首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrandrine, which is isolated from Chinese herb Stephania tetrandrae, possesses anti-inflammatory, immunosuppressive, and cytoprotective properties. Though it was previously shown that tetrandrine causes a G1 blockade and apoptosis in various cell types, however, the mechanism by which tetrandrine initiates apoptosis remains poorly understood. In present study, we investigated the mechanisms of apoptosis induced by tetrandrine in U937 leukemia cells. Tetrandrine inhibited U937 cell growth by inducing apoptosis. After treatment of U937 cells with tetrandrine (10microM) for 24h, alteration of cell morphology, chromatin fragmentation, cytochrome c release, and caspase activation were observed. Tetrandrine also induced early oxidative stress, which resulted in activation of JNK, but not ERK and p38 MAPK. A broad-spectrum caspase inhibitor and antioxidants significantly blocked tetrandrine-induced caspase-3 activation. However, inhibition of the JNK activity with SP600125 did not block tetrandrine-induced apoptosis. Tetrandrine-induced apoptosis of U937 cells also required activity of PKC-delta, because pretreatment with a specific PKC-delta inhibitor greatly blocked tetrandrine-induced caspase-3 activation. In addition, the apoptotic response to tetrandrine was significantly attenuated in dominant-negative PKC-delta transfected MCF-7 cells, suggesting that PKC-delta plays an important role in tetrandrine-induced apoptosis and can induce caspase activation. These results suggest that tetrandrine induces oxidative stress, JNK activation, and caspase activation. However, JNK activation by ROS is not involved in the tetrandrine-induced apoptosis. In addition, tetrandrine induces caspase-dependent generation of a catalytically active fragment of PKC-delta, and this fragment also appears to play a role in the activation of caspases.  相似文献   

2.
Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory activity. In this study, Andro induced apoptosis in human cancer cells via activation of caspase 8 in the extrinsic death receptor pathway and subsequently with the participation of mitochondria. Andro triggered a caspase 8-dependent Bid cleavage, followed by a series of sequential events including Bax conformational change and mitochondrial translocation, cytochrome c release from mitochondria, and activation of caspase 9 and 3. Inhibition of caspase 8 blocked Bid cleavage and Bax conformational change. Consistently, knockdown of Bid protein using small interfering RNA (siRNA) technique suppressed Andro-induced Bax conformational change and apoptosis. In conclusion, the pro-apoptotic Bcl-2 family members (Bid and Bax) are the key mediators in relaying the cell death signaling initiated by Andro from caspase 8 to mitochondria and then to downstream effector caspases, and eventually leading to apoptotic cell death.  相似文献   

3.
Tetrandrine, a constituent of Chinese herb Stephania tetrandra, causes cell death in prostate cancer, but the molecular mechanisms leading to apoptosis is not known. Here we demonstrated that tetrandrine selectively inhibits the growth of prostate cancer PC3 and DU145 cells compared to normal prostate epithelial PWR-1E cells. Tetrandrine-induced cell death in prostate cancer cells is caused by reactive oxygen species (ROS)-mediated activation of c-Jun NH2-terminal kinase (JNK1/2). JNK1/2-mediated proteasomal degradation of c-FLIPL/S and Bcl2 proteins are key events in the sensitization of prostate cancer cells to Fas- and mitochondria-mediated apoptosis by tetrandrine. Tetrandrine-induced JNK1/2 activation caused the translocation of Bax to mitochondria by disrupting its association with Bcl2 which was accompanied by collapse of mitochondrial membrane potential (MMP), cytosolic release of cytochrome c and Smac, and apoptotic cell death. Additionally, tetrandrine-induced JNK1/2 activation increased the phosphorylation of Bcl2 at Ser70 and facilitated its degradation via the ubiquitin-mediated proteasomal pathway. In parallel, tetrandrine-mediated ROS generation also caused the induction of ligand-independent Fas-mediated apoptosis by activating procaspase-8 and Bid cleavage. Inhibition of procaspase-8 activation attenuated the cleavage of Bid, loss of MMP and caspase-3 activation suggest that tetrandrine-induced Fas-mediated apoptosis is associated with the mitochondrial pathway. Furthermore, most of the signaling effects of tetrandrine on apoptosis were significantly attenuated in the presence of antioxidant N-acetyl-l-cysteine, thereby confirming the involvement of ROS in these events. In conclusion, the results of the present study indicate that tetrandrine-induced apoptosis in prostate cancer cells is initiated by ROS generation and that both intrinsic and extrinsic pathway contributes to cell death.  相似文献   

