor deficits, various non-motor symptoms including autonomic dysfunction, sensory and cognitive impairments as well as neuropsychiatric alterations and sleep disturbances are common in PD. Some of these non-motor symptoms can even antedate the motor problems. Many of them are associated with extranigral neuropathological changes, such as extensive α-synuclein pathology and also neuroinflammatory responses in specific brain regions, i.e. microglial activation, which has been implicated in several aspects of PD pathogenesis and progression. However, microglia do not represent a uniform population, but comprise a diverse group of cells with brain region-specific phenotypes that can exert beneficial or detrimental effects, depending on the local phenotype and context. Understanding how microglia can be neuroprotective in one brain region, while promoting neurotoxicity in another, will improve our understanding of the role of microglia in neurodegeneration in general, and of their role in PD pathology in particular. Since neuroinflammatory responses are in principle modifiable, such approaches could help to identify new targets or adjunctive therapies for the full spectrum of PD-related symptoms.  相似文献   

13.
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are progressive and disabling neurodegenerative disorders, in which signs and symptoms overlap with each other and with other neurodegenerative conditions. Currently, diagnosis, measurement of progression, and response to therapeutic intervention rely upon clinical observation. However, there remains a critical need for validated biomarkers in each of these areas. A definitive diagnostic test would improve clinical management and enrollment into clinical trials. An objective measure of progression is vitally important in identifying neuroprotective interventions. Biomarkers may also provide insight into pathogenesis, and might therefore suggest possible novel targets for therapeutic intervention. In addition, certain biomarkers might be of use in monitoring the biochemical and physiological effects of therapeutic interventions. Development of diagnostic biomarkers has focused until recently upon imaging techniques based upon measuring loss of dopamine neurons. Additionally, advances in understanding the genetic contribution to neurodegenerative disorders, in particular in PD, have identified multiple causative genes and risk factors that in some cases may help estimate PD risk. However, recent availability of increasingly sophisticated bioinformatics technology has rendered development of fluid biomarkers feasible, opening the possibility of generally accessible blood or cerebrospinal fluid (CSF) tests that could impact upon diagnosis, management, and research in PD, PDD, and DLB.  相似文献   

14.
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Inflammation may be associated with the neuropathology of PD due to the following accumulating evidence: excessive microglial activation and increased levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-1β in the SNpc of patients with PD; the emergence of PD-like symptoms following influenza infection; the increased susceptibility to PD associated with bacterial vaginosis; the presence of inflammatory mediators and activators in animal models of PD; the ability of anti-inflammatory drugs to decrease susceptibility to PD; and the emerging possibility of the use of microglial activation inhibitors as a therapy in PD. In this review, we will discuss the role of inflammation in PD. We will focus on the influence of microglia in the pathogenesis of PD and discuss potential therapeutic interventions for PD, that target microglia.  相似文献   

15.
Brain iron metabolism: neurobiology and neurochemistry   总被引:5,自引:0,他引:5  
New findings obtained during the past years, especially the discovery of mutations in the genes associated with brain iron metabolism, have provided key insights into the homeostatic mechanisms of brain iron metabolism and the pathological mechanisms responsible for neurodegenerative diseases. The accumulated evidence demonstrates that misregulation in brain iron metabolism is one of the initial causes for neuronal death in some neurodegenerative disorders. The errors in brain iron metabolism found in these disorders have a multifactorial pathogenesis, including genetic and nongenetic factors. The disturbances of iron metabolism might occur at multiple levels, including iron uptake and release, storage, intracellular metabolism and regulation. It is the increased brain iron that triggers a cascade of deleterious events, leading to neuronal death in these diseases. In the article, the recent advances in studies on neurochemistry and neuropathophysiology of brain iron metabolism were reviewed.  相似文献   

16.
The ubiquitin-proteasome system (UPS) is the major intracellular proteolytic mechanism controlling the degradation of misfolded/abnormal proteins. A common hallmark in amyotrophic lateral sclerosis (ALS) and in other neurodegenerative disorders is the accumulation of misfolded/abnormal proteins into the damaged neurons, leading to the formation of cellular inclusions that are mostly ubiquitin-positive. Although proteolysis is a complex mechanism requiring the participation of different pathways, the abundant accumulation of ubiquitinated proteins strongly suggests an important contribution of UPS to these neuropathological features. The use of cellular and animal models of ALS, particularly those expressing mutant SOD1, the gene mutation most represented in familiar ALS, has provided significant evidence for a role of UPS in protein inclusions formation and motor neuron death. This review will specifically discuss this piece of evidence and provide suggestions of potential strategies for therapeutic intervention. We will also discuss the finding that, unlike the constitutive proteasome subunits, the inducible subunits are overexpressed early during disease progression in SOD1 mice models of ALS. These subunits form the immunoproteasome and generate peptides for the major histocompatibility complex class I molecules, suggesting a role of this system in the immune responses associated with the pathological features of ALS. Since recent discoveries indicate that innate and adaptive immunity may influence the disease process, in this review we will also provide evidence of a possible connection between immune-inflammatory reactions and UPS function, in the attempt to better understand the etiopathology of ALS and to identify appropriate targets for novel treatment strategies of this devastating disease.  相似文献   

17.
The human brain contains about 100 billion neurons forming an intricate network of innumerable connections, which continuously adapt and rewire themselves following inputs from external and internal environments as well as the physiological synaptic, dendritic and axonal sculpture during brain maturation and throughout the life span.  相似文献   

18.
Alzheimer's disease (AD) is the leading neurodegenerative cause of dementia in the elderly. Thus far, there is no curative treatment for this devastating condition, thereby creating significant social and medical burdens. AD is characterized by progressive cognitive decline along with various neuropsychiatric symptoms, including depression and psychosis.  相似文献   

19.
With the aging of the population, the growing incidence and prevalence of Alzheimer's disease (AD) increases the burden on individuals and society as a whole. To date, the pathophysiology of AD is not yet fully understood. Recent studies have suggested that epigenetic mechanisms may play a pivotal role in its course and development. The most frequently studied epigenetic mechanisms are DNA methylation and histone modifications, and investigations relevant to aging and AD are presented in this review. Various studies on human postmortem brain samples and peripheral leukocytes, as well as transgenic animal models and cell culture studies relevant to AD will be discussed.  相似文献   

20.
As the population ages, the economic and societal impacts of neurodegenerative and neuropsychiatric disorders are expected to rise sharply. Like dementia, late-life depressive disorders are common and are linked to increased disability, high healthcare utilisation, cognitive decline and premature mortality. Considerable heterogeneity in the clinical presentation of major depression across the life cycle may reflect unique pathophysiological pathways to illness; differentiating those with earlier onset who have grown older (early-onset depression), from those with illness onset after the age of 50 or 60 years (late-onset depression). The last two decades have witnessed significant advances in our understanding of the neurobiology of early- and late-onset depression, and has shown that disturbances of fronto-subcortical functioning are implicated. New biomedical models extend well beyond perturbations of traditional monoamine systems to include altered neurotrophins, endocrinologic and immunologic system dysfunction, inflammatory processes and gene expression alterations. This more recent research has highlighted that a range of illness-specific, neurodegenerative and vascular factors appear to contribute to the various phenotypic presentations. This review highlights the major features of late-life depression, with specific reference to its associated aetiological, clinical, cognitive, neuroimaging, neuropathological, inflammatory and genetic correlates. Data examining the efficacy of pharmacological, non-pharmacological and novel treatments for depression are discussed. Ultimately, future research must aim to evaluate whether basic biomedical knowledge can be successfully translated into enhanced health outcomes via the implementation of early intervention paradigms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号