4.
Tetrandrine, a bisbenylisoquinoline alkaloid isolated from the dried root of Stephenia tetrandra (S Moore), possesses a remarkable pharmacological profile. However, the mechanisms of tetrandrine hepatotoxicity remain to be elucidated. In this study, we first proved apoptosis and mitochondrial dysfunction induced by tetrandrine in Sprague-Dawley rat liver in vivo. By further assuming apoptosis as an important mechanism in tetrandrine-induced hepatotoxicity, we focused on mitochondria-initiated apoptosis in primary hepatocytes isolated from Sprague-Dawley male rats. Tetrandrine treatment led to significant release of cytochrome c and downregulation of Bcl-X(L) accompanied by caspase 3 activation, and ultimately, DNA fragmentation. Caspase 3 activation was markedly inhibited by cyclosporin A (CsA) and Ac-DEVD-CHO. Furthermore, Endo G, a caspase-independent apoptotic protein, was detected for its expression and DNase activity. CsA blocked the release both of Endo G and cytochrome c significantly. Additionally, the generation of reactive oxygen species (ROS) increased in a time-dependent manner corresponding with a fall in intracellular GSH content after 10 microM tetrandrine treatment in 4h. Tetrandrine also induced mitochondrial dysfunction indicated by transition of mitochondrial transmembrane potential and decrease of intracellular ATP level. The findings indicated that the caspase-dependent mitochondrial apoptosis pathway was primarily involved in tetrandrine-induced apoptosis in rat primary hepatocytes. In addition, a caspase-independent pathway indicated by Endo G also contributed to apoptosis caused by tetrandrine. Meanwhile, ROS was proved an important inducer in this apoptosis process.  相似文献   

5.
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP.  相似文献   

6.
Previous reports have demonstrated that cadmium (Cd) may induce cell death via apoptosis, but the mechanism responsible for cellular death is not clear. In this study, we investigated the signaling pathways implicated in Cd-induced apoptosis in lung epithelial fibroblast (WI 38) cells. Apoptotic features were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, propidium iodide staining and DNA laddering. A treatment of cadmium caused the caspase-8-dependent Bid cleavage, the release of cytochrome c (Cyt c), activation of caspase-9 and -3, and PARP cleavage. A caspase-8 specific inhibitor prevented the Bid cleavage, caspase-3 activation and cell death. Alternatively, we observed that full-length Bax was cleaved into 18-kDa fragment (p18/Bax); this was initiated after 12 h and by 36 h the full-length Bax protein was totally cleaved to the p18/Bax, which caused a drastic release of Cyt c from mitochondria. The p18/Bax was detected exclusively in the mitochondrial fraction, and it originated from mitochondrial full-length Bax, but not from the cytosol full-length Bax. Cd also induced the activation of the mitochondrial 30-kDa small subunit of calpain that was preceded by Bax cleavage. Cd induced the upregulation of Bcl-2 and the degradation of p53 protein. N-acetyl cysteine effectively inhibited the Cd-induced DeltaPsim reduction, indicating ROS acts upstream of mitochondrial membrane depolarization. Taken together, our results suggest that Cd-induced apoptosis was thought to be mediated at least two pathways; caspase-dependent Bid cleavage, and the other is calpain-mediated mitochondrial Bax cleavage. Moreover, we found that the function of Bid and Bax was not dependent of Bcl-2, and that ROS can also contribute in the Cd-induced cell death.  相似文献   

7.
Diclofenac is a non-steroidal anti-inflammatory drug that is widely used clinically but side effects associated with the administration of the drug have been reported. The apoptotic effect of the drug has been evaluated in human and rat hepatocytes. Apoptosis was observed after exposure to sub-cytotoxic concentrations of the drug, without overlapping with cell necrosis. Flow cytometric analysis revealed a time- and dose-dependent increase of apoptotic nuclei with sub-diploid DNA content. Caspase 8 and 9 mediate the cell-receptor and the mitochondria-initiated apoptotic pathways, respectively. Inhibition of both caspases prevented activation of downstream caspases, thus indicating that diclofenac at least activates caspase 3 and both effector caspases 8 and 9. The hierarchy of caspase activation by diclofenac was investigated. Analysis of kinetics revealed a simultaneous activation of these caspases that was maximal after 12 hr of exposure to the drug. Inhibitors of MPT, prevented the downstream activation of the caspase cascade, thus showing that diclofenac opened the mitochondrial pore. On the other hand, antioxidants were able to prevent caspase activation by diclofenac, revealing that oxidative stress at the mitochondrial level is in the root of MPT induction and caspase cascade activation. Caspase activation is not mediated by Bid cleavage, suggesting that the cell-receptor pathway seems not to be involved. However, a dose-dependent release of caspase 8 from the mitochondria was observed, indicating that caspase 8 can be processed independently of cell death receptors. Caspases 8 and 9 are very likely the apical caspases in diclofenac-induced apoptosis. In addition, an early dose-dependent increase of bclX(L) expression parallel to the generation of reactive oxygen species in the mitochondria was found. In conclusion, the mitochondrial pathway is very likely the only pathway involved in diclofenac-induced apoptosis, which was related to CYP-mediated metabolism of diclofenac, with the highest apoptotic effect produced by the metabolite 5OH-diclofenac.  相似文献   

8.
The mechanisms involved in the apoptotic effect of LCY-2-CHO [9-(2-chlorobenzyl)-9H-carbazole-3-carbaldehyde], a synthetic carbazole derivative identified as an anti-inflammatory compound, were studied. Cell cycle analysis by propidium iodide staining in human THP-1 monocytic leukemia cells showed the ability of LCY-2-CHO to increase cell population in sub-G1 stage with time- and concentration-dependent manners. LCY-2-CHO-mediated cell death was also demonstrated by DNA laddering and was not related to the release of lactate dehydrogenase. Apoptosis in THP-1 cells induced by LCY-2-CHO was accompanied by the Bid cleavage, collapse of mitochondrial transmembrane potential, the release of cytochrome c and the activation of caspase-3. The apoptotic effect of LCY-2-CHO was diminished by the presence of zVEID-fmk (caspase-6 inhibitor), zIETD-fmk (caspase-8 inhibitor), and zVAD-fmk (non-selective caspase inhibitor), but was not altered by several antioxidants, and cathepsin inhibitor. The Bid cleavage and loss of mitochondrial transmembrane potential, but not the cytochrome c release, were reversed by zIETD-fmk. Comparing the cell selectivity of LCY-2-CHO, we found T-cell acute lymphoblastic CEM leukemia cells were sensitive to 1 microM LCY-2-CHO, acute myeloid leukemia HL-60 cells underwent apoptosis at 10 microM, while adherent cancer cells, such as PC3, HT29 and MCF-7, were resistant to 30 microM LCY-2-CHO within 24-h incubation. Taken together in the present study, we demonstrated LCY-2-CHO might be apoptotic for malignant hematopoietic cells but not anchorage-dependent cells. This action is mediated by an intrinsic caspase-dependent apoptotic event involving mitochondria.  相似文献   

9.
20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponin formed from ginsenosides Rb1, Rb2, and Rc, is suggested to be a potential chemopreventive agent. Here, we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (12 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. Treatment of HepG2 cells with IH901 also induced the cleavage of cytosolic factors such as Bid and Bax and translocation of truncated Bid (tBid) to mitochondria. A time-dependent release of cytochrome c from mitochondria was observed, which was accompanied by activation of caspase-9. A broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), and a specific inhibitor for caspase-8, N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone (zIETD-fmk), abrogated Bid processing and translocation, and caspase-3 activation. Cytochrome c release was inhibited by zVAD-fmk, however, the inhibition by zIETD-fmk was not complete. The activation of caspase-8 was inhibited not only by zIETD-fmk but also by zVAD-fmk. The results, together with the kinetic change of caspase activation, indicate that activation of caspase-8 occurred downstream of caspase-3 and -9. Our data suggest that the activation of caspase-8 after early caspase-3 activation might act as an amplification loop necessary for successful apoptosis. Primary hepatocytes isolated from normal Sprague-Dawley rats were not affected by IH901 (0-60 microM). The very low toxicity in normal hepatocytes and high activity in hepatoblastoma HepG2 cells suggest that IH901 is a promising experimental cancer chemopreventive agent.  相似文献   

10.
Capsaicin, a pungent compound found in hot chili peppers, induces apoptotic cell death in various cell lines, however, the precise apoptosis signaling pathway is unknown. Here, we investigated capsaicin-induced apoptotic signaling in the human breast cell line MCF10A and found that it involves both endoplasmic reticulum (ER) stress and calpain activation. Capsaicin inhibited growth in a dose-dependent manner and induced apoptotic nuclear changes in MCF10A cells. Capsaicin also induced degradation of tumor suppressor p53; this effect was enhanced by the ER stressor tunicamycin. The proteasome inhibitor MG132 completely blocked capsaicin-induced p53 degradation and enhanced apoptotic cell death. Capsaicin treatment triggered ER stress by increasing levels of IRE1, GADD153/Chop, GRP78/Bip, and activated caspase-4. It led to an increase in cytosolic Ca2+, calpain activation, loss of the mitochondrial transmembrane potential, release of mitochondrial cytochrome c, and caspase-9 and -7 activation. Furthermore, capsaicin-induced the mitochondrial apoptotic pathway through calpain-mediated Bid translocation to the mitochondria and nuclear translocation of apoptosis-inducing factor (AIF). Capsaicin-induced caspase-9, Bid cleavage, and AIF translocation were blocked by calpeptin, and BAPTA and calpeptin attenuated calpain activation and Bid cleavage. Thus, both ER stress- and mitochondria-mediated death pathways are involved in capsaicin-induced apoptosis.  相似文献   

11.
Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr. Poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early event required for cells committed to apoptosis, is detected within 3-6 hr in HL-60-S cells treated with AQ9. In accord with the fact that the caspases 9 and 3 cascade is responsible for PARP-1 cleavage, the activities of initiator caspase-9 and effector caspase-3 are induced by AQ9 in the same time- and concentration-dependent manners and to the same maximal degrees in both the HL-60-S and multidrug-resistant HL-60-RV cell lines. Interestingly, a 1-hr pulse treatment is sufficient for AQ8 and AQ9 to maximally induce caspase-9 and -3 activities at 6 hr. The release of mitochondrial cytochrome c (Cyt c) is also detected within 3-6hr in HL-60-S cells treated with AQ9, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Moreover, AQ analogs induce Cyt c release, caspase-9 and -3 activities and PARP-1 cleavage in relation with their abilities to decrease tumor cell growth and integrity, AQ8 and AQ9 being consistently the most effective. Since apical caspases 2 and 8 may both act upstream of mitochondria to promote Cyt c release, it is significant to show that AQ9 maximally induces caspase-2 and -8 activities at 6 and 9 hr, respectively. During AQ8 treatment, the caspase-2 inhibitor benzyloxycarbonyl (z)-Val-Asp-Val-Ala-Asp (VDVAD)-fluoromethyl ketone (fmk) totally blocks caspase-9, -3, and -8 activations, whereas the caspase-8 inhibitor z-Ile-Glu-Thr-Asp-(IETD)-fmk does not prevent caspase-2, -9, and -3 activations, suggesting that AQ-induced caspase-2 activity is an upstream event critical for the activation of the downstream caspases 9 and 3 cascade, including the mitochondrial amplification loop through caspase-8. However, these caspase-2 and -8 inhibitors fail to alter AQ8-induced Cyt c release, suggesting that AQs might also target mitochondria independently from caspase activation. Furthermore, the antagonistic anti-Fas DX2 and ZB4 monoclonal antibodies (mAbs), which block the induction of Cyt c release and caspase-2, -8, and -9 activities by the agonistic anti-Fas CH11 mAb, and the neutralizing anti-Fas ligand (FasL) NOK-1 mAb all fail to inhibit AQ9-induced Cyt c release and caspase-2, -8, and -9 activities, suggesting that the FasL/Fas signaling pathway is not involved in the mechanism by which antiproliferative AQ analogs trigger apoptosis in HL-60 cells.  相似文献   

12.
13.
14.
We reported previously that alpha-tocopheryl-succinate (VES) induced apoptosis of cultured human promyelocytic leukemia cells (HL-60) (Free Radic Res 2000;33:407-18). We have now studied the effect of cholesteryl-hemisuccinate (CS) on the fate of HL-60 cells to clarify whether CS has an effect similar to that of VES. CS inhibited the growth of HL-60 cells without differentiation to granulocytes and induced DNA fragmentation and ladder formation. CS inhibited the phosphorylation of pleckstrin homology domain-containing protein kinase B (Akt) and initiated the activation of a caspase cascade. CS triggered the reaction leading to the cleavage of Bid and also released cytochrome c (Cyt. c) from mitochondria. In addition, CS induced mitochondrial membrane depolarization and translocation of Bax to mitochondria in HL-60 cells. However, CS did not induce an increase in the concentration of intracellular calcium ions in HL-60 cells. The membrane depolarization, Cyt. c release, and DNA fragmentation were inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), a pan-caspase inhibitor, but not by cyclosporin A, an inhibitor of membrane permeability transition. These results suggested that CS-induced apoptosis of HL-60 cells might be caused by inhibiting Akt phosphorylation following cleavage of Bid through caspase-8 activation and subsequently via an Apaf complex-caspase cascade pathway.  相似文献   

15.
We previously demonstrated that beta-D-xylopyranosyl-(1-->3)-beta-D-glucuronopyranosyl echinocystic acid (codonoposide 1c), a biologically active compound isolated from the roots of Codonopsis lanceolata, is cytotoxic to cancer cells. In the present study, we investigated the effects of codonoposide 1c on the induction of apoptosis, and its putative action pathway in HL-60 human promyelocytic leukemia cells. Codonoposide 1c-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders by agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine (PS) residues. We observed that codonoposide 1c caused activation of caspase-8, caspase-9, and caspase-3. A broad caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk), and caspase-3 inhibitor (z-DEVD-fmk) almost completely suppressed codonoposide 1c-induced DNA fragmentation. We further found that codonoposide 1c induces mitochondrial translocation of Bid from cytosol, reduction of cytosolic Bax, and cytochrome c release from mitochondria. Interestingly, codonoposide 1c also triggered the mitochondrial release of Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point) into cytosol, and a reduction in X-linked inhibitor of apoptosis protein (XIAP). Taken together, our data indicate that codonoposide 1c is a potent inducer of apoptosis and facilates its activity via Bid cleavage and translocation to mitochondria, Bax reduction in cytosol, release of cytochrome c and Smac/DIABLO into the cytosol, and subsequently caspase activation, providing a potential mechanism for the cytotoxic activity of codonoposide 1c.  相似文献   

16.
We investigated the mechanism by which 4-hydroxynonenal (HNE), a major aldehydic product of lipid peroxidation, induces apoptosis in tumor cells. Treatment of human colorectal carcinoma (RKO) cells with HNE-induced poly-ADP-ribose-polymerase (PARP) cleavage and DNA fragmentation in a dose- and time-dependent manner. The induction of PARP cleavage and DNA fragmentation paralleled caspase-2, -3, -8, and -9 activation. Pretreatment of cells with an inhibitor of caspase-3, z-DEVD-fmk, or a broad spectrum caspase inhibitor, z-VAD-fmk, abolished caspase activation and subsequent PARP cleavage. Constitutive expression of high levels of Bcl-2 protected cells from HNE-mediated apoptosis. In addition, Bcl-2 overexpression inhibited cytochrome c release from mitochondria and subsequent caspase-2, -3, and -9 activation. These findings demonstrate that HNE triggers apoptotic cell death through a mitochondrion-dependent pathway involving cytochrome c release and caspase activation. Bcl-2 overexpression protected cells from HNE-induced apoptosis through inhibition of cytochrome c release.  相似文献   

17.
Although reactive oxygen species (ROS) have been implicated in cadmium (Cd)-induced hepatotoxicity, the role of ROS in this pathway remains unclear. Therefore, we attempted to determine the molecular mechanisms relevant to Cd-induced cell death in HepG2 cells. Cd was found to induce apoptosis in the HepG2 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis and TUNEL staining. In the early stages, both rapid and transient ROS generation triggered apoptosis via Fas activation and subsequent caspase-8-dependent Bid cleavage, as well as by calpain-mediated mitochondrial Bax cleavage. The timing of Bid activation was coincided with the timing at which the mitochondrial transmembrane potential (MMP) collapsed as well as the cytochrome c (Cyt c) released into the cytosol. Furthermore, mitochondrial permeability transition (MPT) pore inhibitors, such as cyclosporin A (CsA) and bongkrekic acid (BA), did not block Cd-induced ROS generation, MMP collapse and Cyt c release. N-acetylcysteine (NAC) pretreatment resulted in the complete inhibition of the Cd-induced apoptosis via catalase upregulation and subsequent Fas downregulation. NAC treatment also completely blocked the Cd-induced intracellular ROS generation, MMP collapse and Cyt c release, indicating that Cd-induced mitochondrial dysfunction may be regulated indirectly by ROS-mediated signaling pathway. Taken together, a rapid and transient ROS generation by Cd triggers apoptosis via caspase-dependent pathway and subsequent mitochondrial pathway. NAC inhibits Cd-induced apoptosis through the blocking of ROS generation as well as the catalase upregulation.  相似文献   

18.
SC-1, the aqueous phase of soybean fermentation products by bacteria (Bacillus subtilis and Bacillus brevis), significantly inhibited the growth and clonogenesity of human hepatocellular (Hep 3B), mouse hepatocellular (ML-1), and human colorectal (HCT 116 and HT-29) carcinoma cells. Cytotoxicity of SC-1 in Hep 3B cells was through the process of apoptosis characterizing by increase in cell population of sub-G(1) phase, fragmentation of DNA, and change of nuclear morphology. Treatment of Hep 3B cells with SC-1 activated caspase 8 and caspase 3. Elevation of nuclear DNA fragmentation factor 40 (DFF40) and cleavage form of poly(ADP-ribose) polymerase (PARP) were also observed. SC-1 also activated intrinsic pathway via increase of pro-apoptotic (tBid, Bak and Bax) and decrease of anti-apoptotic (Bcl-2 and Bcl-x(L)) proteins on mitochondria, disruption of mitochondrial membrane potential, release of cytochrome c and Smac (second mitochondria-derived activator of caspase/direct IAP binding protein with low PI) from mitochondria, and activation of caspase 9. Inhibition on protein expression of Ku70 in cytosol and cyclooxygenase (COX)-2, but not COX-1, in whole cell lystes were revealed in SC-1-treated Hep 3B cells. These results suggest caspase 8, Ku70 and mitochondria are involved in the antitumor mechanism of SC-1 in Hep 3B cells.  相似文献   

19.
To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 microM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.  相似文献   

20.
Yomogin is an active compound isolated from Artemisia princep, a traditional Oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of yomogin on the cytotoxicity, induction of apoptosis, and putative pathways of its actions in human promyelocytic leukemia cells. Yomogin-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders in agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine residues. We observed that yomogin caused activation of caspase-8, caspase-9, and caspase-3. A general caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk) and caspase-3 inhibitor (z-DEVD-fmk), almost completely suppressed the yomogin-induced DNA fragmentation. We further demonstrated that yomogin induced Bid cleavage, mitochondrial translocation of Bax from the cytosol, and cytochrome c release from mitochondria in a caspase-8-dependent manner. Taken together, our data indicate that yomogin is a potent inducer of apoptosis and facilitates its activity via caspase-8 activation, Bid cleavage, Bax translocation to mitochondria, and subsequent release of cytochrome c into the cytoplasm, providing a potential mechanism for the anticancer activity of yomogin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号